This is just like the "metric of flat spacetime and EM potential"
but with the Newton near-field approximation added.
In fact, it's the metric listed halfway down thte "gravitomagnetics" page.
To match the gravitomagnetics page, I think I'll use +--- signature and not use natural units.
$\eta_{ab} = \eta^{ab} = \left[\matrix{
1 & 0 \\
0 & -\delta_{ij}
}\right]$
I'm going to set $A_t = \frac{1}{c} \Phi^g$
I'm also going to scale down the $A_i$ vector by $\frac{1}{4}$
With all these changed signatures comes a changed definition of $F_{ab}$:
$F_{ab} = 2 {A^e}_{[b,a]} = \left[\matrix{
0 & \frac{1}{c} E_j \\
-\frac{1}{c} E_i & -{\epsilon_{ij}}^k B_k
}\right]$
$g_{ab} = \left[\matrix{
1 + \frac{2}{c} A_t & -\frac{1}{c} A_x & -\frac{1}{c} A_y & -\frac{1}{c} A_z \\
-\frac{1}{c} A_x & -1 + \frac{2}{c} A_t & 0 & 0 \\
-\frac{1}{c} A_y & 0 & -1 + \frac{2}{c} A_t & 0 \\
-\frac{1}{c} A_z & 0 & 0 & -1 + \frac{2}{c} A_t
}\right]$
$ = \left[\matrix{
1 + \frac{2}{c} A_t & -\frac{1}{c} A_j \\
-\frac{1}{c} A_i & \delta_{ij} (-1 + \frac{2}{c} A_t)
}\right]$
$ = \eta_{ab} + \frac{2}{c} A_t \delta_{ab} - \frac{1}{c} \delta_{t(b)} \hat{A}_{a)}$
For $\hat{A}_a = (0, A_i)$
Determinant:
$g =
\frac{1}{c^4} (
-c^2
+ 4 A_t^2 - A_x^2 - A_y^2 - A_z^2
)
(c + 2 A_t)^2
$