Continuing off of the BSSNOK worksheet.
Following the $\chi = exp(-4\phi)$ option
Next the whole thing over with $\chi = exp(-4 \phi)$

$\chi_{,\mu}$
$= exp(-4 \phi)_{,\mu}$
$= -4 exp(-4 \phi) \phi_{,\mu}$
$= -4 \chi \phi_{,\mu}$
so $\phi_{,\mu} = -\frac{1}{4 \chi} \chi_{,\mu}$

$\chi_{,t}$
$= -4 \chi \phi_{,t}$
$= -4 \chi ( -\frac{1}{6} \alpha K + \phi_{,k} \beta^k + \frac{1}{6} {\beta^k}_{,k} )$
$= \chi ( \frac{2}{3} \alpha K - 4 ( -\frac{1}{4 \chi} \chi_{,k} )\beta^k - \frac{2}{3} {\beta^k}_{,k} )$
$= \frac{2}{3} \alpha \chi K + \chi_{,k} \beta^k - \frac{2}{3} \chi {\beta^k}_{,k}$

$D_i D_j \alpha = \alpha_{,ij} - {\bar{\Gamma}^k}_{ij} \alpha_{,k} - 2 \phi_{,j} \alpha_{,i} - 2 \phi_{,i} \alpha_{,j} + 2 \gamma_{ij} \gamma^{kl} \phi_{,l} \alpha_{,k}$
$= \alpha_{,ij} - {\bar{\Gamma}^k}_{ij} \alpha_{,k} - 2 \alpha_{,i} (-\frac{1}{4 \chi} \chi_{,j}) - 2 \alpha_{,j} (-\frac{1}{4 \chi} \chi_{,i}) + 2 \gamma_{ij} \gamma^{kl} (-\frac{1}{4 \chi} \chi_{,l}) \alpha_{,k}$
$= \alpha_{,ij} - {\bar{\Gamma}^k}_{ij} \alpha_{,k} + \frac{1}{2 \chi} ( \alpha_{,i} \chi_{,j} + \alpha_{,j} \chi_{,i} - \bar{\gamma}_{ij} \bar{\gamma}^{kl} \chi_{,l} \alpha_{,k} )$

$\gamma^{ij} D_i D_j \alpha$
$= \gamma^{ij} \alpha_{,ij} - exp(-4 \phi) \bar{\Gamma}^i \alpha_{,i} + 2 exp(-4 \phi) \bar{\gamma}^{ij} \phi_{,i} \alpha_{,j}$
$= \chi \bar{\gamma}^{ij} \alpha_{,ij} - \chi \bar{\Gamma}^i \alpha_{,i} - \frac{1}{2} \bar{\gamma}^{ij} \chi_{,i} \alpha_{,j}$

$(D_i D_j \alpha)^{TF}$
$= D_i D_j \alpha - \frac{1}{3} \gamma_{ij} \gamma^{kl} D_k D_l \alpha$
$= D_i D_j \alpha - \frac{1}{3} \gamma_{ij} ( \chi \bar{\gamma}^{kl} \alpha_{,kl} - \chi \bar{\Gamma}^k \alpha_{,k} - \frac{1}{2} \bar{\gamma}^{kl} \chi_{,k} \alpha_{,l} )$
$= D_i D_j \alpha - \frac{1}{3} \bar{\gamma}_{ij} \bar{\gamma}^{kl} \alpha_{,kl} + \frac{1}{3} \bar{\gamma}_{ij} \bar{\Gamma}^k \alpha_{,k} + \frac{1}{6 \chi} \bar{\gamma}_{ij} \bar{\gamma}^{kl} \chi_{,k} \alpha_{,l} $
Substitute $D_i D_j \alpha$
$= \alpha_{,ij} - {\bar{\Gamma}^k}_{ij} \alpha_{,k} + \frac{1}{2 \chi} \alpha_{,i} \chi_{,j} + \frac{1}{2 \chi} \alpha_{,j} \chi_{,i} - \frac{1}{2 \chi} \bar{\gamma}_{ij} \bar{\gamma}^{kl} \chi_{,l} \alpha_{,k} - \frac{1}{3} \bar{\gamma}_{ij} \bar{\gamma}^{kl} \alpha_{,kl} + \frac{1}{3} \bar{\gamma}_{ij} \bar{\Gamma}^k \alpha_{,k} + \frac{1}{6 \chi} \bar{\gamma}_{ij} \bar{\gamma}^{kl} \chi_{,k} \alpha_{,l} $
$= \alpha_{,ij} - {\bar{\Gamma}^k}_{ij} \alpha_{,k} + \frac{1}{3} \bar{\gamma}_{ij} \bar{\Gamma}^k \alpha_{,k} + \frac{1}{2 \chi} \alpha_{,i} \chi_{,j} + \frac{1}{2 \chi} \alpha_{,j} \chi_{,i} - \frac{1}{3 \chi} \bar{\gamma}_{ij} \bar{\gamma}^{kl} \chi_{,l} \alpha_{,k} - \frac{1}{3} \bar{\gamma}_{ij} \bar{\gamma}^{kl} \alpha_{,kl} $

