φ=f

Let V=|g|

1V(Vgijφ,i),j=f

...as finite difference...

1VDj(VgijDiφ)=f

expanding the inner finite difference term:

1V[t,x,y,z](
Dj(V[t,x,y,z](
12Δtgtj[t,x,y,z](φ[t+1,x,y,z]φ[t1,x,y,z])
+12Δxgxj[t,x,y,z](φ[t,x+1,y,z]φ[t,x1,y,z])
+12Δygyj[t,x,y,z](φ[t,x,y+1,z]φ[t,x,y1,z])
+12Δzgzj[t,x,y,z](φ[t,x,y,z+1]φ[t,x,y,z1])
))
)=f

expanding the outer finite difference terms:

1V[t,x,y,z](
12Δt(
V[t+1,x,y,z](
12Δtgtt[t+1,x,y,z](φ[t+2,x,y,z]φ[t,x,y,z])
+12Δxgxt[t+1,x,y,z](φ[t+1,x+1,y,z]φ[t+1,x1,y,z])
+12Δygyt[t+1,x,y,z](φ[t+1,x,y+1,z]φ[t+1,x,y1,z])
+12Δzgzt[t+1,x,y,z](φ[t+1,x,y,z+1]φ[t+1,x,y,z1])
)V[t1,x,y,z](
12Δtgtt[t1,x,y,z](φ[t,x,y,z]φ[t2,x,y,z])
+12Δxgxt[t1,x,y,z](φ[t1,x+1,y,z]φ[t1,x1,y,z])
+12Δygyt[t1,x,y,z](φ[t1,x,y+1,z]φ[t1,x,y1,z])
+12Δzgzt[t1,x,y,z](φ[t1,x,y,z+1]φ[t1,x,y,z1])
)
)
+12Δx(
V[t,x+1,y,z](
12Δtgtx[t,x+1,y,z](φ[t+1,x+1,y,z]φ[t1,x+1,y,z])
+12Δxgxx[t,x+1,y,z](φ[t,x+2,y,z]φ[t,x,y,z])
+12Δygyx[t,x+1,y,z](φ[t,x+1,y+1,z]φ[t,x+1,y1,z])
+12Δzgzx[t,x+1,y,z](φ[t,x+1,y,z+1]φ[t,x+1,y,z1])
)V[t,x1,y,z](
12Δtgtx[t,x1,y,z](φ[t+1,x1,y,z]φ[t1,x1,y,z])
+12Δxgxx[t,x1,y,z](φ[t,x,y,z]φ[t,x2,y,z])
+12Δygyx[t,x1,y,z](φ[t,x1,y+1,z]φ[t,x1,y1,z])
+12Δzgzx[t,x1,y,z](φ[t,x1,y,z+1]φ[t,x1,y,z1])
)
)
+12Δy(
V[t,x,y+1,z](
12Δtgty[t,x,y+1,z](φ[t+1,x,y+1,z]φ[t1,x,y+1,z])
+12Δxgxy[t,x,y+1,z](φ[t,x+1,y+1,z]φ[t,x1,y+1,z])
+12Δygyy[t,x,y+1,z](φ[t,x,y+2,z]φ[t,x,y,z])
+12Δzgzy[t,x,y+1,z](φ[t,x,y+1,z+1]φ[t,x,y+1,z1])
)V[t,x,y1,z](
12Δtgty[t,x,y1,z](φ[t+1,x,y1,z]φ[t1,x,y1,z])
+12Δxgxy[t,x,y1,z](φ[t,x+1,y1,z]φ[t,x1,y1,z])
+12Δygyy[t,x,y1,z](φ[t,x,y,z]φ[t,x,y2,z])
+12Δzgzy[t,x,y1,z](φ[t,x,y1,z+1]φ[t,x,y1,z1])
)
)
+12Δz(
V[t,x,y,z+1](
12Δtgtz[t,x,y,z+1](φ[t+1,x,y,z+1]φ[t1,x,y,z+1])
+12Δxgxz[t,x,y,z+1](φ[t,x+1,y,z+1]φ[t,x1,y,z+1])
+12Δygyz[t,x,y,z+1](φ[t,x,y+1,z+1]φ[t,x,y1,z+1])
+12Δzgzz[t,x,y,z+1](φ[t,x,y,z+2]φ[t,x,y,z])
)V[t,x,y,z1](
12Δtgtz[t,x,y,z1](φ[t+1,x,y,z1]φ[t1,x,y,z1])
+12Δxgxz[t,x,y,z1](φ[t,x+1,y,z1]φ[t,x1,y,z1])
+12Δygyz[t,x,y,z1](φ[t,x,y+1,z1]φ[t,x,y1,z1])
+12Δzgzz[t,x,y,z1](φ[t,x,y,z]φ[t,x,y,z2])
)
)
)=f

solve for φ[t+2,x,y,z]

