Start with my 'wave equation in spacetime' worksheet for an introduction to a scalar wave propagating in curved spacetime: https://thenumbernine.github.io/symmath/tests/output/wave%20equation%20in%20spacetime.html

TODO fix the source terms - take them from the above mentioned worksheet.

Let the source function $f = \frac{dV}{d|\Phi|^2}$
$(\square - \frac{dV}{d|\Phi|^2}) \Phi = 0$

Let $V = \mu^2 |\Phi|^2 + \frac{1}{2} \lambda |\Phi|^4$
$\frac{dV}{d|\Phi|^2} = \mu^2 + \lambda |\Phi|^2$
Let $\Lambda = \frac{\lambda}{4 \pi \mu^2}$, so $\lambda = 4 \pi \Lambda \mu^2$
$\frac{dV}{d|\Phi|^2} = \mu^2 (1 + 4 \pi \Lambda |\Phi|^2)$



Hyperbolic conservation system:

Only using $\Phi, \Psi_i, \Pi$:

$\Phi_{,t} - \beta^i \Phi_{,i} = \alpha \Pi$
$\Psi_{i,t} - \alpha \Pi_{,i} - \beta^j \Psi_{i,j} - {\beta^j}_{,i} \Phi_{,j} = \alpha_{,i} \Pi $
$\Pi_{,t} - \alpha \gamma^{ij} \Psi_{i,j} - \beta^i \Pi_{,i} = - \frac{1}{\alpha^2} \alpha_{,t} \Pi + \frac{1}{\alpha} \alpha_{,t} \Pi + \alpha K \Pi + \Psi_i \alpha_{,j} \gamma^{ij} - \Psi_i \alpha {}^{(3)} \Gamma^i - \alpha \frac{dV}{d|\Phi|^2} \Phi $

$\left[\begin{matrix} \Phi \\ \Psi_i \\ \Pi \end{matrix}\right]_{,t} + \left[\begin{matrix} - \beta^j \Phi_{,j} \\ - \alpha \Pi_{,i} - \beta^j \Psi_{i,j} - {\beta^j}_{,i} \Phi_{,j} \\ - \alpha \gamma^{kj} \Psi_{k,j} - \beta^j \Pi_{,j} \end{matrix}\right] = \left[\begin{matrix} \alpha \Pi \\ \alpha_{,i} \Pi \\ - \frac{1}{\alpha^2} \alpha_{,t} \Pi + \frac{1}{\alpha} \alpha_{,t} \Pi + \alpha K \Pi + \Psi_i \alpha_{,j} \gamma^{ij} - \Psi_i \alpha {}^{(3)} \Gamma^i - \alpha \frac{dV}{d|\Phi|^2} \Phi \end{matrix}\right]$
$\left[\begin{matrix} \Phi \\ \Psi_i \\ \Pi \end{matrix}\right]_{,t} + \left[\begin{matrix} -\beta^j & 0 & 0 \\ - {\beta^j}_{,i} & - \beta^j \delta^k_i & - \alpha \delta^j_i \\ 0 & - \alpha \gamma^{jk} & - \beta^j \end{matrix}\right] \left[\begin{matrix} \Phi \\ \Psi_k \\ \Pi \end{matrix}\right]_{,j} = \left[\begin{matrix} \alpha \Pi \\ \alpha_{,i} \Pi \\ - \frac{1}{\alpha^2} \alpha_{,t} \Pi + \frac{1}{\alpha} \alpha_{,t} \Pi + \alpha K \Pi + \Psi_i \alpha_{,j} \gamma^{ij} - \Psi_i \alpha {}^{(3)} \Gamma^i - \alpha \frac{dV}{d|\Phi|^2} \Phi \end{matrix}\right]$

Only using $\Pi, \Psi_i$:
$\left[\begin{matrix} \Pi \\ \Psi_i \end{matrix}\right]_{,t} + \left[\begin{matrix} - \beta^k & - \alpha \gamma^{jk} \\ - \alpha \delta^k_i & - \beta^k \delta^j_i \end{matrix}\right] \left[\begin{matrix} \Pi \\ \Psi_j \end{matrix}\right]_{,k} = \left[\begin{matrix} \Pi ( \frac{1}{\alpha} \alpha_{,t} (1 - \frac{1}{\alpha}) + \alpha K ) + \Psi_i ( \alpha_{,j} \gamma^{ij} - \alpha {}^{(3)} \Gamma^i ) - \alpha \frac{dV}{d|\Phi|^2} \Phi \\ \alpha_{,i} \Pi + {\beta^k}_{,i} \Psi_k \end{matrix}\right]$

