using $exp(\xi \cdot x^2)$


Try again with two vectors? $g_{ab} = e_{ab} exp(\xi_{uv} x^u x^v)$ for symmetric $\xi_{uv}$
$g_{ab,c} = e_{ab} exp(\xi_{uv} x^u x^v) (\xi_{uv} x^u x^v)_{,c}$
$g_{ab,c} = g_{ab} \cdot 2 \xi_{cu} x^u$
$\Gamma_{abc} = (g_{ab} \xi_{cu} + g_{ac} \xi_{bu} - g_{bc} \xi_{au}) x^u$
${\Gamma^a}_{bc} = (\delta^a_b \xi_{cu} + \delta^a_c \xi_{bu} - g_{bc} g^{ae} \xi_{eu}) x^u$
${\Gamma^a}_{bc,d} = (\delta^a_b \xi_{cu} + \delta^a_c \xi_{bu} - g_{bc} g^{ae} \xi_{eu}) \delta^u_d + (\delta^a_b \xi_{cu} + \delta^a_c \xi_{bu} - g_{bc} g^{ae} \xi_{eu})_{,d} x^u $
$= \delta^a_b \xi_{cd} + \delta^a_c \xi_{bd} - g_{bc} g^{ae} \xi_{ed} - (g_{bc} g^{ae})_{,d} \xi_{eu} x^u$
$= \delta^a_b \xi_{cd} + \delta^a_c \xi_{bd} - g_{bc} g^{ae} \xi_{ed} - (g_{bc,d} g^{ae} + g_{bc} g^{af} g_{fg,d} g^{ge}) \xi_{eu} x^u$
$= \delta^a_b \xi_{cd} + \delta^a_c \xi_{bd} - g_{bc} g^{ae} \xi_{ed} - 2 (g_{bc} g^{ae} \xi_{dv} x^v - g_{bc} g^{af} g_{fg} g^{ge} \xi_{dv} x^v) \xi_{eu} x^u$
$= \delta^a_b \xi_{cd} + \delta^a_c \xi_{bd} - g_{bc} g^{ae} \xi_{ed} - 2 (g_{bc} g^{ae} - g_{bc} g^{ae}) \xi_{dv} x^v \xi_{eu} x^u$
$= \delta^a_b \xi_{cd} + \delta^a_c \xi_{bd} - g_{bc} g^{ae} \xi_{ed}$