φ[t+2,x,y,z]
=φ[t,x,y,z]
Δt1gtt[t+1,x,y,z](
1Δxgtx[t+1,x,y,z](φ[t+1,x+1,y,z]φ[t+1,x1,y,z])
+1Δygty[t+1,x,y,z](φ[t+1,x,y+1,z]φ[t+1,x,y1,z])
+1Δzgtz[t+1,x,y,z](φ[t+1,x,y,z+1]φ[t+1,x,y,z1])
V[t1,x,y,z]V[t+1,x,y,z](
1Δtgtt[t1,x,y,z](φ[t,x,y,z]φ[t2,x,y,z])
+1Δxgtx[t1,x,y,z](φ[t1,x+1,y,z]φ[t1,x1,y,z])
+1Δygty[t1,x,y,z](φ[t1,x,y+1,z]φ[t1,x,y1,z])
+1Δzgtz[t1,x,y,z](φ[t1,x,y,z+1]φ[t1,x,y,z1])
)
)
Δt2V[t+1,x,y,z]gtt[t+1,x,y,z](
1Δx(
V[t,x+1,y,z](
1Δtgtx[t,x+1,y,z](φ[t+1,x+1,y,z]φ[t1,x+1,y,z])
+1Δxgxx[t,x+1,y,z](φ[t,x+2,y,z]φ[t,x,y,z])
+1Δygxy[t,x+1,y,z](φ[t,x+1,y+1,z]φ[t,x+1,y1,z])
+1Δzgxz[t,x+1,y,z](φ[t,x+1,y,z+1]φ[t,x+1,y,z1])
)V[t,x1,y,z](
1Δtgtx[t,x1,y,z](φ[t+1,x1,y,z]φ[t1,x1,y,z])
+1Δxgxx[t,x1,y,z](φ[t,x,y,z]φ[t,x2,y,z])
+1Δygxy[t,x1,y,z](φ[t,x1,y+1,z]φ[t,x1,y1,z])
+1Δzgxz[t,x1,y,z](φ[t,x1,y,z+1]φ[t,x1,y,z1])
)
)
+1Δy(
V[t,x,y+1,z](
1Δtgty[t,x,y+1,z](φ[t+1,x,y+1,z]φ[t1,x,y+1,z])
+1Δxgxy[t,x,y+1,z](φ[t,x+1,y+1,z]φ[t,x1,y+1,z])
+1Δygyy[t,x,y+1,z](φ[t,x,y+2,z]φ[t,x,y,z])
+1Δzgyz[t,x,y+1,z](φ[t,x,y+1,z+1]φ[t,x,y+1,z1])
)V[t,x,y1,z](
1Δtgty[t,x,y1,z](φ[t+1,x,y1,z]φ[t1,x,y1,z])
+1Δxgxy[t,x,y1,z](φ[t,x+1,y1,z]φ[t,x1,y1,z])
+1Δygyy[t,x,y1,z](φ[t,x,y,z]φ[t,x,y2,z])
+1Δzgyz[t,x,y1,z](φ[t,x,y1,z+1]φ[t,x,y1,z1])
)
)
+1Δz(
V[t,x,y,z+1](
1Δtgtz[t,x,y,z+1](φ[t+1,x,y,z+1]φ[t1,x,y,z+1])
+1Δxgxz[t,x,y,z+1](φ[t,x+1,y,z+1]φ[t,x1,y,z+1])
+1Δygyz[t,x,y,z+1](φ[t,x,y+1,z+1]φ[t,x,y1,z+1])
+1Δzgzz[t,x,y,z+1](φ[t,x,y,z+2]φ[t,x,y,z])
)V[t,x,y,z1](
1Δtgtz[t,x,y,z1](φ[t+1,x,y,z1]φ[t1,x,y,z1])
+1Δxgxz[t,x,y,z1](φ[t,x+1,y,z1]φ[t,x1,y,z1])
+1Δygyz[t,x,y,z1](φ[t,x,y+1,z1]φ[t,x,y1,z1])
+1Δzgzz[t,x,y,z1](φ[t,x,y,z]φ[t,x,y,z2])
)
)
+1V[t,x,y,z]f
)

substitute 2012 Visser acoustic black hole metric:
gtt=1c2
gti=vic2
gij=δijvivjc2

