indexes span $x^a \in \{ x^0, x^0, x^2, x^3 \}$, where $dx^0 = c dt$ and $\partial_0 = \frac{1}{c} \partial_t$

constants:
$c = $ $\cdot \frac{m}{s} =$ the speed of light.
$k_e = $ $\cdot \frac{N \cdot m^2}{C^2}$ = Coulomb's constant (typically $\frac{1}{4 \pi \epsilon_0}$).
$N_A = $ $\cdot \frac{1}{mol}$ = Avogadro's constant.
$e =$ $\cdot C$ = electron charge

material variables:
$m_a =$ $\frac{g}{mol} =$ atomic mass.
$n_v =$ nominal valency.
$\rho =$ $\frac{g}{cm^3} =$ {{material_density_in_kg_per_m3 = material_density_in_g_per_cm3 * 1e+3}} $\frac{kg}{m^3} = $ matter density.
$\rho_{res} = $ $\Omega \cdot m$ = electrical resistivity

wire properties:
$l =$ $m$ = wire distance
$R =$ $mm =$ {{wire_radius_in_m = wire_radius_in_mm * 1e-3}} $m =$ wire radius.

power source:
$V =$ V = voltage

$r = \sqrt{y^2 + z^2} =$ $m = $ distance of measurement from the wire along the x-axis.

(atomic mass) {{atomic_mass_in_kg = 1e-3 * atomic_mass_in_g}} kg = (Avogadro's constant) {{Avogadro_constant_in_1_per_mol}} atoms = (Avogadro's constant * nominal valency) {{Avogadro_constant_in_1_per_mol * material_nominal_valency}} electrons.
$n_e = \frac{N_A \cdot n_v}{m_a} = $ Avogadro's constant * nominal valency / atomic mass = {{free_electrons_per_kg = Avogadro_constant_in_1_per_mol * material_nominal_valency / atomic_mass_in_kg}} $\frac{e}{kg} = $ free electrons per kg.
$\rho_{charge} = n_e \cdot \rho = $ free electrons per kg * matter density = {{electron_density_in_e_per_m3 = free_electrons_per_kg * material_density_in_kg_per_m3}} $\frac{e}{m^3}$ = electron density.
$q = \rho_{charge} \cdot e =$ {{charge_density_in_C_per_m3 = electron_density_in_e_per_m3 * electron_charge_in_C}} $\frac{C}{m^3} = $ charge density.

derived wire properties:
$A = \pi R^2 =$ {{wire_cross_section_area_in_m2 = Math.PI * wire_radius_in_m * wire_radius_in_m}} $m^2 =$ wire cross-section area
$R_{res} = \frac{\rho_{res} \cdot l}{A} =$ {{wire_resistivity_in_ohms = material_electrical_resistivity_in_ohm_m * wire_length_in_m / wire_cross_section_area_in_m2}} $\Omega$
$I = \frac{V}{R_{res}} = \frac{V \cdot \pi \cdot R^2}{\rho_{res} \cdot l} =$ {{current_in_A = voltage_in_V / wire_resistivity_in_ohms}} A = current.

$\lambda = A q = \pi R^2 \rho_{charge} e =$ {{charge_per_unit_length_in_C_per_m = charge_density_in_C_per_m3 * wire_cross_section_area_in_m2}} $\frac{C}{m}$ = charge density per unit meter along wire

Mean velocity of moving electrons within wire:
$v = \frac{I}{\lambda} = \frac{V}{\rho_{charge} e \cdot \rho_{res} \cdot l} =$ {{mean_electron_velocity_in_m_per_s = current_in_A / (wire_cross_section_area_in_m2 * charge_density_in_C_per_m3)}} $\frac{m}{s}$

