${L} = {\left[\begin{array}{ccccccccccccccccccccccccccccccc} 0& 0& \frac{1}{2}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {{\frac{1}{2}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} {{{\gamma^{xy}}}^{2}}}{-{{\gamma^{yy}}}}}\right)}}& {{\frac{1}{2}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} {{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}}{-{{\gamma^{yz}}}}}\right)}}& 0& 0& 0& {{\frac{1}{2}}} {{\left({{{\frac{1}{{\gamma^{xx}}}}{\left({-{{{\gamma^{xy}}}^{2}}}\right)}} + {{\gamma^{yy}}}}\right)}}& {{\frac{1}{2}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} { {-{{\gamma^{xy}}}} {{{\gamma^{xz}}}}}} + {{\gamma^{yz}}}}\right)}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& \frac{1}{2}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {{\frac{1}{2}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} { {-{{\gamma^{xy}}}} {{{\gamma^{xz}}}}}} + {{\gamma^{yz}}}}\right)}}& {{\frac{1}{2}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} { {-{{\gamma^{xz}}}} {{{\gamma^{xz}}}}}} + {{\gamma^{zz}}}}\right)}}& 0& 0& 0& {{\frac{1}{2}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} {{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}}{-{{\gamma^{yz}}}}}\right)}}& {{\frac{1}{2}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} {{{{\gamma^{xz}}}} \cdot {{{\gamma^{xz}}}}}}{-{{\gamma^{zz}}}}}\right)}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& \frac{-1}{{{2}} {{{\gamma^{xx}}}}}& 0& 0& 1& 0& {\frac{1}{{\gamma^{xx}}}} {{\gamma^{xy}}}& {\frac{1}{{\gamma^{xx}}}} {{\gamma^{xz}}}& 0& 0& \frac{-{{\gamma^{xy}}}}{{{2}} {{{\gamma^{xx}}}}}& 0& \frac{{\gamma^{yy}}}{{{2}} {{{\gamma^{xx}}}}}& \frac{{\gamma^{yz}}}{{{2}} {{{\gamma^{xx}}}}}& 0& \frac{-{{\gamma^{xy}}}}{{{2}} {{{\gamma^{xx}}}}}& {\frac{1}{{\gamma^{xx}}}}{\left({-{{\gamma^{xz}}}}\right)}& \frac{-{{\gamma^{yy}}}}{{{2}} {{{\gamma^{xx}}}}}& \frac{-{{\gamma^{yz}}}}{{{2}} {{{\gamma^{xx}}}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \frac{1}{{\gamma^{xx}}}\\ 0& \frac{-1}{{{2}} {{{\gamma^{xx}}}}}& 0& 0& 1& 0& {\frac{1}{{\gamma^{xx}}}} {{\gamma^{xy}}}& {\frac{1}{{\gamma^{xx}}}} {{\gamma^{xz}}}& 0& 0& {\frac{1}{{\gamma^{xx}}}}{\left({-{{\gamma^{xy}}}}\right)}& \frac{-{{\gamma^{xz}}}}{{{2}} {{{\gamma^{xx}}}}}& 0& \frac{-{{\gamma^{yz}}}}{{{2}} {{{\gamma^{xx}}}}}& \frac{-{{\gamma^{zz}}}}{{{2}} {{{\gamma^{xx}}}}}& 0& \frac{-{{\gamma^{xz}}}}{{{2}} {{{\gamma^{xx}}}}}& 0& \frac{{\gamma^{yz}}}{{{2}} {{{\gamma^{xx}}}}}& \frac{{\gamma^{zz}}}{{{2}} {{{\gamma^{xx}}}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& \frac{1}{{\gamma^{xx}}}& 0\\ \frac{-1}{{{f}} {{{\gamma^{xx}}}}}& \frac{{{\left({{-1} + {f}}\right)}} {{{\gamma^{xy}}}}}{{{f}} {{{{\gamma^{xx}}}^{2}}}}& \frac{{{\left({{-1} + {f}}\right)}} {{{\gamma^{xz}}}}}{{{f}} {{{{\gamma^{xx}}}^{2}}}}& 1& 0& 0& \frac{{{{{{\gamma^{xy}}}^{2}}} {{\left({{-2} + {m}}\right)}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}} \cdot {{\left({{-1} + {m}}\right)}}}}}{{{\gamma^{xx}}}^{2}}& \frac{{{2}} {{\left({{{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}} \cdot {{\left({{-2} + {m}}\right)}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}} \cdot {{\left({{-1} + {m}}\right)}}}}}\right)}}}{{{\gamma^{xx}}}^{2}}& \frac{{{{{{\gamma^{xz}}}^{2}}} {{\left({{-2} + {m}}\right)}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}} \cdot {{\left({{-1} + {m}}\right)}}}}}{{{\gamma^{xx}}}^{2}}& 0& \frac{{{{{{\gamma^{xy}}}^{2}}} {{\left({{2}{-{m}}}\right)}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}} \cdot {{\left({{-1} + {m}}\right)}}}}{{{\gamma^{xx}}}^{2}}& \frac{{{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}} \cdot {{\left({{2}{-{m}}}\right)}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}} \cdot {{\left({{-1} + {m}}\right)}}}}{{{\gamma^{xx}}}^{2}}& 0& \frac{{{\left({{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{\gamma^{xx}}}^{2}}& \frac{{{\left({{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{\gamma^{xx}}}^{2}}& 0& \frac{{{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}} \cdot {{\left({{2}{-{m}}}\right)}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}} \cdot {{\left({{-1} + {m}}\right)}}}}{{{\gamma^{xx}}}^{2}}& \frac{{{{{{\gamma^{xz}}}^{2}}} {{\left({{2}{-{m}}}\right)}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}} \cdot {{\left({{-1} + {m}}\right)}}}}{{{\gamma^{xx}}}^{2}}& \frac{ {-{\left({{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{\gamma^{xx}}}^{2}}& \frac{ {-{\left({{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{\gamma^{xx}}}^{2}}& 0& 0& 0& 0& 0& 0& 0& 0& {\frac{1}{{\gamma^{xx}}}} {m}& \frac{{{{\gamma^{xy}}}} \cdot {{\left({{-2} + {m}}\right)}}}{{{\gamma^{xx}}}^{2}}& \frac{{{{\gamma^{xz}}}} \cdot {{\left({{-2} + {m}}\right)}}}{{{\gamma^{xx}}}^{2}}\\ 0& 0& -{\frac{1}{4}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {{\frac{1}{4}}} {{\left({{{\frac{1}{{\gamma^{xx}}}}{\left({-{{{\gamma^{xy}}}^{2}}}\right)}} + {{\gamma^{yy}}}}\right)}}& {{\frac{1}{4}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} { {-{{\gamma^{xy}}}} {{{\gamma^{xz}}}}}} + {{\gamma^{yz}}}}\right)}}& 0& 0& 0& {{\frac{1}{4}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} {{{\gamma^{xy}}}^{2}}}{-{{\gamma^{yy}}}}}\right)}}& {{\frac{1}{4}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} {{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}}{-{{\gamma^{yz}}}}}\right)}}& 0& 0& 0& {\frac{1}{2}} {\sqrt{{\gamma^{xx}}}}& 0& \frac{{\gamma^{xy}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{\gamma^{xz}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& 0& 0& 0& \frac{1}{2}\\ 0& -{\frac{1}{4}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {{\frac{1}{4}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} {{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}}{-{{\gamma^{yz}}}}}\right)}}& {{\frac{1}{4}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} {{{\gamma^{xz}}}^{2}}}{-{{\gamma^{zz}}}}}\right)}}& 0& 0& 0& {{\frac{1}{4}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} { {-{{\gamma^{xy}}}} {{{\gamma^{xz}}}}}} + {{\gamma^{yz}}}}\right)}}& {{\frac{1}{4}}} {{\left({{{\frac{1}{{\gamma^{xx}}}}{\left({-{{{\gamma^{xz}}}^{2}}}\right)}} + {{\gamma^{zz}}}}\right)}}& 0& 0& {\frac{1}{2}} {\sqrt{{\gamma^{xx}}}}& 0& \frac{{\gamma^{xy}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{\gamma^{xz}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& 0& 0& 0& \frac{1}{2}& 0\\ 0& \frac{{\gamma^{xy}}}{{{4}} {{{\gamma^{xx}}}}}& \frac{{\gamma^{xz}}}{{{4}} {{{\gamma^{xx}}}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \frac{{ {-{{\gamma^{xz}}}} {{{\gamma^{yy}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}{{{4}} {{{\gamma^{xx}}}}}& \frac{{ {-{{\gamma^{xz}}}} {{{\gamma^{yz}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}{{{4}} {{{\gamma^{xx}}}}}& 0& 0& 0& \frac{{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}}{{{4}} {{{\gamma^{xx}}}}}& \frac{{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}}{{{4}} {{{\gamma^{xx}}}}}& 0& 0& \frac{-{{\gamma^{xy}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{-{{\gamma^{xz}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{-{{\gamma^{yy}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{-{{\gamma^{yz}}}}{\sqrt{{\gamma^{xx}}}}& \frac{-{{\gamma^{zz}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{1}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{1}{2}& 0& 0\\ 0& 0& 0& 0& 0& 0& \frac{{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}}{\sqrt{{\gamma^{xx}}}}& \frac{{{{\gamma^{xz}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& 0& \frac{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{ {-{{\gamma^{xy}}}} {{{\gamma^{xz}}}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& 0& \frac{{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& 0& \frac{{ {-{{\gamma^{xy}}}} {{{\gamma^{xz}}}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{-{{{\gamma^{xz}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{ {-{{\gamma^{xz}}}} {{{\gamma^{yy}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{ {-{{\gamma^{xz}}}} {{{\gamma^{yz}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& 0& 0& 0& 0& 0& 0& 0& \frac{1}{2}& {\frac{1}{2}} {\sqrt{{\gamma^{xx}}}}& \frac{{\gamma^{xy}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{\gamma^{xz}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}\\ 0& 0& 0& 0& 0& 0& 0& 0& {\frac{1}{2}}{\left({-{\sqrt{{\gamma^{xx}}}}}\right)}& 0& 0& 0& 0& 0& \frac{-{{\gamma^{xy}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& 0& 0& {\frac{1}{2}} {\sqrt{{\gamma^{xx}}}}& 0& \frac{{\gamma^{xy}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& 0& 0& 0& 0& 0& 0& \frac{1}{2}& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& {\frac{1}{2}}{\left({-{\sqrt{{\gamma^{xx}}}}}\right)}& 0& 0& 0& {\frac{1}{4}} {\sqrt{{\gamma^{xx}}}}& 0& \frac{-{{\gamma^{xy}}}}{{{4}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{\gamma^{xz}}}{{{4}} {{\sqrt{{\gamma^{xx}}}}}}& 0& {\frac{1}{4}} {\sqrt{{\gamma^{xx}}}}& 0& \frac{{\gamma^{xy}}}{{{4}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{-{{\gamma^{xz}}}}{{{4}} {{\sqrt{{\gamma^{xx}}}}}}& 