Another, hyperbolic gamma driver (2008 Alcubierre, 4.3.33 & 34):

${\beta^i}_{,t} = B^i + \beta^j {\beta^i}_{,j}$
${\beta^i}_{,t} = B^i + \beta^j {b^i}_j$

${B^i}_{,t} = \alpha^2 \zeta ( \partial_t - \beta^k \partial_k ) \tilde{\Gamma}^i - \eta B^i + \beta^j {B^i}_{,j}$
${B^i}_{,t} = \alpha^2 \zeta (\partial_t - \beta^l \partial_l) ( \gamma^{1/3} {\Gamma^i}_{jk} \gamma^{jk} + \frac{1}{6} \gamma^{-2/3} \gamma^{ij} \gamma_{,j} ) - \eta B^i + \beta^j {B^i}_{,j} $
${B^i}_{,t} = \alpha^2 \zeta ( + (\gamma^{1/3})_{,t} {\Gamma^i}_{jk} \gamma^{jk} + \gamma^{1/3} {\Gamma^i}_{jk,t} \gamma^{jk} + \gamma^{1/3} {\Gamma^i}_{jk} {\gamma^{jk}}_{,t} + \frac{1}{6} {\gamma^{-2/3}}_{,t} \gamma^{ij} \gamma_{,j} + \frac{1}{6} \gamma^{-2/3} {\gamma^{ij}}_{,t} \gamma_{,j} + \frac{1}{6} \gamma^{-2/3} \gamma^{ij} \gamma_{,jt} - (\gamma^{1/3})_{,l} {\Gamma^i}_{jk} \gamma^{jk} \beta^l - \gamma^{1/3} {\Gamma^i}_{jk,l} \gamma^{jk} \beta^l - \gamma^{1/3} {\Gamma^i}_{jk} {\gamma^{jk}}_{,l} \beta^l - \frac{1}{6} {\gamma^{-2/3}}_{,l} \gamma^{ij} \gamma_{,j} \beta^l - \frac{1}{6} \gamma^{-2/3} {\gamma^{ij}}_{,l} \gamma_{,j} \beta^l - \frac{1}{6} \gamma^{-2/3} \gamma^{ij} \gamma_{,jl} \beta^l ) - \eta B^i + \beta^j {B^i}_{,j} $
${B^i}_{,t} = \alpha^2 \zeta ( + \frac{1}{3} \gamma^{1/3} \gamma^{mn} \gamma_{mn,t} {\Gamma^i}_{jk} \gamma^{jk} + \gamma^{1/3} {\Gamma^i}_{jk,t} \gamma^{jk} - \gamma^{1/3} \Gamma^{ijk} \gamma_{jk,t} - \frac{1}{9} \gamma^{1/3} \gamma^{mn} \gamma_{mn,t} \gamma^{ij} \gamma^{pq} \gamma_{pq,j} - \frac{1}{6} \gamma^{1/3} \gamma^{im} \gamma_{mn,t} \gamma^{nj} \gamma^{pq} \gamma_{pq,j} + \frac{1}{6} \gamma^{1/3} \gamma^{ij} ( + \gamma^{pq} \gamma_{pq,j} \gamma^{mn} \gamma_{mn,t} - \gamma^{pm} \gamma^{qn} \gamma_{pq,j} \gamma_{mn,t} + \gamma^{mn} \gamma_{mn,tj} ) - \frac{1}{3} \gamma^{1/3} \gamma^{mn} \gamma_{mn,l} {\Gamma^i}_{jk} \gamma^{jk} \beta^l - \gamma^{1/3} {\Gamma^i}_{jk,l} \gamma^{jk} \beta^l + \gamma^{1/3} \Gamma^{ijk} \gamma_{jk,l} \beta^l + \frac{1}{9} \gamma^{1/3} \gamma^{mn} \gamma_{mn,l} \gamma^{ij} \gamma^{pq} \gamma_{pq,j} \beta^l - \frac{1}{6} \gamma^{1/3} \gamma^{im} \gamma^{jn} \gamma_{mn,l} \gamma^{pq} \gamma_{pq,j} \beta^l - \frac{1}{6} \gamma^{1/3} \gamma^{ij} ( + \gamma^{pq} \gamma_{pq,j} \gamma^{mn} \gamma_{mn,l} - \gamma^{mp} \gamma^{nq} \gamma_{pq,j} \gamma_{mn,l} + \gamma^{mn} \gamma_{mn,lj} ) \beta^l ) - \eta B^i + \beta^j {B^i}_{,j} $