Electric field: $E(x) = \int \frac{q(x')}{|x' - x|^2} \cdot \frac{(x' - x)}{|x' - x|} dx'$
Electric field around a wire:
TODO explain the origin of the $\frac{v^2}{c^2}$ term... from the sources, is this a Taylor-expanded $\gamma - 1$?
$E(r) = 2 k_e \lambda \frac{1}{r} \frac{v^2}{c^2} = \frac{\lambda}{2 \pi \epsilon_0 r} \frac{v^2}{c^2} = 2 k_e \pi R^2 \rho_{charge} e \frac{1}{r} \frac{v^2}{c^2} =$ {{electric_field_in_kg_m2_per_C_s2_r = 2 * Coulomb_constant_in_kg_m3_per_C2_s2 * charge_per_unit_length_in_C_per_m * mean_electron_velocity_in_m_per_s * mean_electron_velocity_in_m_per_s / (speed_of_light_in_m_per_s * speed_of_light_in_m_per_s) }} $\cdot \frac{1}{r} \cdot \frac{kg \cdot m^2}{C \cdot s^2}$

Faraday tensor:
$F_{ab} = \downarrow a \overset{\rightarrow b}{\left[ \begin{matrix} 0 & -\frac{1}{c} E_x & -\frac{1}{c} E_y & -\frac{1}{c} E_z \\ \frac{1}{c} E_x & 0 & B_z & -B_y \\ \frac{1}{c} E_y & -B_z & 0 & B_x \\ \frac{1}{c} E_z & B_y & B_x & 0 \end{matrix}\right]}$

$E_i$ has units $\frac{N}{C} = \frac{kg \cdot m}{C \cdot s^2}$.
$B_i$ has units $\frac{N \cdot s}{C \cdot m} = \frac{kg}{C \cdot s}$
$F_{ab}$ has units of $\frac{kg}{C \cdot s}$

In terms of electromagnetic four-potential:
$F_{ab} = 2 \partial_{[a} A_{b]}$
$F_{ab} = \downarrow a \overset{\rightarrow b}{\left[ \begin{matrix} 0 & \frac{1}{c} \partial_t \vec{A} - \vec{\nabla} A_t \\ \vec{\nabla} A_t - \frac{1}{c} \partial_t \vec{A} & (\vec{\nabla} \times \vec{A}) \times \end{matrix}\right]}$
$A_t$ is in units of $V = \frac{kg \cdot m^2}{C \cdot s^2}$
$A_i$ is in units of $\frac{V \cdot s}{m} = \frac{kg \cdot m}{C \cdot s}$

Lorentz boost in the x direction:
${\Lambda^a}_b = \downarrow a \overset{\rightarrow b}{\left[ \begin{matrix} \gamma & -\beta \gamma & 0 & 0 \\ -\beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{matrix}\right]} $

For electron flow through a material:
$\beta = \frac{v}{c} =$ {{Lorentz_beta = mean_electron_velocity_in_m_per_s / speed_of_light_in_m_per_s}}
$\gamma = 1 / \sqrt{1 - \beta^2} \approx 1 + \frac{\beta^2}{2} \approx 1 + $ {{ /*Lorentz_gamma = 1 / (1 - Math.pow(Lorentz_beta, .5))*/ Lorentz_gamma_minus_one = .5 * Lorentz_beta * Lorentz_beta }} $\approx$ {{ Lorentz_gamma = 1 + Lorentz_gamma_minus_one }}