0& 0& 0& 0& 0& \frac{1}{2}& 0& 0& 0& 0& 0\\ 0& 0& -{\frac{1}{4}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {{\frac{1}{4}}} {{\left({{{\frac{1}{{\gamma^{xx}}}}{\left({-{{{\gamma^{xy}}}^{2}}}\right)}} + {{\gamma^{yy}}}}\right)}}& {{\frac{1}{4}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} { {-{{\gamma^{xy}}}} {{{\gamma^{xz}}}}}} + {{\gamma^{yz}}}}\right)}}& 0& 0& 0& {{\frac{1}{4}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} {{{\gamma^{xy}}}^{2}}}{-{{\gamma^{yy}}}}}\right)}}& {{\frac{1}{4}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} {{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}}{-{{\gamma^{yz}}}}}\right)}}& 0& 0& 0& {\frac{1}{2}}{\left({-{\sqrt{{\gamma^{xx}}}}}\right)}& 0& \frac{-{{\gamma^{xy}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{-{{\gamma^{xz}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& 0& 0& 0& \frac{1}{2}\\ 0& -{\frac{1}{4}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {{\frac{1}{4}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} {{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}}{-{{\gamma^{yz}}}}}\right)}}& {{\frac{1}{4}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} {{{\gamma^{xz}}}^{2}}}{-{{\gamma^{zz}}}}}\right)}}& 0& 0& 0& {{\frac{1}{4}}} {{\left({{{\frac{1}{{\gamma^{xx}}}} { {-{{\gamma^{xy}}}} {{{\gamma^{xz}}}}}} + {{\gamma^{yz}}}}\right)}}& {{\frac{1}{4}}} {{\left({{{\frac{1}{{\gamma^{xx}}}}{\left({-{{{\gamma^{xz}}}^{2}}}\right)}} + {{\gamma^{zz}}}}\right)}}& 0& 0& {\frac{1}{2}}{\left({-{\sqrt{{\gamma^{xx}}}}}\right)}& 0& \frac{-{{\gamma^{xy}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{-{{\gamma^{xz}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& 0& 0& 0& \frac{1}{2}& 0\\ 0& \frac{{\gamma^{xy}}}{{{4}} {{{\gamma^{xx}}}}}& \frac{{\gamma^{xz}}}{{{4}} {{{\gamma^{xx}}}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \frac{{ {-{{\gamma^{xz}}}} {{{\gamma^{yy}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}{{{4}} {{{\gamma^{xx}}}}}& \frac{{ {-{{\gamma^{xz}}}} {{{\gamma^{yz}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}{{{4}} {{{\gamma^{xx}}}}}& 0& 0& 0& \frac{{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}}{{{4}} {{{\gamma^{xx}}}}}& \frac{{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}}{{{4}} {{{\gamma^{xx}}}}}& 0& 0& \frac{{\gamma^{xy}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{\gamma^{xz}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{\gamma^{yy}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{\gamma^{yz}}}{\sqrt{{\gamma^{xx}}}}& \frac{{\gamma^{zz}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{-1}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{1}{2}& 0& 0\\ 0& 0& 0& 0& 0& 0& \frac{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{ {-{{\gamma^{xy}}}} {{{\gamma^{xz}}}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}{\sqrt{{\gamma^{xx}}}}& \frac{{-{{{\gamma^{xz}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& 0& \frac{{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& 0& \frac{{ {-{{\gamma^{xz}}}} {{{\gamma^{yy}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{ {-{{\gamma^{xz}}}} {{{\gamma^{yz}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& 0& \frac{{{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{{\gamma^{xz}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& 0& 0& 0& 0& 0& 0& 0& \frac{1}{2}& {\frac{1}{2}}{\left({-{\sqrt{{\gamma^{xx}}}}}\right)}& \frac{-{{\gamma^{xy}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{-{{\gamma^{xz}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}\\ 0& 0& 0& 0& 0& 0& 0& 0& {\frac{1}{2}} {\sqrt{{\gamma^{xx}}}}& 0& 0& 0& 0& 0& \frac{{\gamma^{xy}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& 0& 0& {\frac{1}{2}}{\left({-{\sqrt{{\gamma^{xx}}}}}\right)}& 0& \frac{-{{\gamma^{xy}}}}{{{2}} {{\sqrt{{\gamma^{xx}}}}}}& 0& 0& 0& 0& 0& 0& \frac{1}{2}& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& {\frac{1}{2}} {\sqrt{{\gamma^{xx}}}}& 0& 0& 0& {\frac{1}{4}}{\left({-{\sqrt{{\gamma^{xx}}}}}\right)}& 0& \frac{{\gamma^{xy}}}{{{4}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{-{{\gamma^{xz}}}}{{{4}} {{\sqrt{{\gamma^{xx}}}}}}& 0& {\frac{1}{4}}{\left({-{\sqrt{{\gamma^{xx}}}}}\right)}& 0& \frac{-{{\gamma^{xy}}}}{{{4}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{\gamma^{xz}}}{{{4}} {{\sqrt{{\gamma^{xx}}}}}}& 0& 0& 0& 0& 0& \frac{1}{2}& 0& 0& 0& 0& 0\\ \frac{-1}{{{2}} {{\sqrt{{{f}} {{{\gamma^{xx}}}}}}}}& \frac{-{{\gamma^{xy}}}}{{{2}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{{f}} {{{\gamma^{xx}}}}}}}}& \frac{-{{\gamma^{xz}}}}{{{2}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{{f}} {{{\gamma^{xx}}}}}}}}& 0& 0& 0& \frac{{{\sqrt{f}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{\left({{ {-{{\gamma^{xy}}}} {{{\gamma^{xz}}}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{\left({{-{{{\gamma^{xz}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& 0& \frac{{{\sqrt{f}}} {{\left({{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{\left({{{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& 0& \frac{{{\sqrt{f}}} {{\left({{ {-{{\gamma^{xz}}}} {{{\gamma^{yy}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{\left({{ {-{{\gamma^{xz}}}} {{{\gamma^{yz}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& 0& \frac{{{\sqrt{f}}} {{\left({{{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{\left({{{{\gamma^{xz}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{\left({{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{\left({{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& 0& \frac{1}{2}& {\frac{1}{{\gamma^{xx}}}} {{\gamma^{xy}}}& {\frac{1}{{\gamma^{xx}}}} {{\gamma^{xz}}}& \frac{{\gamma^{yy}}}{{{2}} {{{\gamma^{xx}}}}}& {\frac{1}{{\gamma^{xx}}}} {{\gamma^{yz}}}& \frac{{\gamma^{zz}}}{{{2}} {{{\gamma^{xx}}}}}& \frac{{2}{-{{{f}} {{m}}}}}{{{{-2}} {{{\gamma^{xx}}}}} + {{{2}} {{f}} {{{\gamma^{xx}}}}}}& \frac{ {-{\sqrt{f}}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{ {-{\sqrt{f}}} {{{\gamma^{xy}}}} \cdot {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{ {-{\sqrt{f}}} {{{\gamma^{xz}}}} \cdot {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}\\ \frac{1}{{{2}} {{\sqrt{{{f}} {{{\gamma^{xx}}}}}}}}& \frac{{\gamma^{xy}}}{{{2}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{{f}} {{{\gamma^{xx}}}}}}}}& \frac{{\gamma^{xz}}}{{{2}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{{f}} {{{\gamma^{xx}}}}}}}}& 0& 0& 0& \frac{{{\sqrt{f}}} {{\left({{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{\left({{{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{\left({{{{\gamma^{xz}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& 0& \frac{{{\sqrt{f}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{\left({{ {-{{\gamma^{xy}}}} {{{\gamma^{xz}}}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& 0& \frac{{{\sqrt{f}}} {{\left({{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{\left({{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& 0& \frac{{{\sqrt{f}}} {{\left({{ {-{{\gamma^{xy}}}} {{{\gamma^{xz}}}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{\left({{-{{{\gamma^{xz}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{\left({{ {-{{\gamma^{xz}}}} {{{\gamma^{yy}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{\left({{ {-{{\gamma^{xz}}}} {{{\gamma^{yz}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}\right)}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& 0& \frac{1}{2}& {\frac{1}{{\gamma^{xx}}}} {{\gamma^{xy}}}& {\frac{1}{{\gamma^{xx}}}} {{\gamma^{xz}}}& \frac{{\gamma^{yy}}}{{{2}} {{{\gamma^{xx}}}}}& {\frac{1}{{\gamma^{xx}}}} {{\gamma^{yz}}}& \frac{{\gamma^{zz}}}{{{2}} {{{\gamma^{xx}}}}}& \frac{{2}{-{{{f}} {{m}}}}}{{{{-2}} {{{\gamma^{xx}}}}} + {{{2}} {{f}} {{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{{\gamma^{xy}}}} \cdot {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{\sqrt{f}}} {{{\gamma^{xz}}}} \cdot {{\left({{-2} + {m}}\right)}}}{{{2}} {{\left({{-1} + {f}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}\end{array}\right]}$