Using $\alpha, \beta^k, \gamma_{ij}, \Phi, \Psi_k, \Pi$:

$\Phi_{,t} - \beta^i \Phi_{,i} = \alpha \Pi$
$\Psi_{i,t} - \alpha_{,i} \Pi - \alpha \Pi_{,i} - \beta^j \Psi_{i,j} - {\beta^j}_{,i} \Phi_{,j} = 0 $
$\Pi_{,t} - \frac{1}{\alpha} \beta^i \alpha_{,i} \Pi - \alpha \gamma^{ij} \Psi_{i,j} - \beta^i \Pi_{,i} - \frac{1}{\alpha} \beta^i {\beta^j}_{,i} \Psi_j + \frac{1}{\alpha^2} \beta^m \alpha_{,m} \beta^i \Psi_i + \alpha \Psi_i ( {}^{(3)} \Gamma^i - \frac{1}{\alpha^3} \beta^i \beta^m \alpha_{,m} ) = - \frac{1}{\alpha^2} \alpha_{,t} \Pi + \frac{1}{\alpha^2} \alpha_{,t} \beta^i \Psi_i + \frac{1}{\alpha} \alpha_{,t} \Pi - \frac{1}{\alpha} {\beta^i}_{,t} \Psi_i - \alpha \Psi_i ( \frac{1}{\alpha^3} \beta^i \alpha_{,t} - \frac{1}{\alpha^2} {\beta^i}_{,t} ) - \frac{1}{\alpha} \beta^m \alpha_{,m} \Pi + \alpha K \Pi + K \beta^i \Psi_i - \frac{1}{\alpha^2} \Psi_i \beta^i \alpha^2 K - \alpha \frac{dV}{d|\Phi|^2} \Phi - \Psi_i \frac{1}{\alpha} (\beta^m {\beta^i}_{,m} + \alpha \alpha_{,j} \gamma^{ij}) $

Using
$\alpha_{,t} = -\alpha^2 f(\alpha) K + \alpha_{,j} \beta^j$
${\beta^i}_{,t} = {\beta^i}_{,j} \beta^j + B^i$
$\gamma_{ij,t} = -2 \alpha K_{ij} + \gamma_{ij,k} \beta^k + 2 \gamma_{k(i} {\beta^k}_{,j)}$

$\Pi_{,t} + \frac{1}{\alpha^2} \alpha_{,j} \beta^j \Pi - \frac{1}{\alpha} \alpha_{,j} \beta^j \Pi - \alpha \gamma^{ij} \Psi_{i,j} - \beta^i \Pi_{,i} - \frac{1}{\alpha} \beta^i {\beta^j}_{,i} \Psi_j + \alpha \Psi_i {}^{(3)} \Gamma^i = (1 - \alpha) f(\alpha) K \Pi + \alpha K \Pi - \alpha \frac{dV}{d|\Phi|^2} \Phi - \Psi_i \gamma^{ij} \beta^k {\beta^i}_{,k} \alpha_{,j} $