${B^i}_{,t} = \alpha^2 \zeta \gamma^{1/3} ( + {\Gamma^i}_{jk,t} \gamma^{jk} - \Gamma^{ijk} \gamma_{jk,t} + \frac{1}{3} {\Gamma^i}_{jk} \gamma^{jk} \gamma^{mn} \gamma_{mn,t} + \frac{1}{18} \gamma^{ij} \gamma^{pq} \gamma^{mn} \gamma_{pq,j} \gamma_{mn,t} - \frac{1}{6} \gamma^{im} \gamma^{nj} \gamma^{pq} \gamma_{pq,j} \gamma_{mn,t} - \frac{1}{6} \gamma^{ij} \gamma^{pm} \gamma^{qn} \gamma_{pq,j} \gamma_{mn,t} + \frac{1}{18} \gamma^{ij} \gamma^{pq} \gamma^{mn} \gamma_{pq,j} \gamma_{mn,l} \beta^l - \frac{1}{3} \gamma^{ij} \gamma^{mp} \gamma^{nq} \gamma_{pq,j} \gamma_{mn,l} \beta^l + \frac{1}{2} \gamma^{ip} \gamma^{mq} \gamma^{jn} \gamma_{pq,j} \gamma_{mn,l} \beta^l + \frac{1}{2} \gamma^{ip} \gamma^{mj} \gamma^{nq} \gamma_{pq,j} \gamma_{mn,l} \beta^l - \frac{1}{3} \gamma^{ip} \gamma^{jq} \gamma^{mn} \gamma_{pq,j} \gamma_{mn,l} \beta^l + \frac{1}{6} \gamma^{ij} \gamma^{mn} \gamma^{pq} \gamma_{pq,j} \gamma_{mn,l} \beta^l - \frac{2}{3} \gamma^{im} \gamma^{jn} \gamma^{pq} \gamma_{pq,j} \gamma_{mn,l} \beta^l + \gamma^{im} \gamma^{np} \gamma^{jq} \gamma_{pq,j} \gamma_{mn,l} \beta^l + \frac{1}{3} \gamma^{ij} \gamma^{mn} \gamma_{mn,jl} \beta^l - \gamma^{in} \gamma^{jk} \gamma_{nj,kl} \beta^l + \frac{1}{6} \gamma^{ij} \gamma^{mn} \gamma_{mn,jt} ) - \eta B^i + \beta^j {B^i}_{,j} $
${B^i}_{,t} = \alpha^2 \zeta \gamma^{1/3} ( + {\Gamma^i}_{jk,t} \gamma^{jk} - \Gamma^{ijk} \gamma_{jk,t} + \frac{1}{3} \gamma^{im} \gamma^{jq} \gamma^{pn} d_{jpq} (2 d_{rmn} \beta^r + \gamma_{rm} {b^r}_n + \gamma_{rn} {b^r}_m - 2 \alpha K_{mn}) - \frac{1}{3} \gamma^{im} \gamma^{jn} \gamma^{pq} d_{jpq} (2 d_{rmn} \beta^r + \gamma_{rm} {b^r}_n + \gamma_{rn} {b^r}_m - 2 \alpha K_{mn}) - \frac{1}{18} \gamma^{ij} \gamma^{pq} \gamma^{mn} d_{jpq} (2 d_{rmn} \beta^r + \gamma_{rm} {b^r}_n + \gamma_{rn} {b^r}_m - 2 \alpha K_{mn}) - \frac{1}{3} \gamma^{ij} \gamma^{pm} \gamma^{qn} d_{jpq} (2 d_{rmn} \beta^r + \gamma_{rm} {b^r}_n + \gamma_{rn} {b^r}_m - 2 \alpha K_{mn}) + \frac{1}{9} \gamma^{ij} \gamma^{pq} \gamma^{mn} d_{jpq} d_{lmn} \beta^l - \frac{2}{3} \gamma^{ij} \gamma^{mp} \gamma^{nq} d_{jpq} d_{lmn} \beta^l + \gamma^{ip} \gamma^{mq} \gamma^{jn} d_{jpq} d_{lmn} \beta^l + \gamma^{ip} \gamma^{mj} \gamma^{nq} d_{jpq} d_{lmn} \beta^l - \frac{2}{3} \gamma^{ip} \gamma^{jq} \gamma^{mn} d_{jpq} d_{lmn} \beta^l + \frac{1}{3} \gamma^{ij} \gamma^{mn} \gamma^{pq} d_{jpq} d_{lmn} \beta^l - \frac{4}{3} \gamma^{im} \gamma^{jn} \gamma^{pq} d_{jpq} d_{lmn} \beta^l + \gamma^{im} \gamma^{np} \gamma^{jq} d_{jpq} d_{lmn} \beta^l + \frac{1}{3} \gamma^{ij} \gamma^{mn} \gamma_{mn,jl} \beta^l - \gamma^{in} \gamma^{jk} \gamma_{nj,kl} \beta^l + \frac{1}{6} \gamma^{ij} \gamma^{mn} \gamma_{mn,jt} ) - \eta B^i + \beta^j {B^i}_{,j} $