${R} = {\left[\begin{array}{ccccccccccccccccccccccccccccccc} {\frac{1}{{\gamma^{xx}}}} {{{-2}} {{{\gamma^{xz}}}}}& {\frac{1}{{\gamma^{xx}}}} {{{-2}} {{{\gamma^{xy}}}}}& 0& {\frac{1}{{\gamma^{xx}}}}{\left({{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}}\right)}& {\frac{1}{{\gamma^{xx}}}}{\left({{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}}\right)}& 0& 0& 0& {\frac{1}{{\gamma^{xx}}}}{\left({{ {-{{\gamma^{xz}}}} {{{\gamma^{yz}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}\right)}& {\frac{1}{{\gamma^{xx}}}}{\left({{ {-{{\gamma^{xz}}}} {{{\gamma^{yy}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}\right)}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \frac{ {-{f}} {{\left({{-2} + {m}}\right)}}}{{{\left({{-1} + {f}}\right)}} {{\sqrt{{\gamma^{xx}}}}}}& 0& 0& 0& 0& 0& \frac{{{f}} {{\left({{-2} + {m}}\right)}}}{{{\left({{-1} + {f}}\right)}} {{\sqrt{{\gamma^{xx}}}}}}& 0& 0& -{\sqrt{{{f}} {{{\gamma^{xx}}}}}}& \sqrt{{{f}} {{{\gamma^{xx}}}}}\\ 0& 2& 0& {{\frac{1}{{\gamma^{xx}}}}{\left({-{{{\gamma^{xz}}}^{2}}}\right)}} + {{\gamma^{zz}}}& {{\frac{1}{{\gamma^{xx}}}} { {-{{\gamma^{xy}}}} {{{\gamma^{xz}}}}}} + {{\gamma^{yz}}}& 0& 0& 0& {{\frac{1}{{\gamma^{xx}}}} {{{\gamma^{xz}}}^{2}}}{-{{\gamma^{zz}}}}& {{\frac{1}{{\gamma^{xx}}}} {{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}}{-{{\gamma^{yz}}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 2& 0& 0& {{\frac{1}{{\gamma^{xx}}}} {{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}}{-{{\gamma^{yz}}}}& {{\frac{1}{{\gamma^{xx}}}} {{{\gamma^{xy}}}^{2}}}{-{{\gamma^{yy}}}}& 0& 0& 0& {{\frac{1}{{\gamma^{xx}}}} { {-{{\gamma^{xy}}}} {{{\gamma^{xz}}}}}} + {{\gamma^{yz}}}& {{\frac{1}{{\gamma^{xx}}}}{\left({-{{{\gamma^{xy}}}^{2}}}\right)}} + {{\gamma^{yy}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& \frac{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{{ {-{{\gamma^{xx}}}} {{{{\gamma^{xy}}}^{2}}}} + {{{{{\gamma^{xx}}}^{2}}} {{{\gamma^{yy}}}}}}& \frac{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yy}}}}}{{ {-{{\gamma^{xx}}}} {{{{\gamma^{xy}}}^{2}}}} + {{{{{\gamma^{xx}}}^{2}}} {{{\gamma^{yy}}}}}}& {\frac{1}{{\gamma^{xx}}}}{\left({{-1} + {\frac{{{\gamma^{xy}}}^{2}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}}\right)}& \frac{{{{f}} {{{{\gamma^{xy}}}^{2}}} {{\left({{m}{-{2}}}\right)}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}} \cdot {{\left({{1} + {{{f}} {{\left({{1}{-{m}}}\right)}}}}\right)}}}}{{{\left({{f}{-{1}}}\right)}} {{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& \frac{{ {-{{{\gamma^{xz}}}^{2}}} {{{\gamma^{yy}}}}} + {{{{{\gamma^{xy}}}^{2}}} {{{\gamma^{zz}}}}}}{{{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& \frac{{{2}} {{{\gamma^{xy}}}} \cdot {{\left({{ {-{{\gamma^{xz}}}} {{{\gamma^{yy}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}\right)}}}{{{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& \frac{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{{ {-{{\gamma^{xx}}}} {{{{\gamma^{xy}}}^{2}}}} + {{{{{\gamma^{xx}}}^{2}}} {{{\gamma^{yy}}}}}}& \frac{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yy}}}}}{{ {-{{\gamma^{xx}}}} {{{{\gamma^{xy}}}^{2}}}} + {{{{{\gamma^{xx}}}^{2}}} {{{\gamma^{yy}}}}}}& {\frac{1}{{\gamma^{xx}}}}{\left({{-1} + {\frac{{{\gamma^{xy}}}^{2}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}}\right)}& \frac{{\frac{{{\gamma^{xy}}}^{2}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}} + {\frac{{-1} + {{{f}} {{\left({{-1} + {m}}\right)}}}}{{-1} + {f}}}}{{{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{{{{{\gamma^{xz}}}^{2}}} {{{\gamma^{yy}}}}}{-{{{{{\gamma^{xy}}}^{2}}} {{{\gamma^{zz}}}}}}}{{{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& \frac{{{2}} {{{\gamma^{xy}}}} \cdot {{\left({{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}}\right)}}}{{{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& \frac{-1}{\sqrt{{{f}} {{{\gamma^{xx}}}}}}& \frac{1}{\sqrt{{{f}} {{{\gamma^{xx}}}}}}\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& \frac{{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}{{{{\gamma^{xx}}}} \cdot {{\left({{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}}}& \frac{{\gamma^{yy}}}{{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}& \frac{{\gamma^{xy}}}{{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}& \frac{{\gamma^{xy}}}{{{\sqrt{{\gamma^{xx}}}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& \frac{{{{\gamma^{xy}}}} \cdot {{\left({{{{\gamma^{xz}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}}\right)}}}{{{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& \frac{{{{{\gamma^{xz}}}} \cdot {{\left({{{{\gamma^{xy}}}^{2}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}{-{{{2}} {{{\gamma^{xx}}}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}}{{{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& \frac{{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}{{{{\gamma^{xx}}}} \cdot {{\left({{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}}}& \frac{{\gamma^{yy}}}{{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}& \frac{{\gamma^{xy}}}{{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}& \frac{{\gamma^{xy}}}{{{\sqrt{{\gamma^{xx}}}}} {{\left({{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}}}& \frac{{{{\gamma^{xy}}}} \cdot {{\left({{-{{{\gamma^{xz}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}\right)}}}{{{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& \frac{{ {-{{\gamma^{xz}}}} {{\left({{{{\gamma^{xy}}}^{2}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}} + {{{2}} {{{\gamma^{xx}}}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}{{{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& \frac{-1}{{\gamma^{xx}}}& 0& 0& 0& \frac{{\gamma^{xz}}}{{{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{{\gamma^{xy}}}{{{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{-1}{{\gamma^{xx}}}& 0& 0& 0& \frac{-{{\gamma^{xz}}}}{{{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& \frac{-{{\gamma^{xy}}}}{{{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}& 0& 0\\ 0& 0& 0& 0& {\frac{1}{{\gamma^{xx}}}}{\left({-{{\gamma^{xz}}}}\right)}& 0& 0& 0& 0& {\frac{1}{{\gamma^{xx}}}} {{\gamma^{xz}}}& 0& 0& 1& 0& 0& 0& 0& \frac{{\gamma^{xz}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{{\gamma^{xy}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{{\gamma^{xx}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{\sqrt{{\gamma^{xx}}}}{{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}& \frac{{{{\gamma^{xz}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}}{{{\sqrt{{\gamma^{xx}}}}} {{\left({{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}}}& \frac{{{2}} {{\left({{{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}}\right)}}}{{{\sqrt{{\gamma^{xx}}}}} {{\left({{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}}}& \frac{{\gamma^{xz}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{{\gamma^{xy}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{{\gamma^{xx}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{\sqrt{{\gamma^{xx}}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{{{{\gamma^{xz}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}}{{{\sqrt{{\gamma^{xx}}}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& \frac{{{-2}} {{\left({{{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}}\right)}}}{{{\sqrt{{\gamma^{xx}}}}} {{\left({{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}}}& 0& 0\\ 0& 0& 0& \frac{-{{\gamma^{xz}}}}{{{2}} {{{\gamma^{xx}}}}}& \frac{{\gamma^{xy}}}{{{2}} {{{\gamma^{xx}}}}}& 0& \frac{1}{2}& 0& \frac{{\gamma^{xz}}}{{{2}} {{{\gamma^{xx}}}}}& \frac{-{{\gamma^{xy}}}}{{{2}} {{{\gamma^{xx}}}}}& 0& \frac{1}{2}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \frac{-1}{\sqrt{{\gamma^{xx}}}}& 0& 0& 0& 0& 0& \frac{1}{\sqrt{{\gamma^{xx}}}}& 0& 0\\ 0& 0& 0& {\frac{1}{{\gamma^{xx}}}} {{\gamma^{xy}}}& 0& 1& 0& 0& {\frac{1}{{\gamma^{xx}}}}{\left({-{{\gamma^{xy}}}}\right)}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \frac{-1}{\sqrt{{\gamma^{xx}}}}& 0& 0& 0& 0& 0& \frac{1}{\sqrt{{\gamma^{xx}}}}& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \frac{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{{{\sqrt{{\gamma^{xx}}}}} {{\left({{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}}}& \frac{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yy}}}}}{{{\sqrt{{\gamma^{xx}}}}} {{\left({{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}}}& \frac{{1} + {\frac{{{\gamma^{xy}}}^{2}}{{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}}}{\sqrt{{\gamma^{xx}}}}& {\frac{1}{{\gamma^{xx}}}}{\left({{\frac{{{\gamma^{xy}}}^{2}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}} + {\frac{{-1} + {{{f}} {{\left({{-1} + {m}}\right)}}}}{{-1} + {f}}}}\right)}& \frac{{{{{{\gamma^{xz}}}^{2}}} {{{\gamma^{yy}}}}}{-{{{{{\gamma^{xy}}}^{2}}} {{{\gamma^{zz}}}}}}}{{ {-{{\gamma^{xx}}}} {{{{\gamma^{xy}}}^{2}}}} + {{{{{\gamma^{xx}}}^{2}}} {{{\gamma^{yy}}}}}}& \frac{{{2}} {{{\gamma^{xy}}}} \cdot {{\left({{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}}\right)}}}{{{{\gamma^{xx}}}} \cdot {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& \frac{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{{{\sqrt{{\gamma^{xx}}}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& \frac{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yy}}}}}{{{\sqrt{{\gamma^{xx}}}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& \frac{{{{2}} {{{{\gamma^{xy}}}^{2}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}{{{\sqrt{{\gamma^{xx}}}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& {\frac{1}{{\gamma^{xx}}}}{\left({{\frac{{{\gamma^{xy}}}^{2}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}} + {\frac{{-1} + {{{f}} {{\left({{-1} + {m}}\right)}}}}{{-1} + {f}}}}\right)}& \frac{{{{{{\gamma^{xz}}}^{2}}} {{{\gamma^{yy}}}}}{-{{{{{\gamma^{xy}}}^{2}}} {{{\gamma^{zz}}}}}}}{{ {-{{\gamma^{xx}}}} {{{{\gamma^{xy}}}^{2}}}} + {{{{{\gamma^{xx}}}^{2}}} {{{\gamma^{yy}}}}}}& \frac{{{2}} {{{\gamma^{xy}}}} \cdot {{\left({{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}}\right)}}}{{{{\gamma^{xx}}}} \cdot {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& 1& 1\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \frac{{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}{{{\sqrt{{\gamma^{xx}}}}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& \frac{{{\sqrt{{\gamma^{xx}}}}} {{{\gamma^{yy}}}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{{{\sqrt{{\gamma^{xx}}}}} {{{\gamma^{xy}}}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{{\gamma^{xy}}}{{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}& \frac{{{{\gamma^{xy}}}} \cdot {{\left({{-{{{\gamma^{xz}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}\right)}}}{{{{\gamma^{xx}}}} \cdot {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& \frac{{{{{\gamma^{xz}}}} \cdot {{\left({{{{\gamma^{xy}}}^{2}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}{-{{{2}} {{{\gamma^{xx}}}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}}{{{{\gamma^{xx}}}} \cdot {{\left({{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}}}& \frac{{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}{{{\sqrt{{\gamma^{xx}}}}} {{\left({{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}}}& \frac{{{\sqrt{{\gamma^{xx}}}}} {{{\gamma^{yy}}}}}{{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}& \frac{{{\sqrt{{\gamma^{xx}}}}} {{{\gamma^{xy}}}}}{{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}& \frac{{\gamma^{xy}}}{{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}& \frac{{{{\gamma^{xy}}}} \cdot {{\left({{-{{{\gamma^{xz}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}\right)}}}{{{{\gamma^{xx}}}} \cdot {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& \frac{{{{{\gamma^{xz}}}} \cdot {{\left({{{{\gamma^{xy}}}^{2}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}{-{{{2}} {{{\gamma^{xx}}}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}}{{{{\gamma^{xx}}}} \cdot {{\left({{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}}}& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \frac{1}{\sqrt{{\gamma^{xx}}}}& 0& 0& 0& {\frac{1}{{\gamma^{xx}}}}{\left({-{{\gamma^{xz}}}}\right)}& {\frac{1}{{\gamma^{xx}}}}{\left({-{{\gamma^{xy}}}}\right)}& \frac{-1}{\sqrt{{\gamma^{xx}}}}& 0& 0& 0& {\frac{1}{{\gamma^{xx}}}}{\left({-{{\gamma^{xz}}}}\right)}& {\frac{1}{{\gamma^{xx}}}}{\left({-{{\gamma^{xy}}}}\right)}& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \frac{{{\sqrt{{\gamma^{xx}}}}} {{{\gamma^{xz}}}}}{{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}& \frac{{{\sqrt{{\gamma^{xx}}}}} {{{\gamma^{xy}}}}}{{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}& \frac{{{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}{{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}& \frac{{\gamma^{xx}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{{{{\gamma^{xz}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{{{{2}} {{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}{-{{{2}} {{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{{{\sqrt{{\gamma^{xx}}}}} {{{\gamma^{xz}}}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{{{\sqrt{{\gamma^{xx}}}}} {{{\gamma^{xy}}}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{{{{\gamma^{xx}}}} \cdot {{\sqrt{{\gamma^{xx}}}}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{{\gamma^{xx}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{{{{\gamma^{xz}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& \frac{{{{2}} {{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}{-{{{2}} {{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 1& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 1& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0\\ {\frac{1}{{\gamma^{xx}}}}{\left({-{{\gamma^{xz}}}}\right)}& {\frac{1}{{\gamma^{xx}}}}{\left({-{{\gamma^{xy}}}}\right)}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0\\ 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0\\ 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0\end{array}\right]}$
${{{R}} {{L}}} = {\left[\begin{array}{ccccccccccccccccccccccccccccccc} 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1\end{array}\right]}$
${{{L}} {{R}}} = {\left[\begin{array}{ccccccccccccccccccccccccccccccc} 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1\end{array}\right]}$
${\Lambda} = {\left[\begin{array}{ccccccccccccccccccccccccccccccc} 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {-{\alpha}} {{\sqrt{{\gamma^{xx}}}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {-{\alpha}} {{\sqrt{{\gamma^{xx}}}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {-{\alpha}} {{\sqrt{{\gamma^{xx}}}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {-{\alpha}} {{\sqrt{{\gamma^{xx}}}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {-{\alpha}} {{\sqrt{{\gamma^{xx}}}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {-{\alpha}} {{\sqrt{{\gamma^{xx}}}}}& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {{\alpha}} \cdot {{\sqrt{{\gamma^{xx}}}}}& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {{\alpha}} \cdot {{\sqrt{{\gamma^{xx}}}}}& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {{\alpha}} \cdot {{\sqrt{{\gamma^{xx}}}}}& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {{\alpha}} \cdot {{\sqrt{{\gamma^{xx}}}}}& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {{\alpha}} \cdot {{\sqrt{{\gamma^{xx}}}}}& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {{\alpha}} \cdot {{\sqrt{{\gamma^{xx}}}}}& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {-{\alpha}} {{\sqrt{{{f}} {{{\gamma^{xx}}}}}}}& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {{\alpha}} \cdot {{\sqrt{{{f}} {{{\gamma^{xx}}}}}}}\end{array}\right]}$
${{\frac{1}{\alpha}} {A}} = {\left[\begin{array}{|ccc|cccccccccccccccccc|cccccc|c|ccc|}\hline 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {{f}} {{{\gamma^{xx}}}}& {{2}} {{f}} {{{\gamma^{xy}}}}& {{2}} {{f}} {{{\gamma^{xz}}}}& {{f}} {{{\gamma^{yy}}}}& {{2}} {{f}} {{{\gamma^{yz}}}}& {{f}} {{{\gamma^{zz}}}}& {-{f}} {{m}}& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\\hline 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 1& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\\hline 1& 0& 0& 0& 0& 0& {\gamma^{yy}}& {{2}} {{{\gamma^{yz}}}}& {\gamma^{zz}}& 0& -{{\gamma^{yy}}}& -{{\gamma^{yz}}}& 0& 0& 0& 0& -{{\gamma^{yz}}}& -{{\gamma^{zz}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& -2& 0& 0\\ 0& \frac{1}{2}& 0& 0& 0& 0& -{{\gamma^{xy}}}& -{{\gamma^{xz}}}& 0& 0& {\gamma^{xy}}& {\frac{1}{2}} {{\gamma^{xz}}}& 0& {\frac{1}{2}} {{\gamma^{yz}}}& {\frac{1}{2}} {{\gamma^{zz}}}& 0& {\frac{1}{2}} {{\gamma^{xz}}}& 0& {\frac{1}{2}}{\left({-{{\gamma^{yz}}}}\right)}& {\frac{1}{2}}{\left({-{{\gamma^{zz}}}}\right)}& 0& 0& 0& 0& 0& 0& 0& 0& 0& -1& 0\\ 0& 0& \frac{1}{2}& 0& 0& 0& 0& -{{\gamma^{xy}}}& -{{\gamma^{xz}}}& 0& 0& {\frac{1}{2}} {{\gamma^{xy}}}& 0& {\frac{1}{2}}{\left({-{{\gamma^{yy}}}}\right)}& {\frac{1}{2}}{\left({-{{\gamma^{yz}}}}\right)}& 0& {\frac{1}{2}} {{\gamma^{xy}}}& {\gamma^{xz}}& {\frac{1}{2}} {{\gamma^{yy}}}& {\frac{1}{2}} {{\gamma^{yz}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& -1\\ 0& 0& 0& 0& 0& 0& {\gamma^{xx}}& 0& 0& 0& -{{\gamma^{xx}}}& 0& 0& -{{\gamma^{xz}}}& 0& 0& 0& 0& {\gamma^{xz}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& {\gamma^{xx}}& 0& 0& 0& {\frac{1}{2}}{\left({-{{\gamma^{xx}}}}\right)}& 0& {\frac{1}{2}} {{\gamma^{xy}}}& {\frac{1}{2}}{\left({-{{\gamma^{xz}}}}\right)}& 0& {\frac{1}{2}}{\left({-{{\gamma^{xx}}}}\right)}& 0& {\frac{1}{2}}{\left({-{{\gamma^{xy}}}}\right)}& {\frac{1}{2}} {{\gamma^{xz}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& {\gamma^{xx}}& 0& 0& 0& 0& 0& {\gamma^{xy}}& 0& 0& -{{\gamma^{xx}}}& 0& -{{\gamma^{xy}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\\hline 0& 0& 0& 0& 0& 0& {-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}& {{{-2}} {{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}} + {{{2}} {{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}& {-{{{\gamma^{xz}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}& 0& {{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& {{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}& 0& { {-{{\gamma^{xz}}}} {{{\gamma^{yy}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}& { {-{{\gamma^{xz}}}} {{{\gamma^{yz}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}& 0& {{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}}& {{{\gamma^{xz}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}& {{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}}& {{{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}}& 0& 0& 0& 0& 0& 0& 0& 0& -{{\gamma^{xx}}}& -{{\gamma^{xy}}}& -{{\gamma^{xz}}}\\\hline 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {\gamma^{xy}}& {\gamma^{xz}}& {\gamma^{yy}}& {{2}} {{{\gamma^{yz}}}}& {\gamma^{zz}}& -1& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& -{{\gamma^{xx}}}& 0& -{{\gamma^{xy}}}& -{{\gamma^{xz}}}& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& -{{\gamma^{xx}}}& 0& -{{\gamma^{xy}}}& -{{\gamma^{xz}}}& 0& 0& 0& 0\\\hline\end{array}\right]}$
