Start with my 'wave equation in spacetime' worksheet for an introduction to a scalar wave propagating in curved spacetime: https://thenumbernine.github.io/lua/symmath/tests/output/wave%20equation%20in%20spacetime.html
unit conversion: $dx^0 = c dt, \partial_0 = \frac{1}{c} \partial_t$
Written as a linear system:
$\left[ \begin{matrix}
\Pi \\
\Psi_i
\end{matrix} \right]_{,0}
= \left[ \begin{matrix}
\Pi_{,k} \beta^k
+ \alpha \Psi_{j,k} \gamma^{jk}
+ \Psi^j \alpha_{,j}
+ K \Pi \alpha
- \alpha \Psi_i \Gamma^i
- f \alpha \\
\alpha \delta^k_i \Pi_{,k}
+ \beta^k \delta^j_i \Psi_{j,k}
+ \Psi_j {\beta^j}_{,i}
+ \alpha_{,i} \Pi
\end{matrix} \right]$
$\left[ \begin{matrix}
\Pi \\
\Psi_i
\end{matrix} \right]_{,0}
+ \left[ \begin{matrix}
- \Pi_{,k} \beta^k
- \alpha \Psi_{j,k} \gamma^{jk} \\
- \alpha \delta^k_i \Pi_{,k}
- \beta^k \delta^j_i \Psi_{j,k}
\end{matrix} \right]
= \left[ \begin{matrix}
\Psi_i \alpha_{,j} \gamma^{ij}
+ K \Pi \alpha
- \alpha \Psi_i \Gamma^i
- f \alpha \\
\Psi_j {\beta^j}_{,i}
+ \alpha_{,i} \Pi
\end{matrix} \right]$
$\left[ \begin{matrix}
\Pi \\
\Psi_i
\end{matrix} \right]_{,t}
+ c \left[ \begin{matrix}
-\beta^k &
-\alpha \gamma^{jk} \\
- \alpha \delta^k_i &
- \beta^k \delta^j_i
\end{matrix} \right]
\left[ \begin{matrix}
\Pi \\
\Psi_j
\end{matrix} \right]_{,k}
= \left[ \begin{matrix}
\Psi_i \alpha_{,j} \gamma^{ij}
+ K \Pi \alpha
- \alpha \Psi_i \Gamma^i
- f \alpha \\
\Psi_j {\beta^j}_{,i}
+ \alpha_{,i} \Pi
\end{matrix} \right]$
Let $n = n^i \partial_i$ be the vector normal to the flux surface.
Contravariant normals would have values $n^i = \gamma^{ij} n_j$.
The length of the normal is given by $|n| = \sqrt{n^i n_i}$.
Then normals along the cartesian $x,y,z$ would have values, i.e. in the k direction: $n_i = \delta_{ik}$ and $n^i = \gamma^{ik}$.
The length of a normal $|n| = \sqrt{n^i n_i}$ along any cartesian basis in the k direction would be $|n| = \sqrt{\underset{i}{\Sigma} (\gamma^{ik} \delta_{ik})} = \sqrt{\gamma^{kk}}$
Also let $n_2$ and $n_3$ be orthogonal to $n$ such that $n^i (n_2)_i = n^i (n_3)_i = 0$ and $|n_2| = |n_3| = |n|$
(TODO use a different letter or a denotation since $n^\mu$ is already the spatial hypersurface normal in ADM formalism. How about $(n_\Sigma)^i$, or $\mu^i$, or $m^i$ ... or sticking with the original ADM notation of ${}^4 g_{\mu\nu}$ being the 4-metric and ${}^4 {\Gamma^\alpha}_{\beta\gamma}$ being the 4-connection, how about ${}^4 n^i$ is the 4-normal and $n^i$ is the 3-normal?)
