Navier-Stokes

$(\rho)_{,t} = -(\rho v_j)_{,j}$
$(\rho v_i)_{,t} = -(\rho v_i v_j + \delta_{ij} P - \tau_{ji})_{,j} + \rho g_i$
$(E_{total})_{,t} = -(v_j H_{total} - v_i \tau_{ij} + q_j)_{,j}$

$\tau_{ij} = 2 \mu S_{ij} $
$S_{ij} = \frac{1}{2} ( v_{i,j} + v_{j,i} ) - \frac{1}{3} \delta_{ij} v_{k,k} $
$q_j = -\lambda T_{,j} = -C_p \frac{\mu}{Pr} T_{,j}$

$(\rho v_i)_{,t} = -( \rho v_i v_j + \delta_{ij} P - \mu ( v_{i,j} + v_{j,i} - \frac{2}{3} \delta_{ij} v_{k,k} ) )_{,j} + \rho g_i$
$(\rho v_i)_{,t} = - \rho_{,j} v_i v_j - \rho v_{i,j} v_j - \rho v_i v_{j,j} - \delta_{ij} P_{,j} + \mu ( v_{i,jj} + v_{j,ij} - \frac{2}{3} \delta_{ij} v_{k,kj} ) + \rho g_i$
Let $a_{ij} = v_{i,j}$
$(\rho v_i)_{,t} = - \rho_{,j} v_i v_j - \rho a_{ij} v_j - \rho v_i a_{jj} - \delta_{ij} P_{,j} + \mu ( a_{ij,j} + a_{ji,j} - \frac{2}{3} \delta_{ij} a_{kk,j} ) + \rho g_i$

$a_{ij,t} = v_{i,jt}$
$(\rho v_i)_{,t} = \rho_{,t} v_i + \rho v_{i,t} = -(\rho v_j)_{,j} v_i + \rho v_{i,t} = -\rho_{,j} v_j v_i - \rho v_{j,j} v_i + \rho v_{i,t}$
Combine:
$v_{i,t} + v_{i,j} v_j + \frac{1}{\rho} \delta_{ij} P_{,j} - \frac{\mu}{\rho} ( v_{i,jj} + v_{j,ij} - \frac{2}{3} \delta_{ij} v_{k,kj} ) = g_i$
$v_{i,jt} + ( v_{i,k} v_k + \frac{1}{\rho} \delta_{ik} P_{,k} - \frac{\mu}{\rho} ( v_{i,kk} + v_{k,ik} - \frac{2}{3} \delta_{ik} v_{l,lk} ) )_{,j} = g_{i,j}$
$v_{i,jt} + v_{i,kj} v_k + v_{i,k} v_{k,j} - \frac{1}{\rho^2} \rho_{,j} \delta_{ik} P_{,k} + \frac{1}{\rho} \delta_{ik} P_{,kj} + \frac{\mu}{\rho^2} \rho_{,j} ( v_{i,kk} + v_{k,ik} - \frac{2}{3} \delta_{ik} v_{l,lk} ) - \frac{\mu}{\rho} ( v_{i,kkj} + v_{k,ikj} - \frac{2}{3} \delta_{ik} v_{l,lkj} ) = g_{i,j}$