${{\frac{1}{\alpha}} {{A_{check}}}} = {\left[\begin{array}{ccccccccccccccccccccccccccccccc} 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{f}}& {{2}} {{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{f}}& {{2}} {{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{f}}& {{\alpha}} \cdot {{{\gamma^{yy}}}} \cdot {{f}}& {{2}} {{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{f}}& {{\alpha}} \cdot {{{\gamma^{zz}}}} \cdot {{f}}& \frac{{{\alpha}} \cdot {{f}} {{m}} {{\left({{-{1}}{-{{f}^{2}}} + {{{2}} {{f}}}}\right)}}}{{1} + {{f}^{2}}{-{{{2}} {{f}}}}}& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \alpha& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \alpha& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \alpha& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \alpha& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \alpha& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \alpha& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ \alpha& 0& 0& 0& 0& 0& \frac{{{\alpha}} \cdot {{\left({{{{{{\gamma^{xx}}}^{2}}} {{{{\gamma^{yy}}}^{2}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{{\gamma^{xy}}}^{2}}}}}}\right)}}}{{{{\gamma^{xx}}}} \cdot {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& {{2}} {{\alpha}} \cdot {{{\gamma^{yz}}}}& {{\alpha}} \cdot {{{\gamma^{zz}}}}& 0& \frac{{{\alpha}} \cdot {{\left({{{{{{\gamma^{xx}}}^{2}}} {{{{\gamma^{yy}}}^{2}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{{\gamma^{xy}}}^{2}}}}}}\right)}}}{{{{\gamma^{xx}}}} \cdot {{\left({{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}}}& \frac{{{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{\left({{-{1}} + {f}}\right)}}}{{1}{-{f}}}& 0& 0& 0& 0& \frac{{{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{\left({{-{1}} + {f}}\right)}}}{{1}{-{f}}}& \frac{{{\alpha}} \cdot {{{\gamma^{zz}}}} \cdot {{\left({{{{\gamma^{xx}}}^{2}} + {{{{{\gamma^{xx}}}^{2}}} {{{f}^{2}}}}{-{{{2}} {{f}} {{{{\gamma^{xx}}}^{2}}}}}}\right)}}}{{-{{{\gamma^{xx}}}^{2}}}{-{{{{{\gamma^{xx}}}^{2}}} {{{f}^{2}}}}} + {{{2}} {{f}} {{{{\gamma^{xx}}}^{2}}}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& \frac{{{2}} {{\alpha}} \cdot {{\left({{-{1}} + {f}}\right)}}}{{1}{-{f}}}& 0& 0\\ 0& {\frac{1}{2}} {\alpha}& 0& 0& 0& 0& \frac{{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}{{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}& -{{{\alpha}} \cdot {{{\gamma^{xz}}}}}& 0& 0& {{\alpha}} \cdot {{{\gamma^{xy}}}}& {\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{xz}}}}}& 0& {\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{yz}}}}}& \frac{{{2}} {{\alpha}} \cdot {{{\gamma^{zz}}}} \cdot {{\left({{-{{{{\gamma^{xx}}}} \cdot {{{{\gamma^{xy}}}^{4}}}}}{-{{{{{\gamma^{xx}}}^{3}}} {{{{\gamma^{yy}}}^{2}}}}} + {{{2}} {{{\gamma^{yy}}}} \cdot {{{{\gamma^{xx}}}^{2}}} {{{{\gamma^{xy}}}^{2}}}}}\right)}}}{{{4}} {{\left({{-{{{{\gamma^{xx}}}} \cdot {{{{\gamma^{xy}}}^{4}}}}}{-{{{{{\gamma^{xx}}}^{3}}} {{{{\gamma^{yy}}}^{2}}}}} + {{{2}} {{{\gamma^{yy}}}} \cdot {{{{\gamma^{xx}}}^{2}}} {{{{\gamma^{xy}}}^{2}}}}}\right)}}}& 0& {\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{xz}}}}}& 0& -{{\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{yz}}}}}}& -{{\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{zz}}}}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& \frac{{{\alpha}} \cdot {{\left({{{{{{\gamma^{xx}}}^{2}}} {{{{\gamma^{yy}}}^{2}}}} + {{{\gamma^{xy}}}^{4}}{-{{{2}} {{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{{\gamma^{xy}}}^{2}}}}}}\right)}}}{{-{{{{{\gamma^{xx}}}^{2}}} {{{{\gamma^{yy}}}^{2}}}}}{-{{{\gamma^{xy}}}^{4}}} + {{{2}} {{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{{\gamma^{xy}}}^{2}}}}}& 0\\ 0& 0& {\frac{1}{2}} {\alpha}& 0& 0& 0& 0& -{{{\alpha}} \cdot {{{\gamma^{xy}}}}}& -{{{\alpha}} \cdot {{{\gamma^{xz}}}}}& 0& 0& {\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{xy}}}}}& 0& -{{\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{yy}}}}}}& -{{\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{yz}}}}}}& 0& {\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{xy}}}}}& {{\alpha}} \cdot {{{\gamma^{xz}}}}& {\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{yy}}}}}& {\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{yz}}}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& -{\alpha}\\ 0& 0& 0& 0& 0& 0& \frac{{{2}} {{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}{{{2}} {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}}& 0& 0& 0& \frac{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{\left({{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}}}{{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}& 0& 0& -{{{\alpha}} \cdot {{{\gamma^{xz}}}}}& 0& 0& 0& 0& \frac{{{4}} {{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{\left({{-{{{{{\gamma^{xx}}}^{2}}} {{{{\gamma^{yy}}}^{2}}}}}{-{{{\gamma^{xy}}}^{4}}} + {{{2}} {{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{{\gamma^{xy}}}^{2}}}}}\right)}}}{{{4}} {{\left({{-{{{{{\gamma^{xx}}}^{2}}} {{{{\gamma^{yy}}}^{2}}}}}{-{{{\gamma^{xy}}}^{4}}} + {{{2}} {{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{{\gamma^{xy}}}^{2}}}}}\right)}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& {{\alpha}} \cdot {{{\gamma^{xx}}}}& 0& 0& 0& -{{\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{xx}}}}}}& 0& {\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{xy}}}}}& -{{\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{xz}}}}}}& 0& -{{\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{xx}}}}}}& 0& -{{\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{xy}}}}}}& {\frac{1}{2}} {{{\alpha}} \cdot {{{\gamma^{xz}}}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& {{\alpha}} \cdot {{{\gamma^{xx}}}}& 0& 0& 0& 0& 0& {{\alpha}} \cdot {{{\gamma^{xy}}}}& 0& 0& -{{{\alpha}} \cdot {{{\gamma^{xx}}}}}& 0& -{{{\alpha}} \cdot {{{\gamma^{xy}}}}}& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& {{\alpha}} \cdot {{\left({{-{{{\gamma^{xy}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}& {{2}} {{\alpha}} \cdot {{\left({{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}}}\right)}}& {{\alpha}} \cdot {{\left({{-{{{\gamma^{xz}}}^{2}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}\right)}}& 0& {{\alpha}} \cdot {{\left({{{{\gamma^{xy}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}}& {{\alpha}} \cdot {{\left({{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}}\right)}}& 0& {{\alpha}} \cdot {{\left({{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}{-{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}}}\right)}}& {{\alpha}} \cdot {{\left({{{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}{-{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}}}}}\right)}}& 0& {{\alpha}} \cdot {{\left({{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}}}}\right)}}& {{\alpha}} \cdot {{\left({{{{\gamma^{xz}}}^{2}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}}}}}\right)}}& {{\alpha}} \cdot {{\left({{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}}}} + {{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}}}}\right)}}& {{\alpha}} \cdot {{\left({{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}}}} + {{{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}}}}\right)}}& 0& 0& 0& 0& 0& 0& 0& 0& -{{{\alpha}} \cdot {{{\gamma^{xx}}}}}& -{{{\alpha}} \cdot {{{\gamma^{xy}}}}}& -{{{\alpha}} \cdot {{{\gamma^{xz}}}}}\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& {{\alpha}} \cdot {{{\gamma^{xy}}}}& {{\alpha}} \cdot {{{\gamma^{xz}}}}& {{\alpha}} \cdot {{{\gamma^{yy}}}}& {{2}} {{\alpha}} \cdot {{{\gamma^{yz}}}}& {{\alpha}} \cdot {{{\gamma^{zz}}}}& -{\alpha}& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& -{{{\alpha}} \cdot {{{\gamma^{xx}}}}}& 0& -{{{\alpha}} \cdot {{{\gamma^{xy}}}}}& -{{{\alpha}} \cdot {{{\gamma^{xz}}}}}& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& -{{{\alpha}} \cdot {{{\gamma^{xx}}}}}& 0& -{{{\alpha}} \cdot {{{\gamma^{xy}}}}}& -{{{\alpha}} \cdot {{{\gamma^{xz}}}}}& 0& 0& 0& 0\end{array}\right]}$
${U} = {\left[\begin{array}{c} {a_x}\\ {a_y}\\ {a_z}\\ {d_{xxx}}\\ {d_{xxy}}\\ {d_{xxz}}\\ {d_{xyy}}\\ {d_{xyz}}\\ {d_{xzz}}\\ {d_{yxx}}\\ {d_{yxy}}\\ {d_{yxz}}\\ {d_{yyy}}\\ {d_{yyz}}\\ {d_{yzz}}\\ {d_{zxx}}\\ {d_{zxy}}\\ {d_{zxz}}\\ {d_{zyy}}\\ {d_{zyz}}\\ {d_{zzz}}\\ {K_{xx}}\\ {K_{xy}}\\ {K_{xz}}\\ {K_{yy}}\\ {K_{yz}}\\ {K_{zz}}\\ \Theta\\ {Z_x}\\ {Z_y}\\ {Z_z}\end{array}\right]}$
