name | $S^3_m$ | $q_0(S^3_m)$ | $q_1(S^3_m)$ | $q_2(S^3_m)$ | $\chi$ | $\star S^3_m$ | $|\textbf{T}(S^3_m)|$ | $\partial S^3_m$ | $m = q_0(\partial S^3_m) = q_1(\partial S^3_m) = |\textbf{T}(\partial S^3_m)|$ | |
---|---|---|---|---|---|---|---|---|---|---|
tetrahedron | $S^3_4$ | 4 | 6 | 4 | 2 | $S^3_4$ | 12 | $S^2_3$ | 3 | |
cube | $S^3_6$ | 8 | 12 | 6 | 2 | $S^3_8$ | 24 | $S^2_4$ | 4 | |
octahedron | $S^3_8$ | 6 | 12 | 8 | 2 | $S^3_6$ | 24 | $S^2_3$ | 3 | |
dodecahedron | $S^3_{12}$ | 20 | 30 | 12 | 2 | $S^3_{20}$ | 60 | $S^2_5$ | 5 | |
icosahedron | $S^3_{20}$ | 12 | 30 | 20 | 2 | $S^3_{12}$ | 60 | $S^2_3$ | 3 |
name | $S^4_m$ | $q_0(S^4_m)$ | $q_1(S^4_m)$ | $q_2(S^4_m)$ | $q_3(S^4_m)$ | $\chi$ | $\star S^4_m$ | $|\textbf{T}(S^4_m)|$ | $\partial S^4_m$ | $q_0(\partial S^4_m)$ | $q_1(\partial S^4_m)$ | $q_2(\partial S^4_m)$ | $|\textbf{T}(\partial S^4_m)|$ | $q_0(\partial^2 S^4_m) = q_1(\partial^2 S^4_m) = |\textbf{T}(\partial^2 S^4_m)|$ | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5-cell | $S^4_5$ | 5 | 10 | 10 | 5 | 0 | $S^4_5$ | 60 | $S^3_4$ | 4 | 6 | 4 | 12 | 3 | ||
hypercube, i.e. 8-cell | $S^4_8$ | 16 | 32 | 24 | 8 | 0 | $S^4_{16}$ | 192 | $S^3_6$ | 8 | 12 | 6 | 24 | 4 | ||
4-orthoplex, i.e. 16-cell | $S^4_{16}$ | 8 | 24 | 32 | 16 | 0 | $S^4_8$ | 192 | $S^3_4$ | 4 | 6 | 4 | 12 | 3 | ||
24-cell | $S^4_{24}$ | 24 | 96 | 96 | 24 | 0 | $S^4_{24}$ | 576 | $S^3_8$ | 6 | 12 | 8 | 24 | 3 | ||
120-cell | $S^4_{120}$ | 600 | 1200 | 720 | 120 | 0 | $S^4_{600}$ | 7200 | $S^3_{12}$ | 20 | 30 | 12 | 60 | 5 | ||
600-cell | $S^4_{600}$ | 120 | 720 | 1200 | 600 | 0 | $S^4_{120}$ | 7200 | $S^3_4$ | 4 | 6 | 4 | 12 | 3 |
name | $S^n_m$ | $q_0(S^n_m)$ | $q_k(S^n_m)$ | $q_{n-1}(S^n_m)$ | $\star S^n_m$ | $|\textbf{T}(S^n_m)|$ | $\partial S^n_m$ | |
---|---|---|---|---|---|---|---|---|
simplex | $S^n_{n+1}$ | $n+1$ | $\left( \begin{matrix} n+1 \\ k+1 \end{matrix} \right)$ | $n+1$ | $S^n_{n+1}$ | $\frac{1}{2}(n+1)!$ | $S^{n-1}_n$ | |
hypercube | $S^n_{2n}$ | $2^n$ | $2^{n-k} \left( \begin{matrix} n \\ k \end{matrix} \right)$ | $2 n$ | $S^n_{2^n}$ | $2^{n-1} \cdot n!$ | $S^{n-1}_{2(n-1)}$ | |
orthoplex | $S^n_{2^n}$ | $2 n$ | $2^{k+1} \left( \begin{matrix} n \\ k+1 \end{matrix} \right)$ | $2^n$ | $S^n_{2 n}$ | $2^{n-1} \cdot n!$ | $S^{n-1}_n$ |