using exp(ϕ(x))

gab=eabexp(ϕ)
gab=(e1)abexp(ϕ)
gab,c=eabeϕϕ,c=gabϕ,c
Γabc=12(gabϕ,c+gacϕ,bgbcϕ,a)
Γabc=12(δbaϕ,c+δcaϕ,bgbcgadϕ,d)
Γabc,d=12(δbaϕ,cd+δcaϕ,bdgbcϕ,dgaeϕ,egbcgae,dϕ,egbcgaeϕ,ed)
=12(δbaϕ,cd+δcaϕ,bdgbcgaeϕ,ed)
ΓaucΓubd=14(δuaϕ,c+δcaϕ,ugucgaeϕ,e)(δbuϕ,d+δduϕ,bgbdgufϕ,f)
=14(+δuaϕ,cδbuϕ,d+δuaϕ,cδduϕ,bδuaϕ,cgbdgufϕ,f+δcaϕ,uδbuϕ,d+δcaϕ,uδduϕ,bδcaϕ,ugbdgufϕ,fgucgaeϕ,eδbuϕ,dgucgaeϕ,eδduϕ,b+gucgaeϕ,egbdgufϕ,f)
=14(+δbaϕ,cϕ,d+δdaϕ,cϕ,bϕ,cgbdgaeϕ,e+δcaϕ,bϕ,d+δcaϕ,dϕ,bδcagbdgefϕ,eϕ,fgcdgaeϕ,eϕ,b+gbdgaeϕ,eϕ,cgbcgaeϕ,eϕ,d)
=14(δbaϕ,cϕ,d+2δcaϕ,bϕ,dδcagbdgefϕ,eϕ,f+δdaϕ,cϕ,bgbcgaeϕ,eϕ,dgcdgaeϕ,eϕ,b)
Rab=14(+δacϕ,cϕ,b+2δccϕ,aϕ,bδccgabgefϕ,eϕ,f+δbcϕ,cϕ,agacgceϕ,eϕ,bgcbgceϕ,eϕ,a)
=2ϕ,aϕ,bgabgcdϕ,cϕ,d
R=2gabϕ,aϕ,b4gabϕ,aϕ,b
=2gabϕ,aϕ,b
R2=gabϕ,aϕ,b

Rab=2ϕ,aϕ,b+12gabR
for R=0 this gives Rab=2ϕ,aϕ,b