Flux Jacobian:
$F = \left[ \begin{matrix}
-c \beta^k &
-c \alpha \gamma^{jk} \\
-c \alpha \delta^k_i &
-c \beta^k \delta^j_i
\end{matrix} \right]$
Flux Jacobian in terms of flux surface normal:
$F = \left[ \begin{matrix}
-c \beta_n &
-c \alpha n^j \\
-c \alpha n_i &
-c \beta_n \delta^j_i
\end{matrix} \right]$
...where $\beta^n = \beta^i n_i$
Expand components into x,y,z:
$F = \left[ \begin{matrix}
-c \beta_n &
-c \alpha n^x &
-c \alpha n^y &
-c \alpha n^z \\
-c \alpha n_x & -c \beta_n & 0 & 0 \\
-c \alpha n_y & 0 & -c \beta_n & 0 \\
-c \alpha n_z & 0 & 0 & -c \beta_n
\end{matrix} \right]$
Eigen decomposition:
Acoustic matrix:
$A = F + c \beta_n I$
$A = \left[ \begin{matrix}
0 &
-c \alpha n^x &
-c \alpha n^y &
-c \alpha n^z \\
-c \alpha n_x & 0 & 0 & 0 \\
-c \alpha n_y & 0 & 0 & 0 \\
-c \alpha n_z & 0 & 0 & 0
\end{matrix} \right]$
Eigenvalues of A:
$A R_A = \lambda R_A$
$(A - I \lambda) R_A = 0$
$|A - I \lambda| = 0$
$\left| \begin{matrix}
-\lambda &
- c \alpha n^x &
- c \alpha n^y &
- c \alpha n^z \\
-c \alpha n_x & -\lambda & 0 & 0 \\
-c \alpha n_y & 0 & -\lambda & 0 \\
-c \alpha n_z & 0 & 0 & -\lambda
\end{matrix} \right| = 0$
$c \alpha n_z
\left| \begin{matrix}
- c \alpha n^x &
- c \alpha n^y &
- c \alpha n^z \\
-\lambda & 0 & 0 \\
0 & -\lambda & 0 \\
\end{matrix} \right|
- \lambda
\left| \begin{matrix}
-\lambda &
- c \alpha n^x &
- c \alpha n^y \\
-c \alpha n_x & -\lambda & 0 \\
-c \alpha n_y & 0 & -\lambda
\end{matrix} \right| = 0$
$-c^2 \alpha^2 n_z n^z \lambda^2
- \lambda \left(
-c \alpha n_y
\left| \begin{matrix}
- c \alpha n^x &
- c \alpha n^y \\
-\lambda & 0
\end{matrix} \right|
- \lambda
\left| \begin{matrix}
-\lambda &
- c \alpha n^x \\
-c \alpha n_x & -\lambda
\end{matrix} \right|
\right)
= 0$
$-c^2 \alpha^2 n_z n^z \lambda^2
- \lambda \left(
c^2 \alpha^2 n_y n^y \lambda
- \lambda (
\lambda^2
- c^2 \alpha^2 n^x n_x
)
\right)
= 0$
$\lambda^2 (
\lambda^2
- c^2 \alpha^2 n_x n^x
- c^2 \alpha^2 n_y n^y
- c^2 \alpha^2 n_z n^z
) = 0$
$\lambda^2 (\lambda^2 - c^2 \alpha^2 |n|^2) = 0$
$\lambda^2 (\lambda + c \alpha |n|) (\lambda - c \alpha |n|) = 0$
...has eigenvalues:
$\lambda = \{-\alpha c |n|, 0, 0, \alpha c |n| \}$
For $\lambda = 0$:
$\left[ \begin{matrix}
0 &
-c \alpha n^x &
-c \alpha n^y &
-c \alpha n^z \\
-c \alpha n_x & 0 & 0 & 0 \\
-c \alpha n_y & 0 & 0 & 0 \\
-c \alpha n_z & 0 & 0 & 0
\end{matrix} \right]
\left[ \begin{matrix}
X^\Pi \\
X^{\Psi_x} \\
X^{\Psi_y} \\
X^{\Psi_z}
\end{matrix} \right]
= 0$
$\left[ \begin{matrix}
0 &
n^x &
n^y &
n^z \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{matrix} \right]
\left[ \begin{matrix}
X^\Pi \\
X^{\Psi_x} \\
X^{\Psi_y} \\
X^{\Psi_z}
\end{matrix} \right]
= 0$
...we have the solution...