$\left[\begin{matrix} \alpha \\ \beta^k \\ \gamma_{ij} \\ \Phi \\ \Psi_k \\ \Pi \end{matrix}\right]_{,t} + \left[\begin{matrix} - \alpha_{,j} \beta^j \\ - {\beta^k}_{,j} \beta^j \\ - \gamma_{ij,k} \beta^k - \gamma_{ki} {\beta^k}_{,j} - \gamma_{kj} {\beta^k}_{,i} \\ - \beta^i \Phi_{,i} \\ - \alpha_{,k} \Pi - \alpha \Pi_{,k} - \beta^j \Psi_{k,j} - {\beta^j}_{,k} \Phi_{,j} \\ + \frac{1}{\alpha^2} \alpha_{,j} \beta^j \Pi - \frac{1}{\alpha} \alpha_{,j} \beta^j \Pi - \alpha \gamma^{ij} \Psi_{i,j} - \beta^i \Pi_{,i} - \frac{1}{\alpha} \beta^i {\beta^j}_{,i} \Psi_j + \alpha \Psi_i {}^{(3)} \Gamma^i \end{matrix}\right] = \left[\begin{matrix} - \alpha^2 f(\alpha) K \\ B^k \\ -2 \alpha K_{ij} \\ \alpha \Pi \\ 0 \\ (f - \alpha f + \alpha) K \Pi - \alpha \frac{dV}{d|\Phi|^2} \Phi - \Psi_i \gamma^{ij} \beta^k {\beta^i}_{,k} \alpha_{,j} \end{matrix}\right] $
$\left[\begin{matrix} \alpha \\ \beta^k \\ \gamma_{ij} \\ \Phi \\ \Psi_k \\ \Pi \end{matrix}\right]_{,t} + \left[\begin{matrix} -\beta^r & 0 & 0 & 0 & 0 & 0 \\ 0 & -\delta^k_m \beta^r & 0 & 0 & 0 & 0 \\ 0 & -\gamma_{mi} \delta^r_j - \gamma_{mj} \delta^r_i & - \delta^p_i \delta^q_j \beta^r & 0 & 0 & 0 \\ 0 & 0 & 0 & -\delta^m_k \beta^r & 0 & 0 \\ - \delta^r_k \Pi & - \delta^r_k \Psi_m & 0 & 0 & - \delta^m_k \beta^r & - \alpha \delta^r_k \\ (\frac{1}{\alpha^2} - \frac{1}{\alpha}) \beta^r \Pi & - \frac{1}{\alpha} \beta^r \Psi_m & + \frac{1}{2} \alpha (2 \Psi^p \gamma^{qr} - \Psi^r \gamma^{pq}) & 0 & - \alpha \gamma^{rm} & - \beta^r \end{matrix}\right] \left[\begin{matrix} \alpha \\ \beta^m \\ \gamma_{pq} \\ \Phi \\ \Psi_m \\ \Pi \end{matrix}\right]_{,r} = \left[\begin{matrix} - \alpha^2 f(\alpha) K \\ B^k \\ -2 \alpha K_{ij} \\ \alpha \Pi \\ 0 \\ (f - \alpha f + \alpha) K \Pi - \alpha \frac{dV}{d|\Phi|^2} \Phi - \Psi^j \beta^k {\beta^i}_{,k} \alpha_{,j} \end{matrix}\right] $



Stress-energy:
2017 Escorihuela-Tomàs et al, eqn 2:
$T_{ab} = \frac{1}{2} ( (\Phi_{,a})^* \Phi_{,b} + \Phi_{,a} (\Phi_{,b})^* ) - \frac{1}{2} g_{ab} ( g^{cd} (\Phi_{,c})^* \Phi_{,d} + V )$

$\rho = n^a n^b T_{ab}$
$= n^a n^b ( \frac{1}{2} ( (\Phi_{,a})^* \Phi_{,b} + \Phi_{,a} (\Phi_{,b})^* ) - \frac{1}{2} g_{ab} ( g^{cd} (\Phi_{,c})^* \Phi_{,d} + V ) )$
$= \frac{1}{2} ( n^a (\Phi_{,a})^* n^b \Phi_{,b} + n^a \Phi_{,a} n^b (\Phi_{,b})^* + g^{cd} (\Phi_{,c})^* \Phi_{,d} + V )$
$= \frac{1}{2} ( \Pi^* \cdot \Pi + \Pi \cdot \Pi^* + (\gamma^{cd} - n^c n^d) (\Phi_{,c})^* \Phi_{,d} + V )$
$= \frac{1}{2} ( \Pi^* \cdot \Pi + \Pi \cdot \Pi^* ) + \frac{1}{2} (\gamma^{cd} (\Phi_{,c})^* \Phi_{,d} - \Pi^* \cdot \Pi) + \frac{1}{2} V $
$= \frac{1}{2} ( \Pi \cdot \Pi^* + (\Psi^c)^* \Psi_c + V )$
(2010 Alcubierre, Mendez has $= \frac{1}{2} (\Pi^2 + \frac{1}{exp(-4 \phi)} \Psi^2)$)