For a boosted electromagnetic field:
$F'_{ab} = {\Lambda^c}_a F_{cd} {\Lambda^d}_b$
$= \downarrow a \overset{\rightarrow c}{\left[ \begin{matrix} \gamma & -\beta \gamma & 0 & 0 \\ -\beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{matrix}\right]} \cdot \downarrow c \overset{\rightarrow d}{\left[ \begin{matrix} 0 & -\frac{1}{c} E_x & -\frac{1}{c} E_y & -\frac{1}{c} E_z \\ \frac{1}{c} E_x & 0 & B_z & -B_y \\ \frac{1}{c} E_y & -B_z & 0 & B_x \\ \frac{1}{c} E_z & B_y & B_x & 0 \end{matrix}\right]} \downarrow d \overset{\rightarrow b}{\left[ \begin{matrix} \gamma & -\beta \gamma & 0 & 0 \\ -\beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{matrix}\right]}$
$= \downarrow a \overset{\rightarrow c}{\left[ \begin{matrix} \gamma & -\beta \gamma & 0 & 0 \\ -\beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{matrix}\right]} \cdot \downarrow c \overset{\rightarrow b}{\left[ \begin{matrix} \beta \gamma \frac{1}{c} E_x & -\gamma \frac{1}{c} E_x & -\frac{1}{c} E_y & -\frac{1}{c} E_z \\ \gamma \frac{1}{c} E_x & -\beta \gamma \frac{1}{c} E_x & B_z & -B_y \\ \gamma \frac{1}{c} E_y + \beta \gamma B_z & -\beta \gamma \frac{1}{c} E_y - \gamma B_z & 0 & B_x \\ \gamma \frac{1}{c} E_z - \beta \gamma B_y & -\beta \gamma \frac{1}{c} E_z + \gamma B_y & B_x & 0 \end{matrix}\right]}$

$= \downarrow a \overset{\rightarrow b}{\left[ \begin{matrix} 0 & -\frac{1}{c} E_x & \gamma (-\frac{1}{c} E_y - \beta B_z) & \gamma (-\frac{1}{c} E_z + \beta B_y) \\ \frac{1}{c} E_x & 0 & \gamma (\beta \frac{1}{c} E_y + B_z) & \gamma (\beta \frac{1}{c} E_z - B_y) \\ \gamma (\frac{1}{c} E_y + \beta B_z) & \gamma (-\beta \frac{1}{c} E_y - B_z) & 0 & B_x \\ \gamma (\frac{1}{c} E_z - \beta B_y) & \gamma (-\beta \frac{1}{c} E_z + B_y) & B_x & 0 \end{matrix}\right]}$

For a resting electromagnetic field of magnitude $E$ around a wire oriented in the x direction:
$F_{ab} = \downarrow a \overset{\rightarrow b}{\left[ \begin{matrix} 0 & 0 & -\frac{1}{c} E \frac{y}{r} & -\frac{1}{c} E \frac{z}{r} \\ 0 & 0 & 0 & 0 \\ \frac{1}{c} E \frac{y}{r} & 0 & 0 & 0 \\ \frac{1}{c} E \frac{z}{r} & 0 & 0 & 0 \end{matrix}\right]}$

$F'_{ab} = \downarrow a \overset{\rightarrow b}{\left[ \begin{matrix} 0 & 0 & -\gamma \frac{1}{c} E \frac{y}{r} & -\gamma \frac{1}{c} E \frac{z}{r} \\ 0 & 0 & \beta \gamma \frac{1}{c} E \frac{y}{r} & \beta \gamma \frac{1}{c} E \frac{z}{r} \\ \gamma \frac{1}{c} E \frac{y}{r} & -\beta \gamma \frac{1}{c} E \frac{y}{r} & 0 & 0 \\ \gamma \frac{1}{c} E \frac{z}{r} & -\beta \gamma \frac{1}{c} E \frac{z}{r} & 0 & 0 \end{matrix}\right]}$

One possible pre-boosted 4-potential:
$A_i = 0 = $ magnetic vector potential.
$r_0 = $ = electromagnetic potential reference length.
$A_t = 2 \lambda k_e ln( \frac{r}{r_0} ) = $ {{ 2 * charge_per_unit_length_in_C_per_m * Coulomb_constant_in_kg_m3_per_C2_s2 * Math.log(field_measure_distance_in_m / electric_potential_reference_dist_in_m) }} $ \frac{ kg \cdot m^2 }{ C \cdot s^2} $ = electric potential.