$\left[ \begin{matrix}
X^\Pi \\
X^{\Psi_x} \\
X^{\Psi_y} \\
X^{\Psi_z}
\end{matrix} \right]
= \left[ \begin{matrix}
0 & 0 \\
(n_2)_x & (n_3)_x \\
(n_2)_y & (n_3)_y \\
(n_2)_z & (n_3)_z
\end{matrix} \right]$
For $\lambda = \pm \alpha c |n|$:
$\left[ \begin{matrix}
\mp c \alpha |n| &
-c \alpha n^x &
-c \alpha n^y &
-c \alpha n^z \\
-c \alpha n_x & \mp c \alpha |n| & 0 & 0 \\
-c \alpha n_y & 0 & \mp c \alpha |n| & 0 \\
-c \alpha n_z & 0 & 0 & \mp c \alpha |n|
\end{matrix} \right]
\left[ \begin{matrix}
X^\Pi \\
X^{\Psi_x} \\
X^{\Psi_y} \\
X^{\Psi_z}
\end{matrix} \right]
= 0$
...we have the solution...
$\left[ \begin{matrix}
X^\Pi \\
X^{\Psi_x} \\
X^{\Psi_y} \\
X^{\Psi_z}
\end{matrix} \right]
= \left[ \begin{matrix}
\mp |n| \\
n_x \\
n_y \\
n_z
\end{matrix} \right]$
Combined:
$\Lambda_A = \left[ \begin{matrix}
-c \alpha |n| & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & c \alpha |n|
\end{matrix} \right]$
$R_A = \left[ \begin{matrix}
|n| & 0 & 0 & -|n| \\
n_x & (n_2)_x & (n_3)_x & n_x \\
n_y & (n_2)_y & (n_3)_y & n_y \\
n_z & (n_2)_z & (n_3)_z & n_z
\end{matrix} \right]$
$L_A = (R_A)^{-1} = \left[ \begin{matrix}
\frac{1}{2|n|} &
\frac{1}{2|n|^2} n^x &
\frac{1}{2|n|^2} n^y &
\frac{1}{2|n|^2} n^z \\
0 &
\frac{1}{|n|^2} (n_2)^x &
\frac{1}{|n|^2} (n_2)^y &
\frac{1}{|n|^2} (n_2)^z \\
0 &
\frac{1}{|n|^2} (n_3)^x &
\frac{1}{|n|^2} (n_3)^y &
\frac{1}{|n|^2} (n_3)^z \\
-\frac{1}{2|n|} &
\frac{1}{2|n|^2} n^x &
\frac{1}{2|n|^2} n^y &
\frac{1}{2|n|^2} n^z \\
\end{matrix} \right]$
Now since we have no change of basis from F to A we can say that $R_F = R_A$ and $L_F = L_A$
Last, $\Lambda_F = \Lambda_A - c \beta_n I$
$\Lambda_A = \left[ \begin{matrix}
-c \beta_n -c \alpha |n| & 0 & 0 & 0 \\
0 & -c \beta_n & 0 & 0 \\
0 & 0 & -c \beta_n & 0 \\
0 & 0 & 0 & -c \beta_n + c \alpha |n|
\end{matrix} \right]$
If we want to use use volume weighting of our flux by $\frac{1}{\sqrt\gamma}$ then it looks like we will only be adding new terms instead of removing.
Of course the only new term we would produce is associated with $\Psi_i$, where $\nabla_j \Psi_i = \Psi_{i,j} - {\Gamma^k}_{ij} \Psi_k$.
Removing extra terms is typically the case when we look at the covariant derivative form of most equations, where the volume form naturally pops out from the covariant derivative of a vector field: $\nabla_i v^i = {v^i}_{,i} + {\Gamma^i}_{ki} v^k = \frac{1}{\sqrt\gamma} (\sqrt\gamma v^i)_{,i}$
After re-inserting $\frac{1}{\sqrt\gamma} \cdot \sqrt\gamma \cdot ...$ next to the state variable spatial derivatives, we find...
