Octonions from the Cayley-Dickson page:
$\matrix{
& e_0 & e_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_7 \\
e_0 & e_0 & e_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_7 \\
e_1 & e_1 & -e_0 & e_3 & -e_2 & e_5 & -e_4 & -e_7 & e_6 \\
e_2 & e_2 & -e_3 & -e_0 & e_1 & e_6 & e_7 & -e_4 & -e_5 \\
e_3 & e_3 & e_2 & -e_1 & -e_0 & e_7 & -e_6 & e_5 & -e_4 \\
e_4 & e_4 & -e_5 & -e_6 & -e_7 & -e_0 & e_1 & e_2 & e_3 \\
e_5 & e_5 & e_4 & -e_7 & e_6 & -e_1 & -e_0 & -e_3 & e_2 \\
e_6 & e_6 & e_7 & e_4 & -e_5 & -e_2 & e_3 & -e_0 & -e_1 \\
e_7 & e_7 & -e_6 & e_5 & e_4 & -e_3 & -e_2 & e_1 & -e_0 \\
}$
in shorthand?:
$\matrix{
& e_0 a & e_{123} \vec{A} & e_4 a & e_{567} \vec{A} \\
e_0 b & e_0 a b & e_{123} \vec{A} b & e_4 a & e_{567} \vec{A} b \\
e_{123} \vec{B} & e_{123} a \vec{B} & -e_0 \vec{A} \cdot \vec{B} + e_{123} \vec{A} \times \vec{B} & e_{567} a \vec{B} & -e_4 \vec{A} \cdot \vec{B} - e_{567} \vec{A} \times \vec{B} \\
e_4 b & e_4 a b & -e_{567} \vec{A} b & -e_0 a b & e_{123} \vec{A} b \\
e_{567} \vec{B} & e_{567} a \vec{B} & e_4 \vec{A} \cdot \vec{B} - e_{567} \vec{A} \times \vec{B} & -e_{123} a \vec{B} & -e_0 \vec{A} \cdot \vec{B} - e_{123} \vec{A} \times \vec{B}
}$
This is just an idea of incorporating vector notation. Not a good one though. What would be a better one?
$J = e_1 J_x + e_2 J_y + e_3 J_z$
$E = e_1 E_x + e_2 E_y + e_3 E_z$
$B = e_1 B_x + e_2 B_y + e_3 B_z$
$F = E - e_4 B$
$F = e_1 E_x + e_2 E_y + e_3 E_z + e_5 B_x + e_6 B_y + e_7 B_z$
$D = e_1 \partial_x + e_2 \partial_y + e_3 \partial_z - e_4 \partial_t$
$K = e_4 (J + e_4 \rho)$
$K = -e_0 \rho - e_5 J_x - e_6 J_y - e_7 J_z$
$D F = K$
gives...
$(e_1 \partial_x + e_2 \partial_y + e_3 \partial_z - e_4 \partial_t) (e_1 E_x + e_2 E_y + e_3 E_z + e_5 B_x + e_6 B_y + e_7 B_z) = -e_0 \rho - e_5 J_x - e_6 J_y - e_7 J_z$
$(e_{123} \vec{\nabla} - e_4 \partial_t) ( e_{123} \vec{E} + e_{567} \vec{B}) = -e_0 \rho - e_{567} \vec{J}$
$e_{123} \vec{\nabla} e_{123} \vec{E}
- e_4 \partial_t e_{123} \vec{E}
+ e_{123} \vec{\nabla} e_{567} \vec{B}
- e_4 \partial_t e_{567} \vec{B}
= -e_0 \rho - e_{567} \vec{J}$
$
-e_0 (\vec{\nabla} \cdot \vec{E}) + e_{123} (\vec{\nabla} \times \vec{E})
+ e_{567} \partial_t \vec{E}
- e_4 \vec{\nabla} \cdot \vec{B} - e_{567} (\vec{\nabla} \times \vec{B})
+ e_{123} \partial_t \vec{B}
= -e_0 \rho - e_{567} \vec{J}$
unraveled:
$\begin{matrix}
e_0: & \vec{\nabla} \cdot \vec{E} = \rho \\
e_4: & \vec{\nabla} \cdot \vec{B} = 0 \\
e_{123}:& \partial_t \vec{B} + \vec{\nabla} \times \vec{E} = 0 \\
e_{567}:& -\partial_t \vec{E} + \vec{\nabla} \times \vec{B} = \vec{J}
\end{matrix}$