${B^i}_{,t} = \alpha^2 \zeta \gamma^{1/3} ( + {\Gamma^i}_{jk,t} \gamma^{jk} - \Gamma^{ijk} \gamma_{jk,t} + \frac{1}{3} \gamma^{im} \gamma^{jq} \gamma^{pn} d_{jpq} 2 d_{rmn} \beta^r - \frac{1}{3} \gamma^{im} \gamma^{jn} \gamma^{pq} d_{jpq} 2 d_{rmn} \beta^r - \frac{1}{18} \gamma^{ij} \gamma^{pq} \gamma^{mn} d_{jpq} 2 d_{rmn} \beta^r - \frac{1}{3} \gamma^{ij} \gamma^{pm} \gamma^{qn} d_{jpq} 2 d_{rmn} \beta^r - \frac{1}{3} \gamma^{im} \gamma^{jq} \gamma^{pn} d_{jpq} 2 \alpha K_{mn} + \frac{1}{3} \gamma^{im} \gamma^{jn} \gamma^{pq} d_{jpq} 2 \alpha K_{mn} + \frac{1}{18} \gamma^{ij} \gamma^{pq} \gamma^{mn} d_{jpq} 2 \alpha K_{mn} + \frac{1}{3} \gamma^{ij} \gamma^{pm} \gamma^{qn} d_{jpq} 2 \alpha K_{mn} + \frac{1}{3} \gamma^{im} \gamma^{jq} \gamma^{pn} d_{jpq} \gamma_{rm} {b^r}_n - \frac{1}{3} \gamma^{im} \gamma^{jn} \gamma^{pq} d_{jpq} \gamma_{rm} {b^r}_n - \frac{1}{18} \gamma^{ij} \gamma^{pq} \gamma^{mn} d_{jpq} \gamma_{rm} {b^r}_n - \frac{1}{3} \gamma^{ij} \gamma^{pm} \gamma^{qn} d_{jpq} \gamma_{rm} {b^r}_n + \frac{1}{3} \gamma^{im} \gamma^{jq} \gamma^{pn} d_{jpq} \gamma_{rn} {b^r}_m - \frac{1}{3} \gamma^{im} \gamma^{jn} \gamma^{pq} d_{jpq} \gamma_{rn} {b^r}_m - \frac{1}{18} \gamma^{ij} \gamma^{pq} \gamma^{mn} d_{jpq} \gamma_{rn} {b^r}_m - \frac{1}{3} \gamma^{ij} \gamma^{pm} \gamma^{qn} d_{jpq} \gamma_{rn} {b^r}_m + \frac{1}{9} \gamma^{ij} \gamma^{pq} \gamma^{mn} d_{jpq} d_{lmn} \beta^l - \frac{2}{3} \gamma^{ij} \gamma^{mp} \gamma^{nq} d_{jpq} d_{lmn} \beta^l + \gamma^{ip} \gamma^{mq} \gamma^{jn} d_{jpq} d_{lmn} \beta^l + \gamma^{ip} \gamma^{mj} \gamma^{nq} d_{jpq} d_{lmn} \beta^l - \frac{2}{3} \gamma^{ip} \gamma^{jq} \gamma^{mn} d_{jpq} d_{lmn} \beta^l + \frac{1}{3} \gamma^{ij} \gamma^{mn} \gamma^{pq} d_{jpq} d_{lmn} \beta^l - \frac{4}{3} \gamma^{im} \gamma^{jn} \gamma^{pq} d_{jpq} d_{lmn} \beta^l + \gamma^{im} \gamma^{np} \gamma^{jq} d_{jpq} d_{lmn} \beta^l + \frac{1}{3} \gamma^{ij} \gamma^{mn} \gamma_{mn,jl} \beta^l - \gamma^{in} \gamma^{jk} \gamma_{nj,kl} \beta^l + \frac{1}{6} \gamma^{ij} \gamma^{mn} \gamma_{mn,jt} ) - \eta B^i + \beta^j {B^i}_{,j} $
... TODO FINISHME.