$S^u = -\gamma^{ua} n^b T_{ab}$
$S^u = -\gamma^{ua} n^b ( \frac{1}{2} ( (\Phi_{,a})^* \Phi_{,b} + \Phi_{,a} (\Phi_{,b})^* ) - \frac{1}{2} g_{ab} ( g^{cd} (\Phi_{,c})^* \Phi_{,d} + V ) )$
$S^u = -\frac{1}{2} \gamma^{ua} ((\Phi_{,a})^* \Pi + \Phi_{,a} \Pi^*)$
(2010 Alcubierre, Mendez has $ = -\Pi \Psi$)

$S_{uv} = {\gamma_u}^a {\gamma_v}^b T_{ab}$
$S_{uv} = \frac{1}{2} {\gamma_u}^a {\gamma_v}^b ( (\Phi_{,a})^* \Phi_{,b} + \Phi_{,a} (\Phi_{,b})^* - g_{ab} ( g^{cd} (\Phi_{,c})^* \Phi_{,d} + V ) )$
$S_{uv} = \frac{1}{2} ( {\gamma_u}^a {\gamma_v}^b (\Phi_{,a})^* \Phi_{,b} + {\gamma_u}^a {\gamma_v}^b \Phi_{,a} (\Phi_{,b})^* - \gamma_{uv} ( (\gamma^{cd} - n^c n^d) (\Phi_{,c})^* \Phi_{,d} + V ) )$
$S_{uv} = \frac{1}{2} ( {\gamma_u}^a {\gamma_v}^b ( (\Phi_{,a})^* \Phi_{,b} + \Phi_{,a} (\Phi_{,b})^* ) - \gamma_{uv} ( \gamma^{cd} (\Phi_{,c})^* \Phi_{,d} - (\Pi)^* \Pi + V ) )$
$S_{uv} = \frac{1}{2} ( (\Phi_{,u})^* \Phi_{,v} + \Phi_{,u} (\Phi_{,v})^* - \gamma_{uv} ( \gamma^{cd} (\Phi_{,c})^* \Phi_{,d} - (\Pi)^* \Pi + V ) )$
(2010 Alcubierre, Mendez has $\frac{1}{2} (\Pi^2 \pm \frac{\Psi^2}{exp(-4 \phi)} )$ for ${T^r}_r$ and ${T^\theta}_\theta$)



Weighting the internal partial derivative using the volume element:

manifold:
$g^{ab} \nabla_a \nabla_b \Phi = S$
$g^{ab} \Phi_{,ab} - g^{ab} {\Gamma^c}_{ab} \Phi_{,c} = S$
$g^{ab} \Phi_{,ab} - \Gamma^c \Phi_{,c} = S$

submanifold:
$\gamma^{ij} {}^{(3)} \nabla_i {}^{(3)} \nabla_j \Phi = S$
$\gamma^{ij} \Phi_{,ij} - {}^{(3)} \Gamma^k \Phi_{,k} = S$

back to the manifold:
$ g^{tt} \Phi_{,tt} + 2 g^{ti} \Phi_{,ti} + g^{ij} \Phi_{,ij} - \Gamma^t \Phi_{,t} - \Gamma^k \Phi_{,k} = S$
$ g^{tt} \Phi_{,tt} + 2 g^{ti} \Phi_{,ti} + g^{ij} \Phi_{,ij} - \Phi_{,i} ( {}^{(3)} \Gamma^i + \frac{1}{\alpha^3} \beta^i (\alpha_{,t} - \beta^m \alpha_{,m} + \alpha^2 K) - \frac{1}{\alpha^2} ({\beta^i}_{,t} - \beta^m {\beta^i}_{,m} + \alpha \alpha_{,j} \gamma^{ij}) ) = S + \Gamma^t \Phi_{,t} $


...
Let $\Pi = \Phi_{,t}, \Psi_i = \Phi_{,i}$
$ g^{tt} \Pi_{,t} + 2 g^{ti} \Pi_{,i} + g^{ij} \Psi_{i,j} = \Gamma^t \Pi + \Gamma^i \Psi_i + S $