Variables
ρ= density
vi= velocity
Bi= magnetic field
P= pressure

Ideal MHD Equations
ρ,t+(ρvj),j=0
(ρvi),t+(ρvivj+δij(P+12μ0BkBk)1μ0BiBj),j=0
Bi,t+(BivjBjvi),j=0
(1γ1P+12ρvkvk+12μ0BkBk),t+((γγ1P+12ρvkvk+1μ0BkBk)vj1μ0BkvkBj),j=0

Expanded:
ρ,t+ρ,jvj+ρvj,j=0
ρ,tvi+ρvi,t+ρ,jvivj+ρvi,jvj+ρvivj,j+P,i+1μ0δijBkBk,j1μ0Bi,jBj1μ0BiBj,j=0
Bi,t+Bi,jvj+Bivj,jBj,jviBjvi,j=0
1γ1P,t+12ρ,tvkvk+ρvkvk,t+1μ0BkBk,t+γγ1P,jvj+γγ1Pvj,j+12ρ,jvkvkvj+ρvkvk,jvj+12ρvkvkvj,j+2μ0BkBk,jvj+1μ0BkBkvj,j1μ0Bk,jvkBj1μ0Bkvk,jBj1μ0BkvkBj,j=0

Let q=q^exp(iq~μxμ) for xμ{t,x,y,z}.
Therefore q,μ=q~μq.

ρ~tρ+ρ~jρvj+ρv~jvj=0
ρ~t+ρ~jvj+v~jvj=0
ρ~t=(ρ~j+v~j)vj
ρ~μvμ=v~jvj

Bi,t+Bi,jvj+Bivj,jBj,jviBjvi,j=0
B~tBi+B~jBivj+Biv~jvjB~jBjviBjv~jvi=0
B~tBi=(B~j+v~j)(BivjBjvi)
B~μvμBiB~jBjvi+v~j(BivjBjvi)=0

ρ,tvi+ρvi,t+ρ,jvivj+ρvi,jvj+ρvivj,j+P,i+1μ0δijBkBk,j1μ0Bi,jBj1μ0BiBj,j=0
ρ~tρvi+v~tρvi+ρ~jρvivj+2v~jρvivj+P~iP+1μ0B~iBkBk2μ0B~jBiBj=0
Substitute ρ~t+ρ~jvj+v~jvj=0.
v~tρvi+v~jρvivj+P~iP+1μ0B~iBkBk2μ0B~jBiBj=0
v~μvμρvi+P~iP+1μ0B~iBkBk2μ0B~jBiBj=0

1γ1P,t+12ρ,tvkvk+ρvkvk,t+1μ0BkBk,t+γγ1P,jvj+γγ1Pvj,j+12ρ,jvkvkvj+ρvkvk,jvj+12ρvkvkvj,j+2μ0BkBk,jvj+1μ0BkBkvj,j1μ0Bk,jvkBj1μ0Bkvk,jBj1μ0BkvkBj,j=0
1γ1P~tP+12ρ~tρvkvk+ρvkv~tvk+1μ0BkB~tBk+γγ1P~jPvj+γγ1Pv~jvj+12ρ~jρvkvkvj+32ρv~jvjvkvk+2μ0BkB~jBkvj+1μ0BkBkv~jvj2μ0B~jBkvkBj1μ0Bkv~jvkBj=0
Substitute ρ~t+ρ~jvj+v~jvj=0.
1γ1P~tP+ρvkv~tvk+1μ0BkB~tBk+γγ1P~jPvj+γγ1Pv~jvj+ρv~jvjvkvk+2μ0BkB~jBkvj+1μ0BkBkv~jvj2μ0B~jBkvkBj1μ0Bkv~jvkBj=0
Substitute v~tρvi+v~jρvivj+P~iP+1μ0B~iBkBk2μ0B~jBiBj=0
P~iPvi+1γ1P~tP+1μ0B~tBkBk+γγ1P~jvjP+γγ1v~jvjP+1μ0B~jvjBkBk+1μ0v~jvjBkBk1μ0v~jBjBkvk=0
1γ1P~tP+1γ1P~jPvj+1μ0B~tBkBk+1μ0B~jvjBkBk+γγ1v~jvjP+1μ0v~jvjBkBk1μ0v~jBjBkvk=0
Substitute B~tBi+B~jBivj+Biv~jvjB~jBjviBjv~jvi=0
1γ1P~tP+1γ1P~jPvj+γγ1v~jvjP+1μ0BiB~jBjvi=0
Assume P>0.
P~t+P~jvj+γv~jvj+γ1μ0PBiB~jBjvi=0
P~μvμ=γv~jvjγ1μ0PB~jBjBkvk