$\alpha_{,t} = \alpha a_i \beta^i - f \alpha^2 (K - m \Theta) $

$\gamma_{ij,t} = 2 d_{kij} \beta^k + \gamma_{ki} {b^k}_j + \gamma_{kj} {b^k}_i - 2 \alpha K_{ij} $

$a_{k,t} = a_{i,k} \beta^i - f \alpha \gamma^{jl} K_{jl,k} + f \alpha m \Theta_{,k} + a_i {b^i}_k - \alpha a_k (f' \alpha + f) (K - m \Theta) + 2 f \alpha {d_k}^{jl} K_{jl} $

$d_{kij,t} = d_{lij,k} \beta^l + \frac{1}{2} \gamma_{li} {b^l}_{j,k} + \frac{1}{2} \gamma_{lj} {b^l}_{i,k} - \alpha K_{ij,k} + d_{lij} {b^l}_k + d_{kli} {b^l}_j + d_{klj} {b^l}_i - \alpha a_k K_{ij} $

$K_{ij,t} = \beta^k K_{(ij),k} + 2 K_{k(i} {b^k}_{j)} - \alpha \delta^m_{(i} \delta^r_{j)} a_{m,r} + \alpha ( 2 \gamma^{pr} \delta^m_{(i} \delta^q_{j)} - \gamma^{pq} \delta^m_{(i} \delta^r_{j)} - \gamma^{mr} \delta^p_{(i} \delta^q_{j)} ) d_{mpq,r} + \alpha (Z_{i,j} + Z_{j,i}) + \alpha ( - a_{(i} a_{j)} + (2 {d_{(ij)}}^k - {d^k}_{(ij)}) (a_k + {d_{kl}}^l - 2 {d^l}_{lk} - Z_k) + 2 ({d^{kl}}_j - {d^{lk}}_j) d_{kil} + {d_{(i}}^{kl} d_{j)kl} + K K_{(ij)} - 2 K_{(i|k} {K^k}_{j)} ) - \alpha ({\Gamma^k}_{ij} Z_k + 2 \Theta K_{ij}) + 4 \pi \alpha (\gamma_{ij} (S - \rho) - 2 S_{ij}) $

$\Theta_{,t} = \Theta_{,i} \beta^i + \frac{1}{2} \alpha \gamma^{kl} (d_{ilj,k} - d_{ikl,j} - d_{kij,l} + d_{jik,l}) + \alpha {Z^k}_{,k} + \frac{1}{2} \alpha (d_{ijl} + d_{jil} - d_{lij}) (d^l - 2 e^l) + \alpha ({d^{kl}}_j - {d^{lk}}_j) d_{kil} + \frac{1}{2} \alpha d_{ikl} {d_j}^{kl} + \frac{1}{2} \alpha (K - 2 \Theta) K - \frac{1}{2} \alpha K_{ij} K^{ij} + \alpha Z_j d^j - \alpha Z^k a_k - 8 \pi \alpha \rho $