$R^\phi_{ij}$
$= -2 \bar{D}_i \bar{D}_j \phi - 2 \bar{\gamma}_{ij} \bar{\gamma}^{kl} \bar{D}_k \bar{D}_l \phi + 4 \bar{D}_i \phi \bar{D}_j \phi - 4 \bar{\gamma}_{ij} \bar{\gamma}^{kl} \bar{D}_k \phi \bar{D}_l \phi $
$= -2 (\phi_{,ji} - {\bar{\Gamma}^k}_{ji} \phi_{,k}) - 2 \bar{\gamma}_{ij} \bar{\gamma}^{kl} (\phi_{,lk} - {\bar{\Gamma}^m}_{lk} \phi_{,m}) + 4 \phi_{,i} \phi_{,j} - 4 \bar{\gamma}_{ij} \bar{\gamma}^{kl} \phi_{,k} \phi_{,l} $
$= -2 ((-\frac{1}{4 \chi} \chi_{,j})_{,i} - {\bar{\Gamma}^k}_{ji} (-\frac{1}{4 \chi} \chi_{,k})) - 2 \bar{\gamma}_{ij} \bar{\gamma}^{kl} ( (-\frac{1}{4 \chi} \chi_{,l})_{,k} - {\bar{\Gamma}^m}_{lk} (-\frac{1}{4 \chi} \chi_{,m})) + 4 (-\frac{1}{4 \chi} \chi_{,i})(-\frac{1}{4 \chi} \chi_{,j}) - 4 \bar{\gamma}_{ij} \bar{\gamma}^{kl} (-\frac{1}{4 \chi} \chi_{,k})(-\frac{1}{4 \chi} \chi_{,l}) $
$= \frac{1}{4 \chi^2} ( - \chi_{,i} \chi_{,j} + 2 \chi \chi_{,ij} - 2 \chi {\bar{\Gamma}^k}_{ji} \chi_{,k} + \bar{\gamma}_{ij} \bar{\gamma}^{kl} ( - 3 \chi_{,k} \chi_{,l} + 2 \chi \chi_{,kl} - 2 \chi {\bar{\Gamma}^m}_{lk} \chi_{,m} ) ) $

$(R^\phi_{ij})^{TF}$
$= ( \frac{1}{4 \chi^2} ( - \chi_{,i} \chi_{,j} + 2 \chi \chi_{,ij} - 2 \chi {\bar{\Gamma}^k}_{ji} \chi_{,k} + \bar{\gamma}_{ij} \bar{\gamma}^{kl} ( - 3 \chi_{,k} \chi_{,l} + 2 \chi \chi_{,kl} - 2 \chi {\bar{\Gamma}^m}_{lk} \chi_{,m} ) ) )^{TF} $
$= \frac{1}{2 \chi^2} (- \chi_{,i} \chi_{,j} + 2 \chi \chi_{,ij} - 2 \chi {\bar{\Gamma}^k}_{ji} \chi_{,k} )^{TF} $


Z4c formalism ... basically BSSN except with the added $\Theta$ from Z4, and replacing $K_{ij}$ with $\hat{K}_{ij}$
(Following 2011 Cao, Hilditch "Numerical stability of the Z4c formulation of general relativity")
TODO derive this from the Z4 equations: $G_{ab} = 8 \pi T_{ab} + \mathcal{L}_Z g_{ab}$
$\hat{K} = K - 2 \Theta$