φ[t+2,x,y,z]
=φ[t,x,y,z]
+Δt(
1ΔtV[t1,x,y,z]V[t+1,x,y,z](φ[t,x,y,z]φ[t2,x,y,z])
+1Δx(
βx[t+1,x,y,z](φ[t+1,x+1,y,z]φ[t+1,x1,y,z])
βx[t1,x,y,z](φ[t1,x+1,y,z]φ[t1,x1,y,z])V[t1,x,y,z]V[t+1,x,y,z]
)
+1Δy(
βy[t+1,x,y,z](φ[t+1,x,y+1,z]φ[t+1,x,y1,z])
βy[t1,x,y,z](φ[t1,x,y+1,z]φ[t1,x,y1,z])V[t1,x,y,z]V[t+1,x,y,z]
)
+1Δz(
βz[t+1,x,y,z](φ[t+1,x,y,z+1]φ[t+1,x,y,z1])
βz[t1,x,y,z](φ[t1,x,y,z+1]φ[t1,x,y,z1])V[t1,x,y,z]V[t+1,x,y,z]
)
+ΔtV[t+1,x,y,z](c[x,y,z])2(
1Δx(
V[t,x+1,y,z](
1Δt(βxc2)[t,x+1,y,z](φ[t+1,x+1,y,z]φ[t1,x+1,y,z])
+1Δxgxx[t,x+1,y,z](φ[t,x+2,y,z]φ[t,x,y,z])
+1Δygxy[t,x+1,y,z](φ[t,x+1,y+1,z]φ[t,x+1,y1,z])
+1Δzgxz[t,x+1,y,z](φ[t,x+1,y,z+1]φ[t,x+1,y,z1])
)V[t,x1,y,z](
1Δt(βxc2)[t,x1,y,z](φ[t+1,x1,y,z]φ[t1,x1,y,z])
+1Δxgxx[t,x1,y,z](φ[t,x,y,z]φ[t,x2,y,z])
+1Δygxy[t,x1,y,z](φ[t,x1,y+1,z]φ[t,x1,y1,z])
+1Δzgxz[t,x1,y,z](φ[t,x1,y,z+1]φ[t,x1,y,z1])
)
)
+1Δy(
V[t,x,y+1,z](
1Δt(βyc2)[t,x,y+1,z](φ[t+1,x,y+1,z]φ[t1,x,y+1,z])
+1Δxgxy[t,x,y+1,z](φ[t,x+1,y+1,z]φ[t,x1,y+1,z])
+1Δygyy[t,x,y+1,z](φ[t,x,y+2,z]φ[t,x,y,z])
+1Δzgyz[t,x,y+1,z](φ[t,x,y+1,z+1]φ[t,x,y+1,z1])
)V[t,x,y1,z](
1Δt(βyc2)[t,x,y1,z](φ[t+1,x,y1,z]φ[t1,x,y1,z])
+1Δxgxy[t,x,y1,z](φ[t,x+1,y1,z]φ[t,x1,y1,z])
+1Δygyy[t,x,y1,z](φ[t,x,y,z]φ[t,x,y2,z])
+1Δzgyz[t,x,y1,z](φ[t,x,y1,z+1]φ[t,x,y1,z1])
)
)
+1Δz(
V[t,x,y,z+1](
1Δt(βzc2)[t,x,y,z+1](φ[t+1,x,y,z+1]φ[t1,x,y,z+1])
+1Δxgxz[t,x,y,z+1](φ[t,x+1,y,z+1]φ[t,x1,y,z+1])
+1Δygyz[t,x,y,z+1](φ[t,x,y+1,z+1]φ[t,x,y1,z+1])
+1Δzgzz[t,x,y,z+1](φ[t,x,y,z+2]φ[t,x,y,z])
)V[t,x,y,z1](
1Δt(βzc2)[t,x,y,z1](φ[t+1,x,y,z1]φ[t1,x,y,z1])
+1Δxgxz[t,x,y,z1](φ[t,x+1,y,z1]φ[t,x1,y,z1])
+1Δygyz[t,x,y,z1](φ[t,x,y+1,z1]φ[t,x,y1,z1])
+1Δzgzz[t,x,y,z1](φ[t,x,y,z]φ[t,x,y,z2])
)
)
+1V[t,x,y,z]f
)
)