$Z_{k,t} = \alpha \gamma^{ij} K_{ki,j} - \alpha \gamma^{ji} K_{ji,k} + \alpha \Theta_{,k} + Z_{k,j} \beta^j - 2 \alpha K_{ki} e^i + 2 \alpha K_{ij} {d_k}^{ij} + Z_j {b^j}_k - \alpha {\Gamma^i}_{kj} {K_i}^j + \alpha {\Gamma^j}_{ij} {K_k}^i - 2 \alpha {K_k}^j Z_j - 8 \pi \alpha S_k - \alpha \Theta a_k $

${\beta^i}_{,t} = B^i$

${B^i}_{,t} = ...$

${b^i}_{j,t} = {\beta^i}_{,jt} = {B^i}_{,j}$

$\left[\matrix{ \alpha \\ \gamma_{ij} \\ a_k \\ d_{kij} \\ K_{ij} \\ \Theta \\ Z_k \\ \beta^l \\ {b^l}_k \\ B^l }\right]_{,t} + \left[\matrix{ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\beta^r \delta_k^m & 0 & f \gamma^{pq} \delta^r_k & - f \alpha m \delta^r_k & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & - \delta^m_k \delta^p_i \delta^q_j \beta^r & \alpha \delta^p_i \delta^q_j \delta^r_k & 0 & 0 & 0 & -\gamma_{n(i} \delta^m_{j)} \delta^r_k & 0 \\ 0 & 0 & \alpha \delta^{(m}_i \delta^{r)}_j & - \alpha ( \gamma^{pr} \delta_i^m \delta_j^q - \gamma^{pq} \delta_i^m \delta_j^r - \gamma^{mr} \delta_i^p \delta_j^q + \gamma^{qr} \delta_j^m \delta_i^p ) & - \beta^r \delta^p_i \delta^q_j & 0 & -2 \alpha \delta^m_{(i} \delta^r_{j)} & 0 & 0 & 0 \\ 0 & 0 & 0 & - \frac{1}{2} \alpha ( \gamma^{pr} \delta_i^m \delta_j^q - \gamma^{pq} \delta_i^m \delta_j^r - \gamma^{mr} \delta_i^p \delta_j^q + \gamma^{qr} \delta_j^m \delta_i^p ) & 0 & - \beta^r & - \alpha \delta^m_r & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & - \alpha (\gamma^{qr} \delta^p_k - \gamma^{qp} \delta^r_k) & - \alpha \delta^r_k & - \beta^r \delta^m_k & 0 & 0 & 0 \\ 0 & 0 & \alpha \frac{\partial Q^l}{\partial a_m} & \alpha \frac{\partial Q^l}{\partial d_{mpq}} & \alpha \frac{\partial Q^l}{\partial K_{pq}} & \alpha \frac{\partial Q^l}{\partial \Theta} & \alpha \frac{\partial Q^l}{\partial Z_m} & 0 & \alpha \frac{\partial Q^l}{\partial {b^n}_m} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\delta^l_n \delta^r_k \\ ... & ... & ... & ... & ... & ... & ... & ... & ... & ... }\right] \left[\matrix{ \alpha \\ \gamma_{pq} \\ a_m \\ d_{mpq} \\ K_{pq} \\ \Theta \\ Z_m \\ \beta^n \\ {b^n}_m \\ B^n }\right]_{,r} = \left[\matrix{ \alpha a_i \beta^i - f \alpha^2 (K - m \Theta) \\ 2 d_{kij} \beta^k + \gamma_{ki} {b^k}_j + \gamma_{kj} {b^k}_i - 2 \alpha K_{ij} \\ a_i {b^i}_k + 2 f \alpha K_{ij} {d_k}^{ij} - a_k \alpha (f' \alpha + f) (K - m \Theta) \\ d_{lij} {b^l}_k + d_{kli} {b^l}_j + d_{klj} {b^l}_i - \alpha a_k K_{ij} \\ K_{kj} {b^k}_i + K_{ik} {b^k}_j - \alpha a_i a_j + ({d_{ij}}^k + {d_{ji}}^k - {d^k}_{ij}) \alpha a_k + \alpha d_{ijl} ({d^{lk}}_k - 2 {d_k}^{kl}) + \alpha d_{jil} ({d^{lk}}_k - 2 {d_k}^{kl}) - \alpha d_{lij} ({d^{lk}}_k - 2 {d_k}^{kl}) + 2 \alpha ({d^{kl}}_j - {d^{lk}}_j) d_{kil} + \alpha d_{ikl} {d_j}^{kl} - 2 \alpha ({d_{ij}}^k + {d_{ji}}^k - {d^k}_{ij}) Z_k - 2 \alpha K_{ik} {K^k}_j + \alpha (K - 2 \Theta) K_{ij} - 8 \pi \alpha S_{ij} + 4 \pi \alpha (S - \rho) \gamma_{ij} \\ \alpha Z_j d^j + \frac{1}{2} \alpha d_{ijl} (d^l - 2 e^l) + \frac{1}{2} \alpha d_{jil} (d^l - 2 e^l) - \frac{1}{2} \alpha d_{lij} (d^l - 2 e^l) + \alpha ({d^{kl}}_j - {d^{lk}}_j) d_{kil} + \frac{1}{2} \alpha d_{ikl} {d_j}^{kl} + \frac{1}{2} \alpha (K - 2 \Theta) K - \frac{1}{2} \alpha K_{ij} K^{ij} - 8 \pi \alpha \rho - \alpha Z^k a_k \\ Z_j {b^j}_k - 2 \alpha K_{ki} e^i + 2 \alpha K_{ji} {d_k}^{ij} - \alpha {\Gamma^i}_{kj} {K_i}^j + \alpha {\Gamma^j}_{ij} {K_k}^i - 2 \alpha {K_k}^j Z_j - 8 \pi \alpha S_k - \alpha \Theta a_k \\ -\alpha Q^l \\ 0 \\ ... }\right]$