${\Gamma^a}_{uc} {\Gamma^u}_{bd} = (\delta^a_u \xi_{cv} + \delta^a_c \xi_{uv} - g_{uc} g^{ae} \xi_{ev}) x^v (\delta^u_b \xi_{dw} + \delta^u_d \xi_{bw} - g_{bd} g^{uf} \xi_{fw}) x^w $
$ = ( + \delta^a_u \xi_{cv} \delta^u_b \xi_{dw} + \delta^a_u \xi_{cv} \delta^u_d \xi_{bw} - \delta^a_u \xi_{cv} g_{bd} g^{ue} \xi_{ew} + \delta^a_c \xi_{uv} \delta^u_b \xi_{dw} + \delta^a_c \xi_{uv} \delta^u_d \xi_{bw} - \delta^a_c \xi_{uv} g_{bd} g^{ue} \xi_{ew} - g_{uc} g^{ae} \xi_{ev} \delta^u_b \xi_{dw} - g_{uc} g^{ae} \xi_{ev} \delta^u_d \xi_{bw} + g_{uc} g^{ae} \xi_{ev} g_{bd} g^{uf} \xi_{fw} ) x^v x^w$
$ = ( + \delta^a_b \xi_{cv} \xi_{dw} + \delta^a_d \xi_{cv} \xi_{bw} - g_{bd} g^{ae} \xi_{cv} \xi_{ew} + \delta^a_c \xi_{bv} \xi_{dw} + \delta^a_c \xi_{dv} \xi_{bw} - \delta^a_c g_{bd} g^{ue} \xi_{uv} \xi_{ew} - g_{cd} g^{ae} \xi_{ev} \xi_{bw} + g_{bd} g^{ae} \xi_{ev} \xi_{cw} - g_{bc} g^{ae} \xi_{ev} \xi_{dw} ) x^v x^w$
${R^a}_{bcd} = + \delta^a_b \xi_{cd} + \delta^a_d \xi_{bc} - g_{bd} g^{ae} \xi_{ce} - \delta^a_b \xi_{cd} - \delta^a_c \xi_{bd} + g_{bc} g^{ae} \xi_{ed} + ( + \delta^a_b \xi_{cv} \xi_{dw} + \delta^a_d \xi_{cv} \xi_{bw} - g_{bd} g^{ae} \xi_{cv} \xi_{ew} + \delta^a_c \xi_{bv} \xi_{dw} + \delta^a_c \xi_{dv} \xi_{bw} - \delta^a_c g_{bd} g^{ue} \xi_{uv} \xi_{ew} - g_{cd} g^{ae} \xi_{ev} \xi_{bw} + g_{bd} g^{ae} \xi_{ev} \xi_{cw} - g_{bc} g^{ae} \xi_{ev} \xi_{dw} ) x^v x^w - ( + \delta^a_b \xi_{dv} \xi_{cw} + \delta^a_c \xi_{dv} \xi_{bw} - g_{bc} g^{ae} \xi_{dv} \xi_{ew} + \delta^a_d \xi_{bv} \xi_{cw} + \delta^a_d \xi_{cv} \xi_{bw} - \delta^a_d g_{bc} g^{ue} \xi_{uv} \xi_{ew} - g_{cd} g^{ae} \xi_{ev} \xi_{bw} + g_{bc} g^{ae} \xi_{ev} \xi_{dw} - g_{bd} g^{ae} \xi_{ev} \xi_{cw} ) x^v x^w $
$= - \delta^a_c \xi_{bd} + \delta^a_d \xi_{bc} + g_{bc} g^{ae} \xi_{de} - g_{bd} g^{ae} \xi_{ce} + ( \delta^a_c \xi_{bv} \xi_{dw} - \delta^a_c g_{bd} g^{ue} \xi_{uv} \xi_{ew} - \delta^a_d \xi_{cv} \xi_{bw} + \delta^a_d g_{bc} g^{ue} \xi_{uv} \xi_{ew} - g_{bc} g^{ae} \xi_{dv} \xi_{ew} + g_{bd} g^{ae} \xi_{cv} \xi_{ew} ) x^v x^w $
$R_{ab} = - \delta^c_c \xi_{ab} + \delta^c_b \xi_{ac} + g_{ac} g^{ce} \xi_{be} - g_{ab} g^{ce} \xi_{ce} + ( \delta^c_c \xi_{av} \xi_{bw} - \delta^c_c g_{ab} g^{ue} \xi_{uv} \xi_{ew} - \delta^c_b \xi_{cv} \xi_{aw} + \delta^c_b g_{ac} g^{ue} \xi_{uv} \xi_{ew} - g_{ac} g^{ce} \xi_{bv} \xi_{ew} + g_{ab} g^{ce} \xi_{cv} \xi_{ew} ) x^v x^w $
$= - 2 \xi_{ab} - g_{ab} g^{cd} \xi_{cd} + 2 ( \xi_{av} \xi_{bw} - g_{ab} g^{cd} \xi_{cv} \xi_{dw} ) x^v x^w $
$R = g^{ab} ( - 2 \xi_{ab} - g_{ab} g^{cd} \xi_{cd} + 2 ( \xi_{av} \xi_{bw} - g_{ab} g^{cd} \xi_{cv} \xi_{dw} ) x^v x^w )$
$ = - 6 g^{ab} (\xi_{ab} + \xi_{av} \xi_{bw} x^v x^w)$

This only really works if $R$ is a function of $x^a x^b$...
Unless $\xi_{au} (e^{-1})^{ub} = 0$
Then we get $R = 0$

Substitute...
$R_{ab} = 2 (-\xi_{ab} + \xi_{av} \xi_{bw} x^v x^w)$
So this only works for $R_{ab} = 0$