$\left[ \begin{matrix}
\Pi \\
\Psi_i
\end{matrix} \right]_{,0}
+ \left[ \begin{matrix}
- \beta^k \frac{1}{\sqrt\gamma} ((\sqrt\gamma \Pi)_{,k} - (\sqrt\gamma)_{,k} \Pi)
- \alpha \gamma^{jk} \frac{1}{\sqrt\gamma} ((\sqrt\gamma \Psi_j)_{,k} - (\sqrt\gamma)_{,k} \Psi_j) \\
- \alpha \delta^k_i \frac{1}{\sqrt\gamma} ((\sqrt\gamma \Pi)_{,k} - (\sqrt\gamma)_{,k} \Pi)
- \beta^k \delta^j_i \frac{1}{\sqrt\gamma} ((\sqrt\gamma \Psi_j)_{,k} - (\sqrt\gamma)_{,k} \Psi_j)
\end{matrix} \right]
= \left[ \begin{matrix}
\Psi_i \alpha_{,j} \gamma^{ij}
+ K \Pi \alpha
- \alpha \Psi_i \Gamma^i
- f \alpha \\
\Psi_j {\beta^j}_{,i}
+ \alpha_{,i} \Pi
\end{matrix} \right]$
$\left[ \begin{matrix}
\Pi \\
\Psi_i
\end{matrix} \right]_{,0}
+ \frac{1}{\sqrt\gamma}
\left[ \begin{matrix}
- \beta^k &
- \alpha \gamma^{jk} \\
- \alpha \delta^k_i &
- \beta^k \delta^j_i
\end{matrix} \right]
\left[ \begin{matrix}
\sqrt\gamma \Pi \\
\sqrt\gamma \Psi_j
\end{matrix} \right]_{,k}
= \left[ \begin{matrix}
K \Pi \alpha
- \beta^k {\Gamma^j}_{kj} \Pi
+ \Psi^j \alpha_{,j}
- \alpha \Psi_i \Gamma^i
- \alpha {\Gamma^j}_{kj} \Psi^k
- f \alpha \\
\alpha_{,i} \Pi
- \alpha {\Gamma^j}_{ij} \Pi
+ \Psi_j {\beta^j}_{,i}
- \beta^k {\Gamma^j}_{kj} \Psi_i
\end{matrix} \right]$
This just looks more complex.
How about if we weight the time derivatives as well, to see what would happen if we replaced the variables altogether with $\tilde{U} = \sqrt\gamma U$?
$\frac{1}{\sqrt\gamma} \left[ \begin{matrix}
\sqrt\gamma \Pi_{,0}
+ (\sqrt\gamma)_{,0} \Pi
- (\sqrt\gamma)_{,0} \Pi
\\
\sqrt\gamma \Psi_{i,0}
+ (\sqrt\gamma)_{,0} \Psi_i
- (\sqrt\gamma)_{,0} \Psi_i
\end{matrix} \right]
+ \frac{1}{\sqrt\gamma}
\left[ \begin{matrix}
- \beta^k &
- \alpha \gamma^{jk} \\
- \alpha \delta^k_i &
- \beta^k \delta^j_i
\end{matrix} \right]
\left[ \begin{matrix}
\sqrt\gamma \Pi \\
\sqrt\gamma \Psi_j
\end{matrix} \right]_{,k}
= \left[ \begin{matrix}
K \Pi \alpha
- \beta^k {\Gamma^j}_{kj} \Pi
+ \Psi^j \alpha_{,j}
- \alpha \Psi_i \Gamma^i
- \alpha {\Gamma^j}_{kj} \Psi^k
- f \alpha \\
\alpha_{,i} \Pi
- \alpha {\Gamma^j}_{ij} \Pi
+ \Psi_j {\beta^j}_{,i}
- \beta^k {\Gamma^j}_{kj} \Psi_i
\end{matrix} \right]$
$\left[ \begin{matrix}
(\sqrt\gamma \Pi)_{,0} \\
(\sqrt\gamma \Psi_i)_{,0}
\end{matrix} \right]
+ \left[ \begin{matrix}
- \beta^k &