So the electric field in the direction perpendicular to the boost is scaled up by $\gamma \ge 1$.
And a magnetic field is created equal to:
$\vec{B} = \beta \gamma \frac{1}{c} E \cdot \left[\begin{matrix} 0 \\ -\frac{z}{r} \\ \frac{y}{r} \end{matrix}\right]$
$B = \frac{1}{c} \beta \gamma E = \frac{2 \cdot \gamma \cdot V \cdot \pi \cdot R^2 \cdot k_e}{c^2 \cdot \rho_{res} \cdot l \cdot r}$ = magnetic field magnitude

$B = \frac{1}{c \cdot r} \cdot $ {{Lorentz_beta * Lorentz_gamma * electric_field_in_kg_m2_per_C_s2_r}} $\cdot \frac{kg}{C \cdot s^2}$ $= \frac{1}{r} \cdot $ {{magnetic_field_in_kg_m_per_C_s_r = Lorentz_beta * Lorentz_gamma * (electric_field_in_kg_m2_per_C_s2_r / speed_of_light_in_m_per_s)}} $\cdot \frac{kg \cdot m}{C \cdot s}$

Measuring the magnetic field at a distance of {{field_measure_distance_in_m}} $ m$ from the wire gives us:
$E =$ {{electric_field_in_kg_m_per_C_s2 = electric_field_in_kg_m2_per_C_s2_r / field_measure_distance_in_m}} $\frac{kg \cdot m}{C \cdot s^2} =$ {{electric_field_in_kg_m_per_C_s2}} $\frac{V}{m}$
$B =$ {{magnetic_field_in_kg_per_C_s = magnetic_field_in_kg_m_per_C_s_r / field_measure_distance_in_m}} $\frac{kg}{C \cdot s} =$ {{magnetic_field_in_kg_per_C_s}} T

$\epsilon_0 = \frac{1}{4 \pi k_e} = $ {{vacuum_permittivity_in_C2_s2_per_kg_m3 = 1 / (4 * Math.PI * Coulomb_constant_in_kg_m3_per_C2_s2)}} $\cdot \frac{C^2 \cdot s^2}{kg \cdot m^3}$
$\epsilon_r =$ = relative permittivity of material
$\epsilon = \epsilon_0 \epsilon_r = $ {{material_permittivity_in_C2_s2_per_kg_m3 = vacuum_permittivity_in_C2_s2_per_kg_m3 * relative_permittivity_in_1}} $\cdot \frac{C^2 \cdot s^2}{kg \cdot m^3} =$ permittivity of material
$D = \epsilon E =$ {{displacement_field_in_C_per_m2 = electric_field_in_kg_m_per_C_s2 * material_permittivity_in_C2_s2_per_kg_m3}} $\cdot \frac{C}{m^2} =$ displacement field

$\mu_0 = \frac{1}{c^2 \cdot \epsilon_0} = $ {{vacuum_permeability_in_kg_m_per_C2 = 1 / (speed_of_light_in_m_per_s * speed_of_light_in_m_per_s * vacuum_permittivity_in_C2_s2_per_kg_m3)}} $\cdot \frac{kg \cdot m}{C^2} =$ vacuum permeability
$\mu_r =$ = relative permeability of material
$\mu = \mu_0 \mu_r =$ {{material_permittivity_in_kg_m_per_C2 = vacuum_permeability_in_kg_m_per_C2 * relative_permeability_in_1}} $ \cdot \frac{kg \cdot m}{C^2} =$ permeability of material
$H = \frac{1}{\mu} B =$ {{magnetizing_field_in_C_per_s = magnetic_field_in_kg_per_C_s / material_permittivity_in_kg_m_per_C2}} $\cdot \frac{C}{s} =$ magnetizing field


Sources:
1973 Misner, Thorne, Wheeler, "Gravitation"
2013 Purcell, Morin, "Electricity and Magnetism"
http://galileo.phys.virginia.edu/classes/252/rel_el_mag.html
http://www.rs20.net/w/2012/08/how-do-magnets-work-magnetism-electrostatics-relativity/
http://physics.weber.edu/schroeder/mrr/MRRtalk.html