${{{F_r}} = {\left[\begin{array}{c} { F(\alpha)} _r\\ {{{ F(\gamma)} _r} _i} _j\\ {{ F(\beta)} _r} ^l\\ {{{ F(b)} _r} ^l} _i\\ {{ F(a)} _r} _i\\ {{{{ F(d)} _r} _k} _i} _j\\ {{{ F(K)} _r} _i} _j\\ { F(\Theta)} _r\\ {{ F(Z)} _r} _i\end{array}\right]}} = {\left[\begin{array}{c} 0\\ 0\\ 0\\ { {-{{ \beta} ^r}} {{{{ b} ^i} _l}}} + {{{{{ \delta} ^r} _l}} {{\left({{{{\alpha}} \cdot {{{ Q1} _i}}} + {{{{ \beta} ^m}} {{{{ b} ^i} _m}}}}\right)}}}\\ { {-{{ \beta} ^r}} {{{ a} _i}}} + {{{{{ \delta} ^r} _i}} {{\left({{{{\alpha}} \cdot {{f}} {{\left({{{{{{ K} _m} _n}} {{{{ \gamma} ^m} ^n}}}{-{{{\Theta}} \cdot {{m}}}}}\right)}}} + {{{{ \beta} ^m}} {{{ a} _m}}}}\right)}}}\\ { {-{{ \beta} ^r}} {{{{{ d} _k} _i} _j}}} + {{{{{ \delta} ^r} _k}} {{\left({{{{\alpha}} \cdot {{{{ K} _i} _j}}} + {{{{ \beta} ^m}} {{{{{ d} _m} _i} _j}}}}\right)}}}\\ { {-{{ \beta} ^r}} {{{{ K} _i} _j}}} + {{{\alpha}} \cdot {{\left({{{{{{ \gamma} ^r} ^m}} {{\left({{{{{ d} _m} _i} _j}{-{{{\frac{1}{2}}} {{\left({{{{{ d} _i} _j} _m} + {{{{ d} _j} _i} _m}}\right)}}}}}\right)}}} + {{{\frac{1}{2}}} {{{{ \delta} ^r} _i}} {{\left({{{ a} _j} + {{{\left({{{{{ d} _j} _m} _n}{-{{{{ d} _m} _n} _j}}}\right)}} {{{{ \gamma} ^m} ^n}}}{-{{{2}} {{{ Z} _j}}}}}\right)}}} + {{{\frac{1}{2}}} {{{{ \delta} ^r} _j}} {{\left({{{ a} _i} + {{{\left({{{{{ d} _i} _m} _n}{-{{{{ d} _m} _n} _i}}}\right)}} {{{{ \gamma} ^m} ^n}}}{-{{{2}} {{{ Z} _i}}}}}\right)}}}}\right)}}}\\ { {-{{ \beta} ^r}} {{\Theta}}} + {{{\alpha}} \cdot {{{{ \gamma} ^r} ^m}} {{\left({{{{\left({{{{{ d} _m} _p} _q}{-{{{{ d} _p} _q} _m}}}\right)}} {{{{ \gamma} ^p} ^q}}}{-{{ Z} _m}}}\right)}}}\\ { {-{{ \beta} ^r}} {{{ Z} _i}}} + {{{\alpha}} \cdot {{\left({{ {-{{{ \gamma} ^r} ^m}} {{{{ K} _m} _i}}} + {{{{{ \delta} ^r} _i}} {{\left({{{{{{ K} _m} _n}} {{{{ \gamma} ^m} ^n}}}{-{\Theta}}}\right)}}}}\right)}}}\end{array}\right]}$
${{ F(\alpha)} _x} = {0}$
${{{{ F(\gamma)} _x} _x} _x} = {0}$
${{{{ F(\gamma)} _x} _x} _y} = {0}$
${{{{ F(\gamma)} _x} _x} _z} = {0}$
${{{{ F(\gamma)} _x} _y} _y} = {0}$
${{{{ F(\gamma)} _x} _y} _z} = {0}$
${{{{ F(\gamma)} _x} _z} _z} = {0}$
${{{ F(\beta)} _x} ^x} = {0}$
${{{ F(\beta)} _x} ^y} = {0}$
${{{ F(\beta)} _x} ^z} = {0}$
${{{{ F(b)} _x} ^x} _x} = {{{{{Q1_{x}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{{b^x}_y}}}} + {{{{\beta^z}}} \cdot {{{{b^x}_z}}}}}$
${{{{ F(b)} _x} ^x} _y} = {{{{{Q1_{y}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{{b^y}_y}}}} + {{{{\beta^z}}} \cdot {{{{b^y}_z}}}}}$
${{{{ F(b)} _x} ^x} _z} = {{{{{Q1_{z}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{{b^z}_y}}}} + {{{{\beta^z}}} \cdot {{{{b^z}_z}}}}}$
${{{{ F(b)} _x} ^y} _x} = {-{{{{\beta^x}}} \cdot {{{{b^x}_y}}}}}$
${{{{ F(b)} _x} ^y} _y} = {-{{{{\beta^x}}} \cdot {{{{b^y}_y}}}}}$
${{{{ F(b)} _x} ^y} _z} = {-{{{{\beta^x}}} \cdot {{{{b^z}_y}}}}}$
${{{{ F(b)} _x} ^z} _x} = {-{{{{\beta^x}}} \cdot {{{{b^x}_z}}}}}$
${{{{ F(b)} _x} ^z} _y} = {-{{{{\beta^x}}} \cdot {{{{b^y}_z}}}}}$
${{{{ F(b)} _x} ^z} _z} = {-{{{{\beta^x}}} \cdot {{{{b^z}_z}}}}}$
${{{ F(a)} _x} _x} = {{{{{\beta^y}}} \cdot {{{a_y}}}} + {{{{\beta^z}}} \cdot {{{a_z}}}} + {{{{K_{xx}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{f}}} + {{{{K_{yy}}}} \cdot {{\alpha}} \cdot {{{\gamma^{yy}}}} \cdot {{f}}} + {{{{K_{zz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{zz}}}} \cdot {{f}}}{-{{{\Theta}} \cdot {{\alpha}} \cdot {{f}} {{m}}}} + {{{2}} {{{K_{xy}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{f}}} + {{{2}} {{{K_{xz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{f}}} + {{{2}} {{{K_{yz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{f}}}}$
${{{ F(a)} _x} _y} = {-{{{{\beta^x}}} \cdot {{{a_y}}}}}$
${{{ F(a)} _x} _z} = {-{{{{\beta^x}}} \cdot {{{a_z}}}}}$
${{{{{ F(d)} _x} _x} _x} _x} = {{{{{K_{xx}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{d_{yxx}}}}} + {{{{\beta^z}}} \cdot {{{d_{zxx}}}}}}$
${{{{{ F(d)} _x} _x} _x} _y} = {{{{{K_{xy}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{d_{yxy}}}}} + {{{{\beta^z}}} \cdot {{{d_{zxy}}}}}}$
${{{{{ F(d)} _x} _x} _x} _z} = {{{{{K_{xz}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{d_{yxz}}}}} + {{{{\beta^z}}} \cdot {{{d_{zxz}}}}}}$
${{{{{ F(d)} _x} _x} _y} _y} = {{{{{K_{yy}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{d_{yyy}}}}} + {{{{\beta^z}}} \cdot {{{d_{zyy}}}}}}$
${{{{{ F(d)} _x} _x} _y} _z} = {{{{{K_{yz}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{d_{yyz}}}}} + {{{{\beta^z}}} \cdot {{{d_{zyz}}}}}}$
${{{{{ F(d)} _x} _x} _z} _z} = {{{{{K_{zz}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{d_{yzz}}}}} + {{{{\beta^z}}} \cdot {{{d_{zzz}}}}}}$
${{{{{ F(d)} _x} _y} _x} _x} = {-{{{{\beta^x}}} \cdot {{{d_{yxx}}}}}}$
${{{{{ F(d)} _x} _y} _x} _y} = {-{{{{\beta^x}}} \cdot {{{d_{yxy}}}}}}$
${{{{{ F(d)} _x} _y} _x} _z} = {-{{{{\beta^x}}} \cdot {{{d_{yxz}}}}}}$
${{{{{ F(d)} _x} _y} _y} _y} = {-{{{{\beta^x}}} \cdot {{{d_{yyy}}}}}}$
${{{{{ F(d)} _x} _y} _y} _z} = {-{{{{\beta^x}}} \cdot {{{d_{yyz}}}}}}$
${{{{{ F(d)} _x} _y} _z} _z} = {-{{{{\beta^x}}} \cdot {{{d_{yzz}}}}}}$
${{{{{ F(d)} _x} _z} _x} _x} = {-{{{{\beta^x}}} \cdot {{{d_{zxx}}}}}}$
${{{{{ F(d)} _x} _z} _x} _y} = {-{{{{\beta^x}}} \cdot {{{d_{zxy}}}}}}$
${{{{{ F(d)} _x} _z} _x} _z} = {-{{{{\beta^x}}} \cdot {{{d_{zxz}}}}}}$
${{{{{ F(d)} _x} _z} _y} _y} = {-{{{{\beta^x}}} \cdot {{{d_{zyy}}}}}}$
${{{{{ F(d)} _x} _z} _y} _z} = {-{{{{\beta^x}}} \cdot {{{d_{zyz}}}}}}$
${{{{{ F(d)} _x} _z} _z} _z} = {-{{{{\beta^x}}} \cdot {{{d_{zzz}}}}}}$
${{{{ F(K)} _x} _x} _x} = {{-{{{{K_{xx}}}} \cdot {{{\beta^x}}}}} + {{{\alpha}} \cdot {{{a_x}}}}{-{{{2}} {{{Z_x}}} \cdot {{\alpha}}}} + {{{\alpha}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{xyy}}}}}{-{{{\alpha}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{yxy}}}}}}{-{{{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{yxz}}}}}}{-{{{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{zxy}}}}}} + {{{\alpha}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{xzz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{zxz}}}}}} + {{{2}} {{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{xyz}}}}}}$
${{{{ F(K)} _x} _x} _y} = {{\frac{1}{2}}{\left({{{{\alpha}} \cdot {{{a_y}}}}{-{{{2}} {{{K_{xy}}}} \cdot {{{\beta^x}}}}}{-{{{2}} {{{Z_y}}} \cdot {{\alpha}}}} + {{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{yxz}}}}} + {{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{zxy}}}}} + {{{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{yyz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{zyy}}}}}} + {{{\alpha}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{yzz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{zyz}}}}}}{-{{{2}} {{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{xyy}}}}}} + {{{2}} {{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{yxy}}}}}{-{{{2}} {{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{xyz}}}}}}}\right)}}$
${{{{ F(K)} _x} _x} _z} = {{\frac{1}{2}}{\left({{{{\alpha}} \cdot {{{a_z}}}}{-{{{2}} {{{K_{xz}}}} \cdot {{{\beta^x}}}}}{-{{{2}} {{{Z_z}}} \cdot {{\alpha}}}} + {{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{yxz}}}}} + {{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{zxy}}}}}{-{{{\alpha}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{yyz}}}}}} + {{{\alpha}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{zyy}}}}}{-{{{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{yzz}}}}}} + {{{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{zyz}}}}}{-{{{2}} {{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{xyz}}}}}}{-{{{2}} {{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{xzz}}}}}} + {{{2}} {{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{zxz}}}}}}\right)}}$
${{{{ F(K)} _x} _y} _y} = {{-{{{{K_{yy}}}} \cdot {{{\beta^x}}}}} + {{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{d_{xyy}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{d_{yxy}}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{yyz}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{zyy}}}}}}$
${{{{ F(K)} _x} _y} _z} = {{\frac{1}{2}}{\left({{-{{{2}} {{{K_{yz}}}} \cdot {{{\beta^x}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{d_{yxz}}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{d_{zxy}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{yyz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{zyy}}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{yzz}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{zyz}}}}} + {{{2}} {{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{d_{xyz}}}}}}\right)}}$
${{{{ F(K)} _x} _z} _z} = {{-{{{{K_{zz}}}} \cdot {{{\beta^x}}}}} + {{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{d_{xzz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{d_{zxz}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{yzz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{zyz}}}}}}}$
${{ F(\Theta)} _x} = {{-{{{\Theta}} \cdot {{{\beta^x}}}}}{-{{{{Z_x}}} \cdot {{\alpha}} \cdot {{{\gamma^{xx}}}}}}{-{{{{Z_y}}} \cdot {{\alpha}} \cdot {{{\gamma^{xy}}}}}}{-{{{{Z_z}}} \cdot {{\alpha}} \cdot {{{\gamma^{xz}}}}}}{-{{{\alpha}} \cdot {{{d_{xyy}}}} \cdot {{{{\gamma^{xy}}}^{2}}}}}{-{{{\alpha}} \cdot {{{d_{xzz}}}} \cdot {{{{\gamma^{xz}}}^{2}}}}} + {{{\alpha}} \cdot {{{d_{yxy}}}} \cdot {{{{\gamma^{xy}}}^{2}}}} + {{{\alpha}} \cdot {{{d_{zxz}}}} \cdot {{{{\gamma^{xz}}}^{2}}}} + {{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{xyy}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{yxy}}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{yxz}}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{zxy}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{xzz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{zxz}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{yxz}}}}} + {{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{zxy}}}}} + {{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{yyz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{zyy}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{yzz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{zyz}}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{yyz}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{zyy}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{yzz}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{zyz}}}}} + {{{2}} {{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{xyz}}}}}{-{{{2}} {{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{xyz}}}}}}}$