- \alpha \gamma^{jk} \\
- \alpha \delta^k_i &
- \beta^k \delta^j_i
\end{matrix} \right]
\left[ \begin{matrix}
\sqrt\gamma \Pi \\
\sqrt\gamma \Psi_j
\end{matrix} \right]_{,k}
=
\sqrt\gamma
\left[ \begin{matrix}
K \Pi \alpha
- \beta^k {\Gamma^j}_{kj} \Pi
+ \frac{(\sqrt\gamma)_{,0}}{\sqrt\gamma} \Pi
+ \Psi^j \alpha_{,j}
- \alpha \Psi_i \Gamma^i
- \alpha {\Gamma^j}_{kj} \Psi^k
- f \alpha \\
\alpha_{,i} \Pi
- \alpha {\Gamma^j}_{ij} \Pi
+ \Psi_j {\beta^j}_{,i}
- \beta^k {\Gamma^j}_{kj} \Psi_i
+ \frac{(\sqrt\gamma)_{,0}}{\sqrt\gamma} \Psi_i
\end{matrix} \right]$
Evaluating our volume time derivative:
$(\sqrt\gamma)_{,0} = \frac{1}{2 \sqrt\gamma} \gamma_{,0}$
$= \frac{1}{2 \sqrt\gamma} \gamma \gamma^{ij} \gamma_{ij,0}$
$= -\sqrt\gamma \gamma^{ij} \alpha K_{ij}$
$= -\sqrt\gamma \alpha K$
$\left[ \begin{matrix}
(\sqrt\gamma \Pi)_{,0} \\
(\sqrt\gamma \Psi_i)_{,0}
\end{matrix} \right]
+ \left[ \begin{matrix}
- \beta^k &
- \alpha \gamma^{jk} \\
- \alpha \delta^k_i &
- \beta^k \delta^j_i
\end{matrix} \right]
\left[ \begin{matrix}
\sqrt\gamma \Pi \\
\sqrt\gamma \Psi_j
\end{matrix} \right]_{,k}
=
\sqrt\gamma
\left[ \begin{matrix}
- \beta^k {\Gamma^j}_{kj} \Pi
+ \Psi^j \alpha_{,j}
- \alpha \Psi_i \Gamma^i
- \alpha {\Gamma^j}_{kj} \Psi^k
- f \alpha \\
\alpha_{,i} \Pi
- \alpha {\Gamma^j}_{ij} \Pi
- \alpha K \Psi_i
+ \Psi_j {\beta^j}_{,i}
- \beta^k {\Gamma^j}_{kj} \Psi_i
\end{matrix} \right]$
$\left[ \begin{matrix}
\tilde{\Pi}_{,0} \\
\tilde{\Psi}_{i,0}
\end{matrix} \right]
+ \left[ \begin{matrix}
- \beta^k &
- \alpha \gamma^{jk} \\
- \alpha \delta^k_i &
- \beta^k \delta^j_i
\end{matrix} \right]
\left[ \begin{matrix}
\tilde{\Pi} \\
\tilde{\Psi}_j
\end{matrix} \right]_{,k}
= \left[ \begin{matrix}
- \beta^k {\Gamma^j}_{kj} \tilde{\Pi}
+ \tilde{\Psi}^j \alpha_{,j}
- \alpha \tilde{\Psi}_i \Gamma^i
- \alpha {\Gamma^j}_{kj} \tilde{\Psi}^k
- f \alpha \sqrt\gamma \\
\alpha_{,i} \tilde{\Pi}
- \alpha {\Gamma^j}_{ij} \tilde{\Pi}
- \alpha K \tilde{\Psi}_i
+ \tilde{\Psi}_j {\beta^j}_{,i}
- \beta^k {\Gamma^j}_{kj} \tilde{\Psi}_i
\end{matrix} \right]$
This still doesn't look much different. We did manage to shift the K source term from $\Pi$ to $\Psi$.
Back to our original representation, what if we want to use the contravariant vector $\Psi^i$ as a state variable.