favoring flux terms:
$\left[\matrix{ \alpha \\ \gamma_{ij} \\ a_k \\ d_{kij} \\ K_{ij} \\ \Theta \\ Z_k \\ \beta^l \\ {b^l}_k \\ B^l }\right]_{,t} + \left[\matrix{ -\beta^r & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\delta_i^p \delta_j^q \beta^r & 0 & 0 & 0 & 0 & 0 & - \delta^r_i \gamma_{nj} - \delta^r_j \gamma_{ni} & 0 & 0 \\ \delta^r_k (f' \alpha + f) (K - m \Theta) & - f \alpha K^{pq} \delta^r_k & -\delta_k^m \beta^r & 0 & f \gamma^{pq} \delta^r_k & - f \alpha m \delta^r_k & 0 & -a_n \delta^r_k & 0 & 0 \\ K_{ij} \delta^r_k & - \frac{1}{4} ( {b^r}_k \delta_i^p \delta_j^q + {b^p}_j \delta_i^q \delta_k^r + {b^p}_i \delta_j^q \delta_k^r ) & 0 & - \delta^m_k \delta^p_i \delta^q_j \beta^r & \alpha \delta^p_i \delta^q_j \delta^r_k & 0 & 0 & - \frac{1}{2} ( d_{nij} \delta^r_k + d_{kni} \delta^r_j + d_{knj} \delta^r_i ) & - \gamma_{n(i} \delta_{j)}^m \delta^r_k & 0 \\ \delta_{(i}^r a_{j)} - {d_{(ij)}}^r + \frac{1}{2} {d^r}_{ij} & - \frac{1}{2} \alpha ( a^q \delta_{(i}^p \delta_{j)}^r - a^r \delta_i^p \delta_j^q ) & \alpha \delta^{(m}_i \delta^{r)}_j & - \alpha ( \gamma^{pr} \delta_i^m \delta_j^q - \gamma^{pq} \delta_i^m \delta_j^r - \gamma^{mr} \delta_i^p \delta_j^q + \gamma^{qr} \delta_j^m \delta_i^p + \delta_i^m \delta_j^p ({d^{qn}}_n - 2 {d_n}^{nq}) + \delta_i^p \delta_j^m ({d^{qn}}_n - 2 {d_n}^{nq}) - \delta_i^p \delta_j^q ({d^{mn}}_n - 2 {d_n}^{nm}) + 2 \delta_i^p {d^{mq}}_j - 2 \delta_i^p {d^{qm}}_j + \delta_i^m {d_j}^{pq} - 2 \delta_i^m \delta_j^p Z^q - 2 \delta_j^m \delta_i^p Z^q + 2 \delta_i^p \delta_j^q Z^m ) & - \beta^r \delta^p_i \delta^q_j & 0 & -2 \alpha \delta^m_{(i} \delta^r_{j)} & - K_{nj} \delta^r_i - K_{ni} \delta^r_j & 0 & 0 \\ Z^r & \alpha ( - \frac{1}{2} Z^r \gamma^{pq} + \frac{1}{8} d^r \delta^p_i \delta^q_j + \frac{1}{8} {d^r}_{ij} \gamma^{pq} + \frac{1}{2} {d_{(ij)}}^q \gamma^{pr} + \frac{1}{2} e^q \delta^p_{(i} \delta^r_{j)} + \frac{1}{4} {d^{pr}}_i \delta_j^q + \frac{1}{4} {d^{qr}}_j \delta_i^p - \frac{1}{4} d^q \delta^p_{(i} \delta^r_{j)} - \frac{1}{4} {d_{(ij)}}^r \gamma^{pq} - \frac{1}{4} {d_{(i}}^{pq} \delta^r_{j)} - \frac{1}{4} {d^q}_{ij} \gamma^{pr} - \frac{1}{4} e^r \delta^p_i \delta^q_j - \frac{1}{4} {d^{rp}}_i \delta_j^q - \frac{1}{4} {d^{rq}}_j \delta_i^p ) & 0 & \frac{1}{2} \alpha ( + \gamma^{pq} \delta_i^m \delta_j^r - \gamma^{pr} \delta_j^q \delta_i^m - \gamma^{qr} \delta_i^p \delta_j^m + \gamma^{mr} \delta_i^p \delta_j^q ) & 0 & - \beta^r & - \alpha \delta^m_r & 0 & 0 & 0 \\ \delta^r_k \Theta & - \frac{1}{2} \alpha K^{pq} \delta^r_k - \frac{1}{2} \alpha {K_k}^r \gamma^{pq} + \alpha {K_k}^q \gamma^{pr} & 0 & 0 & - \alpha (\gamma^{qr} \delta^p_k - \gamma^{qp} \delta^r_k) & - \alpha \delta^r_k & - \beta^r \delta^m_k & -Z_n \delta^r_m & 0 & 0 \\ 0 & 0 & \alpha \frac{\partial Q^l}{\partial a_m} & \alpha \frac{\partial Q^l}{\partial d_{mpq}} & \alpha \frac{\partial Q^l}{\partial K_{pq}} & \alpha \frac{\partial Q^l}{\partial \Theta} & \alpha \frac{\partial Q^l}{\partial Z_m} & 0 & \alpha \frac{\partial Q^l}{\partial {b^n}_m} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\delta^l_n \delta^r_k \\ ... & ... & ... & ... & ... & ... & ... & ... & ... & ... }\right] \left[\matrix{ \alpha \\ \gamma_{pq} \\ a_m \\ d_{mpq} \\ K_{pq} \\ \Theta \\ Z_m \\ \beta^n \\ {b^n}_m \\ B^n }\right]_{,r} = \left[\matrix{ - f \alpha^2 (K - m \Theta) \\ -2 \alpha K_{ij} \\ 0 \\ 0 \\ - 2 \alpha K_{ik} {K^k}_j + \alpha (K - 2 \Theta) K_{ij} - 8 \pi \alpha S_{ij} + 4 \pi \alpha (S - \rho) \gamma_{ij} \\ + \frac{1}{2} \alpha (K - 2 \Theta) K - \frac{1}{2} \alpha K_{ij} K^{ij} - 8 \pi \alpha \rho \\ - 2 \alpha K_{kj} Z^j - 8 \pi \alpha S_k \\ -\alpha Q^l \\ 0 \\ ... }\right]$