${{{ F(Z)} _x} _x} = {{-{{{{Z_x}}} \cdot {{{\beta^x}}}}}{-{{{\Theta}} \cdot {{\alpha}}}} + {{{{K_{xy}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xy}}}}} + {{{{K_{xz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xz}}}}} + {{{{K_{yy}}}} \cdot {{\alpha}} \cdot {{{\gamma^{yy}}}}} + {{{{K_{zz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{zz}}}}} + {{{2}} {{{K_{yz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{yz}}}}}}$
${{{ F(Z)} _x} _y} = {-{\left({{{{{Z_y}}} \cdot {{{\beta^x}}}} + {{{{K_{xy}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xx}}}}} + {{{{K_{yy}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xy}}}}} + {{{{K_{yz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xz}}}}}}\right)}}$
${{{ F(Z)} _x} _z} = {-{\left({{{{{Z_z}}} \cdot {{{\beta^x}}}} + {{{{K_{xz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xx}}}}} + {{{{K_{yz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xy}}}}} + {{{{K_{zz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xz}}}}}}\right)}}$
Flux described in the paper, eqns 1-6:
${\left[\begin{array}{c} { F(\alpha)} _x\\ {{{ F(\gamma)} _x} _x} _x\\ {{{ F(\gamma)} _x} _x} _y\\ {{{ F(\gamma)} _x} _x} _z\\ {{{ F(\gamma)} _x} _y} _y\\ {{{ F(\gamma)} _x} _y} _z\\ {{{ F(\gamma)} _x} _z} _z\\ {{ F(\beta)} _x} ^x\\ {{ F(\beta)} _x} ^y\\ {{ F(\beta)} _x} ^z\\ {{{ F(b)} _x} ^x} _x\\ {{{ F(b)} _x} ^x} _y\\ {{{ F(b)} _x} ^x} _z\\ {{{ F(b)} _x} ^y} _x\\ {{{ F(b)} _x} ^y} _y\\ {{{ F(b)} _x} ^y} _z\\ {{{ F(b)} _x} ^z} _x\\ {{{ F(b)} _x} ^z} _y\\ {{{ F(b)} _x} ^z} _z\\ {{ F(a)} _x} _x\\ {{ F(a)} _x} _y\\ {{ F(a)} _x} _z\\ {{{{ F(d)} _x} _x} _x} _x\\ {{{{ F(d)} _x} _x} _x} _y\\ {{{{ F(d)} _x} _x} _x} _z\\ {{{{ F(d)} _x} _x} _y} _y\\ {{{{ F(d)} _x} _x} _y} _z\\ {{{{ F(d)} _x} _x} _z} _z\\ {{{{ F(d)} _x} _y} _x} _x\\ {{{{ F(d)} _x} _y} _x} _y\\ {{{{ F(d)} _x} _y} _x} _z\\ {{{{ F(d)} _x} _y} _y} _y\\ {{{{ F(d)} _x} _y} _y} _z\\ {{{{ F(d)} _x} _y} _z} _z\\ {{{{ F(d)} _x} _z} _x} _x\\ {{{{ F(d)} _x} _z} _x} _y\\ {{{{ F(d)} _x} _z} _x} _z\\ {{{{ F(d)} _x} _z} _y} _y\\ {{{{ F(d)} _x} _z} _y} _z\\ {{{{ F(d)} _x} _z} _z} _z\\ {{{ F(K)} _x} _x} _x\\ {{{ F(K)} _x} _x} _y\\ {{{ F(K)} _x} _x} _z\\ {{{ F(K)} _x} _y} _y\\ {{{ F(K)} _x} _y} _z\\ {{{ F(K)} _x} _z} _z\\ { F(\Theta)} _x\\ {{ F(Z)} _x} _x\\ {{ F(Z)} _x} _y\\ {{ F(Z)} _x} _z\end{array}\right]} = {\left[\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ {{{{Q1_{x}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{{b^x}_y}}}} + {{{{\beta^z}}} \cdot {{{{b^x}_z}}}}\\ {{{{Q1_{y}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{{b^y}_y}}}} + {{{{\beta^z}}} \cdot {{{{b^y}_z}}}}\\ {{{{Q1_{z}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{{b^z}_y}}}} + {{{{\beta^z}}} \cdot {{{{b^z}_z}}}}\\ -{{{{\beta^x}}} \cdot {{{{b^x}_y}}}}\\ -{{{{\beta^x}}} \cdot {{{{b^y}_y}}}}\\ -{{{{\beta^x}}} \cdot {{{{b^z}_y}}}}\\ -{{{{\beta^x}}} \cdot {{{{b^x}_z}}}}\\ -{{{{\beta^x}}} \cdot {{{{b^y}_z}}}}\\ -{{{{\beta^x}}} \cdot {{{{b^z}_z}}}}\\ {{{{\beta^y}}} \cdot {{{a_y}}}} + {{{{\beta^z}}} \cdot {{{a_z}}}} + {{{{K_{xx}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{f}}} + {{{{K_{yy}}}} \cdot {{\alpha}} \cdot {{{\gamma^{yy}}}} \cdot {{f}}} + {{{{K_{zz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{zz}}}} \cdot {{f}}}{-{{{\Theta}} \cdot {{\alpha}} \cdot {{f}} {{m}}}} + {{{2}} {{{K_{xy}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{f}}} + {{{2}} {{{K_{xz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{f}}} + {{{2}} {{{K_{yz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{f}}}\\ -{{{{\beta^x}}} \cdot {{{a_y}}}}\\ -{{{{\beta^x}}} \cdot {{{a_z}}}}\\ {{{{K_{xx}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{d_{yxx}}}}} + {{{{\beta^z}}} \cdot {{{d_{zxx}}}}}\\ {{{{K_{xy}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{d_{yxy}}}}} + {{{{\beta^z}}} \cdot {{{d_{zxy}}}}}\\ {{{{K_{xz}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{d_{yxz}}}}} + {{{{\beta^z}}} \cdot {{{d_{zxz}}}}}\\ {{{{K_{yy}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{d_{yyy}}}}} + {{{{\beta^z}}} \cdot {{{d_{zyy}}}}}\\ {{{{K_{yz}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{d_{yyz}}}}} + {{{{\beta^z}}} \cdot {{{d_{zyz}}}}}\\ {{{{K_{zz}}}} \cdot {{\alpha}}} + {{{{\beta^y}}} \cdot {{{d_{yzz}}}}} + {{{{\beta^z}}} \cdot {{{d_{zzz}}}}}\\ -{{{{\beta^x}}} \cdot {{{d_{yxx}}}}}\\ -{{{{\beta^x}}} \cdot {{{d_{yxy}}}}}\\ -{{{{\beta^x}}} \cdot {{{d_{yxz}}}}}\\ -{{{{\beta^x}}} \cdot {{{d_{yyy}}}}}\\ -{{{{\beta^x}}} \cdot {{{d_{yyz}}}}}\\ -{{{{\beta^x}}} \cdot {{{d_{yzz}}}}}\\ -{{{{\beta^x}}} \cdot {{{d_{zxx}}}}}\\ -{{{{\beta^x}}} \cdot {{{d_{zxy}}}}}\\ -{{{{\beta^x}}} \cdot {{{d_{zxz}}}}}\\ -{{{{\beta^x}}} \cdot {{{d_{zyy}}}}}\\ -{{{{\beta^x}}} \cdot {{{d_{zyz}}}}}\\ -{{{{\beta^x}}} \cdot {{{d_{zzz}}}}}\\ {-{{{{K_{xx}}}} \cdot {{{\beta^x}}}}} + {{{\alpha}} \cdot {{{a_x}}}}{-{{{2}} {{{Z_x}}} \cdot {{\alpha}}}} + {{{\alpha}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{xyy}}}}}{-{{{\alpha}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{yxy}}}}}}{-{{{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{yxz}}}}}}{-{{{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{zxy}}}}}} + {{{\alpha}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{xzz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{zxz}}}}}} + {{{2}} {{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{xyz}}}}}\\ {\frac{1}{2}}{\left({{{{\alpha}} \cdot {{{a_y}}}}{-{{{2}} {{{K_{xy}}}} \cdot {{{\beta^x}}}}}{-{{{2}} {{{Z_y}}} \cdot {{\alpha}}}} + {{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{yxz}}}}} + {{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{zxy}}}}} + {{{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{yyz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{zyy}}}}}} + {{{\alpha}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{yzz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{zyz}}}}}}{-{{{2}} {{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{xyy}}}}}} + {{{2}} {{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{yxy}}}}}{-{{{2}} {{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{xyz}}}}}}}\right)}\\ {\frac{1}{2}}{\left({{{{\alpha}} \cdot {{{a_z}}}}{-{{{2}} {{{K_{xz}}}} \cdot {{{\beta^x}}}}}{-{{{2}} {{{Z_z}}} \cdot {{\alpha}}}} + {{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{yxz}}}}} + {{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{zxy}}}}}{-{{{\alpha}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{yyz}}}}}} + {{{\alpha}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{zyy}}}}}{-{{{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{yzz}}}}}} + {{{\alpha}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{zyz}}}}}{-{{{2}} {{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{xyz}}}}}}{-{{{2}} {{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{xzz}}}}}} + {{{2}} {{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{zxz}}}}}}\right)}\\ {-{{{{K_{yy}}}} \cdot {{{\beta^x}}}}} + {{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{d_{xyy}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{d_{yxy}}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{yyz}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{zyy}}}}}\\ {\frac{1}{2}}{\left({{-{{{2}} {{{K_{yz}}}} \cdot {{{\beta^x}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{d_{yxz}}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{d_{zxy}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{yyz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{zyy}}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{yzz}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{zyz}}}}} + {{{2}} {{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{d_{xyz}}}}}}\right)}\\ {-{{{{K_{zz}}}} \cdot {{{\beta^x}}}}} + {{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{d_{xzz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{d_{zxz}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{yzz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{d_{zyz}}}}}}\\ {-{{{\Theta}} \cdot {{{\beta^x}}}}}{-{{{{Z_x}}} \cdot {{\alpha}} \cdot {{{\gamma^{xx}}}}}}{-{{{{Z_y}}} \cdot {{\alpha}} \cdot {{{\gamma^{xy}}}}}}{-{{{{Z_z}}} \cdot {{\alpha}} \cdot {{{\gamma^{xz}}}}}}{-{{{\alpha}} \cdot {{{d_{xyy}}}} \cdot {{{{\gamma^{xy}}}^{2}}}}}{-{{{\alpha}} \cdot {{{d_{xzz}}}} \cdot {{{{\gamma^{xz}}}^{2}}}}} + {{{\alpha}} \cdot {{{d_{yxy}}}} \cdot {{{{\gamma^{xy}}}^{2}}}} + {{{\alpha}} \cdot {{{d_{zxz}}}} \cdot {{{{\gamma^{xz}}}^{2}}}} + {{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{xyy}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{yxy}}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{yxz}}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{zxy}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{xzz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{zxz}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{yxz}}}}} + {{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{zxy}}}}} + {{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{yyz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{zyy}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{yzz}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{zyz}}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{yyz}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{zyy}}}}}{-{{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{yzz}}}}}} + {{{\alpha}} \cdot {{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{zyz}}}}} + {{{2}} {{\alpha}} \cdot {{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{xyz}}}}}{-{{{2}} {{\alpha}} \cdot {{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{xyz}}}}}}\\ {-{{{{Z_x}}} \cdot {{{\beta^x}}}}}{-{{{\Theta}} \cdot {{\alpha}}}} + {{{{K_{xy}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xy}}}}} + {{{{K_{xz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xz}}}}} + {{{{K_{yy}}}} \cdot {{\alpha}} \cdot {{{\gamma^{yy}}}}} + {{{{K_{zz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{zz}}}}} + {{{2}} {{{K_{yz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{yz}}}}}\\ -{\left({{{{{Z_y}}} \cdot {{{\beta^x}}}} + {{{{K_{xy}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xx}}}}} + {{{{K_{yy}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xy}}}}} + {{{{K_{yz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xz}}}}}}\right)}\\ -{\left({{{{{Z_z}}} \cdot {{{\beta^x}}}} + {{{{K_{xz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xx}}}}} + {{{{K_{yz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xy}}}}} + {{{{K_{zz}}}} \cdot {{\alpha}} \cdot {{{\gamma^{xz}}}}}}\right)}\end{array}\right]}$
Flux from homogeneity, from flux-jacobian matrix in paper:
${-{{ \left[\begin{array}{c} {a_x}\\ {a_y}\\ {a_z}\\ {d_{xxx}}\\ {d_{xxy}}\\ {d_{xxz}}\\ {d_{xyy}}\\ {d_{xyz}}\\ {d_{xzz}}\\ {d_{yxx}}\\ {d_{yxy}}\\ {d_{yxz}}\\ {d_{yyy}}\\ {d_{yyz}}\\ {d_{yzz}}\\ {d_{zxx}}\\ {d_{zxy}}\\ {d_{zxz}}\\ {d_{zyy}}\\ {d_{zyz}}\\ {d_{zzz}}\\ {K_{xx}}\\ {K_{xy}}\\ {K_{xz}}\\ {K_{yy}}\\ {K_{yz}}\\ {K_{zz}}\\ \Theta\\ {Z_x}\\ {Z_y}\\ {Z_z}\end{array}\right]} _t}} = {\left[\begin{array}{c} {{\alpha}} \cdot {{f}} {{\left({{-{{{\Theta}} \cdot {{m}}}} + {{{{K_{xx}}}} \cdot {{{\gamma^{xx}}}}} + {{{{K_{yy}}}} \cdot {{{\gamma^{yy}}}}} + {{{{K_{zz}}}} \cdot {{{\gamma^{zz}}}}} + {{{2}} {{{K_{xy}}}} \cdot {{{\gamma^{xy}}}}} + {{{2}} {{{K_{xz}}}} \cdot {{{\gamma^{xz}}}}} + {{{2}} {{{K_{yz}}}} \cdot {{{\gamma^{yz}}}}}}\right)}}\\ 0\\ 0\\ {{{K_{xx}}}} \cdot {{\alpha}}\\ {{{K_{xy}}}} \cdot {{\alpha}}\\ {{{K_{xz}}}} \cdot {{\alpha}}\\ {{{K_{yy}}}} \cdot {{\alpha}}\\ {{{K_{yz}}}} \cdot {{\alpha}}\\ {{{K_{zz}}}} \cdot {{\alpha}}\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ {{\alpha}} \cdot {{\left({{{a_x}}{-{{{2}} {{{Z_x}}}}} + {{{{\gamma^{yy}}}} \cdot {{{d_{xyy}}}}}{-{{{{\gamma^{yy}}}} \cdot {{{d_{yxy}}}}}}{-{{{{\gamma^{yz}}}} \cdot {{{d_{yxz}}}}}}{-{{{{\gamma^{yz}}}} \cdot {{{d_{zxy}}}}}} + {{{{\gamma^{zz}}}} \cdot {{{d_{xzz}}}}}{-{{{{\gamma^{zz}}}} \cdot {{{d_{zxz}}}}}} + {{{2}} {{{\gamma^{yz}}}} \cdot {{{d_{xyz}}}}}}\right)}}\\ {\frac{1}{2}} {{{\alpha}} \cdot {{\left({{{a_y}}{-{{{2}} {{{Z_y}}}}} + {{{{\gamma^{xz}}}} \cdot {{{d_{yxz}}}}} + {{{{\gamma^{xz}}}} \cdot {{{d_{zxy}}}}} + {{{{\gamma^{yz}}}} \cdot {{{d_{yyz}}}}}{-{{{{\gamma^{yz}}}} \cdot {{{d_{zyy}}}}}} + {{{{\gamma^{zz}}}} \cdot {{{d_{yzz}}}}}{-{{{{\gamma^{zz}}}} \cdot {{{d_{zyz}}}}}}{-{{{2}} {{{\gamma^{xy}}}} \cdot {{{d_{xyy}}}}}} + {{{2}} {{{\gamma^{xy}}}} \cdot {{{d_{yxy}}}}}{-{{{2}} {{{\gamma^{xz}}}} \cdot {{{d_{xyz}}}}}}}\right)}}}\\ {\frac{1}{2}} {{{\alpha}} \cdot {{\left({{{a_z}}{-{{{2}} {{{Z_z}}}}} + {{{{\gamma^{xy}}}} \cdot {{{d_{yxz}}}}} + {{{{\gamma^{xy}}}} \cdot {{{d_{zxy}}}}}{-{{{{\gamma^{yy}}}} \cdot {{{d_{yyz}}}}}} + {{{{\gamma^{yy}}}} \cdot {{{d_{zyy}}}}}{-{{{{\gamma^{yz}}}} \cdot {{{d_{yzz}}}}}} + {{{{\gamma^{yz}}}} \cdot {{{d_{zyz}}}}}{-{{{2}} {{{\gamma^{xy}}}} \cdot {{{d_{xyz}}}}}}{-{{{2}} {{{\gamma^{xz}}}} \cdot {{{d_{xzz}}}}}} + {{{2}} {{{\gamma^{xz}}}} \cdot {{{d_{zxz}}}}}}\right)}}}\\ {{\alpha}} \cdot {{\left({{{{{\gamma^{xx}}}} \cdot {{{d_{xyy}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{d_{yxy}}}}}}{-{{{{\gamma^{xz}}}} \cdot {{{d_{yyz}}}}}} + {{{{\gamma^{xz}}}} \cdot {{{d_{zyy}}}}}}\right)}}\\ {\frac{1}{2}} {{{\alpha}} \cdot {{\left({{-{{{{\gamma^{xx}}}} \cdot {{{d_{yxz}}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{d_{zxy}}}}}} + {{{{\gamma^{xy}}}} \cdot {{{d_{yyz}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{d_{zyy}}}}}}{-{{{{\gamma^{xz}}}} \cdot {{{d_{yzz}}}}}} + {{{{\gamma^{xz}}}} \cdot {{{d_{zyz}}}}} + {{{2}} {{{\gamma^{xx}}}} \cdot {{{d_{xyz}}}}}}\right)}}}\\ {{\alpha}} \cdot {{\left({{{{{\gamma^{xx}}}} \cdot {{{d_{xzz}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{d_{zxz}}}}}} + {{{{\gamma^{xy}}}} \cdot {{{d_{yzz}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{d_{zyz}}}}}}}\right)}}\\ {{\alpha}} \cdot {{\left({{-{{{{Z_x}}} \cdot {{{\gamma^{xx}}}}}}{-{{{{Z_y}}} \cdot {{{\gamma^{xy}}}}}}{-{{{{Z_z}}} \cdot {{{\gamma^{xz}}}}}}{-{{{{d_{xyy}}}} \cdot {{{{\gamma^{xy}}}^{2}}}}}{-{{{{d_{xzz}}}} \cdot {{{{\gamma^{xz}}}^{2}}}}} + {{{{d_{yxy}}}} \cdot {{{{\gamma^{xy}}}^{2}}}} + {{{{d_{zxz}}}} \cdot {{{{\gamma^{xz}}}^{2}}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{xyy}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{yxy}}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{yxz}}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{zxy}}}}}} + {{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{xzz}}}}}{-{{{{\gamma^{xx}}}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{zxz}}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{yxz}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{zxy}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{yyz}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{zyy}}}}}} + {{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{yzz}}}}}{-{{{{\gamma^{xy}}}} \cdot {{{\gamma^{zz}}}} \cdot {{{d_{zyz}}}}}}{-{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{yyz}}}}}} + {{{{\gamma^{xz}}}} \cdot {{{\gamma^{yy}}}} \cdot {{{d_{zyy}}}}}{-{{{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{yzz}}}}}} + {{{{\gamma^{xz}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{zyz}}}}} + {{{2}} {{{\gamma^{xx}}}} \cdot {{{\gamma^{yz}}}} \cdot {{{d_{xyz}}}}}{-{{{2}} {{{\gamma^{xy}}}} \cdot {{{\gamma^{xz}}}} \cdot {{{d_{xyz}}}}}}}\right)}}\\ {{\alpha}} \cdot {{\left({{-{\Theta}} + {{{{K_{xy}}}} \cdot {{{\gamma^{xy}}}}} + {{{{K_{xz}}}} \cdot {{{\gamma^{xz}}}}} + {{{{K_{yy}}}} \cdot {{{\gamma^{yy}}}}} + {{{{K_{zz}}}} \cdot {{{\gamma^{zz}}}}} + {{{2}} {{{K_{yz}}}} \cdot {{{\gamma^{yz}}}}}}\right)}}\\ -{{{\alpha}} \cdot {{\left({{{{{K_{xy}}}} \cdot {{{\gamma^{xx}}}}} + {{{{K_{yy}}}} \cdot {{{\gamma^{xy}}}}} + {{{{K_{yz}}}} \cdot {{{\gamma^{xz}}}}}}\right)}}}\\ -{{{\alpha}} \cdot {{\left({{{{{K_{xz}}}} \cdot {{{\gamma^{xx}}}}} + {{{{K_{yz}}}} \cdot {{{\gamma^{xy}}}}} + {{{{K_{zz}}}} \cdot {{{\gamma^{xz}}}}}}\right)}}}\end{array}\right]}$
difference:
1 : ${{{{\beta^y}}} \cdot {{{a_y}}}} + {{{{\beta^z}}} \cdot {{{a_z}}}}$
2 : $-{{{{\beta^x}}} \cdot {{{a_y}}}}$
3 : $-{{{{\beta^x}}} \cdot {{{a_z}}}}$
4 : ${{{{\beta^y}}} \cdot {{{d_{yxx}}}}} + {{{{\beta^z}}} \cdot {{{d_{zxx}}}}}$
5 : ${{{{\beta^y}}} \cdot {{{d_{yxy}}}}} + {{{{\beta^z}}} \cdot {{{d_{zxy}}}}}$
6 : ${{{{\beta^y}}} \cdot {{{d_{yxz}}}}} + {{{{\beta^z}}} \cdot {{{d_{zxz}}}}}$
7 : ${{{{\beta^y}}} \cdot {{{d_{yyy}}}}} + {{{{\beta^z}}} \cdot {{{d_{zyy}}}}}$
8 : ${{{{\beta^y}}} \cdot {{{d_{yyz}}}}} + {{{{\beta^z}}} \cdot {{{d_{zyz}}}}}$
9 : ${{{{\beta^y}}} \cdot {{{d_{yzz}}}}} + {{{{\beta^z}}} \cdot {{{d_{zzz}}}}}$
10 : $-{{{{\beta^x}}} \cdot {{{d_{yxx}}}}}$
11 : $-{{{{\beta^x}}} \cdot {{{d_{yxy}}}}}$
12 : $-{{{{\beta^x}}} \cdot {{{d_{yxz}}}}}$
13 : $-{{{{\beta^x}}} \cdot {{{d_{yyy}}}}}$
14 : $-{{{{\beta^x}}} \cdot {{{d_{yyz}}}}}$
15 : $-{{{{\beta^x}}} \cdot {{{d_{yzz}}}}}$
16 : $-{{{{\beta^x}}} \cdot {{{d_{zxx}}}}}$
17 : $-{{{{\beta^x}}} \cdot {{{d_{zxy}}}}}$
18 : $-{{{{\beta^x}}} \cdot {{{d_{zxz}}}}}$
19 : $-{{{{\beta^x}}} \cdot {{{d_{zyy}}}}}$
20 : $-{{{{\beta^x}}} \cdot {{{d_{zyz}}}}}$
21 : $-{{{{\beta^x}}} \cdot {{{d_{zzz}}}}}$
22 : $-{{{{K_{xx}}}} \cdot {{{\beta^x}}}}$
23 : $-{{{{K_{xy}}}} \cdot {{{\beta^x}}}}$
24 : $-{{{{K_{xz}}}} \cdot {{{\beta^x}}}}$
25 : $-{{{{K_{yy}}}} \cdot {{{\beta^x}}}}$
26 : $-{{{{K_{yz}}}} \cdot {{{\beta^x}}}}$
27 : $-{{{{K_{zz}}}} \cdot {{{\beta^x}}}}$
28 : $-{{{\Theta}} \cdot {{{\beta^x}}}}$
29 : $-{{{{Z_x}}} \cdot {{{\beta^x}}}}$
30 : $-{{{{Z_y}}} \cdot {{{\beta^x}}}}$
31 : $-{{{{Z_z}}} \cdot {{{\beta^x}}}}$