$\Psi^i = \gamma^{ij} \Psi_j$
${\Psi^i}_{,\mu} = (\gamma^{ij} \Psi_j)_{,\mu}$
${\Psi^i}_{,\mu} = {\gamma^{ij}}_{,\mu} \Psi_j + \gamma^{ij} \Psi_{j,\mu}$
${\Psi^i}_{,\mu} = -\gamma^{ij} \gamma_{jk,\mu} \Psi^k + \gamma^{ij} \Psi_{j,\mu}$
spacelike:
${\Psi^i}_{,m} = -\gamma^{ij} \gamma_{jk,m} \Psi^k + \gamma^{ij} \Psi_{j,m}$
${\Psi^i}_{,m} = -\gamma^{ij} (\Gamma_{jmk} + \Gamma_{kmj}) \Psi^k + \gamma^{ij} \Psi_{j,m}$
${\Psi^i}_{,m} = -{\Gamma^i}_{mk} \Psi^k - \Psi^k {\Gamma_{km}}^i + \gamma^{ij} \Psi_{j,m}$
so $\Psi_{j,k} = \gamma_{jm} {\Psi^m}_{,k} + \Gamma_{jkm} \Psi^m + \Psi^m \Gamma_{mkj}$
timelike:
${\Psi^i}_{,0} = -\gamma^{ij} \gamma_{jk,0} \Psi^k + \gamma^{ij} \Psi_{j,0}$
${\Psi^i}_{,0} = 2 \alpha {K^i}_j \Psi^j + \gamma^{ij} \Psi_{j,0}$
so $\Psi_{i,0} = \gamma_{ij} {\Psi^j}_{,0} - 2 \alpha K_{ij} \Psi^j$
$\left[ \begin{matrix}
\Pi_{,0} \\
\Psi_{i,0}
\end{matrix} \right]
= \left[ \begin{matrix}
\Pi_{,k} \beta^k
+ \alpha \Psi_{j,k} \gamma^{jk}
+ \Psi^j \alpha_{,j}
+ K \Pi \alpha
- \alpha \Psi_i \Gamma^i
- f \alpha \\
\alpha \delta^k_i \Pi_{,k}
+ \beta^k \delta^j_i \Psi_{j,k}
+ \Psi_j {\beta^j}_{,i}
+ \alpha_{,i} \Pi
\end{matrix} \right]$
...substitute our new derivatives:
$\left[ \begin{matrix}
\Pi_{,0} \\
\gamma_{ij} {\Psi^j}_{,0} - 2 \alpha K_{ij} \Psi^j
\end{matrix} \right]
= \left[ \begin{matrix}
\Pi_{,k} \beta^k
+ \alpha (\gamma_{jm} {\Psi^m}_{,k} + \Gamma_{jkm} \Psi^m + \Psi^m \Gamma_{mkj}) \gamma^{jk}
+ \Psi^j \alpha_{,j}
+ K \Pi \alpha
- \alpha \Psi_i \Gamma^i
- f \alpha \\
\alpha \delta^k_i \Pi_{,k}
+ \beta^k \delta^j_i (\gamma_{jm} {\Psi^m}_{,k} + \Gamma_{jkm} \Psi^m + \Psi^m \Gamma_{mkj})
+ \Psi_j {\beta^j}_{,i}
+ \alpha_{,i} \Pi
\end{matrix} \right]$
$\left[ \begin{matrix}
\Pi_{,0} \\
{\Psi^i}_{,0}
\end{matrix} \right]
= \left[ \begin{matrix}
\Pi_{,k} \beta^k
+ \alpha {\Psi^k}_{,k}
+ K \Pi \alpha
+ \Psi^j \alpha_{,j}
+ \alpha {\Gamma^j}_{kj} \Psi^k
- f \alpha \\
\alpha \gamma^{ij} \Pi_{,j}
+ \beta^k {\Psi^i}_{,k}
+ \gamma^{ij} \alpha_{,i} \Pi
+ \gamma^{im} \gamma_{mj,k} \Psi^j \beta^k
+ \Psi_j {\beta^j}_{,m} \gamma^{im}
+ 2 \alpha {K^i}_j \Psi^j
\end{matrix} \right]$
$\left[ \begin{matrix}
\Pi \\
\Psi^i
\end{matrix} \right]_{,0}
+ \left[ \begin{matrix}
- \beta^k &
- \alpha \delta^k_j \\
- \alpha \gamma^{ik} &
- \beta^k \delta^i_j
\end{matrix} \right]
\left[ \begin{matrix}
\Pi \\
\Psi^j
\end{matrix} \right]_{,k}
= \left[ \begin{matrix}
K \Pi \alpha
+ \Psi^j \alpha_{,j}
+ \alpha {\Gamma^j}_{kj} \Psi^k
- f \alpha \\
\gamma^{ij} \alpha_{,i} \Pi
+ \gamma^{im} (
\Psi^n \gamma_{nm,k} \beta^k
+ \Psi^n \gamma_{nj} {\beta^j}_{,m}
)
+ 2 \alpha {K^i}_j \Psi^j
\end{matrix} \right]$
As you can see, changing the state variables from covariant to contravariant only exchanges the delta and the metric terms in the flux. Our new flux Jacobian is just a transpose of our old flux Jacobian.
Now, what if we choose to use a locally orthonormal basis:
$e_I = {e^i}_I e_i = {e^i}_I \partial_i$
$\gamma_{ij} = {e_i}^I {e_j}^J \delta_{IJ}$
$\gamma^{ij} = {e^i}_I {e_j}^I = \delta^i_j$
Where the comma derivative is interchangeable with the application of the basis: $x_i = e_i(x)$ and $x_I = e_I(x) = {e^i}_I \partial_i (x)$
(Notice that I am not normalizing the time component, as the folks who work with ADM tetrads do ... but maybe I should ... ).
$\Psi^I = {e_i}^I \Psi_i$
spatial derivative:
${\Psi^I}_{,J} = {\Psi^I}_{,j} {e^j}_J$
${\Psi^I}_{,J} = (\Psi^i {e_i}^I)_{,j} {e^j}_J$
${\Psi^I}_{,J} = {e_i}^I {\Psi^i}_{,j} {e^j}_J + \Psi^i {{e_i}^I}_{,j} {e^j}_J$
so ${\Psi^i}_{,j} = {e^i}_I {\Psi^I}_{,J} {e_j}^J - \Psi^k {e^i}_I {{e_k}^I}_{,j}$
time derivative:
${\Psi^I}_{,0} = {{e_i}^I}_{,0} \Psi_i + {e_i}^I \Psi_{i,0}$
so $\Psi_{i,0} = {e^i}_I {\Psi^I}_{,0} - {e^i}_I {{e_k}^I}_{,0} \Psi_k$
$\left[ \begin{matrix}
\Pi_{,0} \\
{\Psi^I}_{,0}
\end{matrix} \right]
= \left[ \begin{matrix}
\Pi_{,k} \beta^k
+ \alpha {e^k}_I {\Psi^I}_{,k}
+ K \Pi \alpha
+ \alpha_{,j} \Psi^j
- \alpha {e^k}_I {{e_m}^I}_{,k} \Psi^m
+ \alpha {\Gamma^j}_{kj} \Psi^k
- f \alpha \\
\alpha {e_i}^I \gamma^{ik} \Pi_{,k}
+ \beta^k {\Psi^I}_{,k}
+ {e_j}^I \gamma^{ij} \alpha_{,i} \Pi
- \beta^k {{e_m}^I}_{,k} \Psi^m
+ {e_i}^I \gamma^{im} \gamma_{mj,k} \beta^k \Psi^j
+ {e_i}^I \gamma^{im} {\beta^j}_{,m} \Psi_j
+ {{e_k}^I}_{,0} \Psi_k
+ 2 \alpha {K^I}_J \Psi^J
\end{matrix} \right]$
A lot of those source terms can probably cancel if you convert the derivatives of ${e_i}^I$ into 3-connections.
Notice that I'm still keeping the derivative $e_k$ a coordinate derivative, and not converting it to the non-coordinate basis $e_K$.
$\left[ \begin{matrix}
\Pi \\
\Psi^I
\end{matrix} \right]_{,0}
+ \left[ \begin{matrix}
- \beta^k &
- \alpha {e^k}_J \\
- \alpha e^{kI} &
- \beta^k \delta^I_J
\end{matrix} \right]
\left[ \begin{matrix}
\Pi \\
\Psi^J
\end{matrix} \right]_{,k}
= \left[ \begin{matrix}
K \Pi \alpha
+ \alpha_{,j} \Psi^j
- \alpha {e^k}_I {{e_m}^I}_{,k} \Psi^m
+ \alpha {\Gamma^j}_{kj} \Psi^k
- f \alpha \\
e^{iI} \alpha_{,i} \Pi
- {e^{jI}}_{,k} \beta^k \Psi_j
+ e^{iI} {\beta^j}_{,i} \Psi_j
+ {{e_k}^I}_{,0} \Psi_k
+ 2 \alpha {K^I}_J \Psi^J
\end{matrix} \right]$