$E_i$ = electric field
$B_i$ = magnetic field
$P_i$ = polarization field
$M_i$ = magnetization field
$\epsilon_0$ = permittivity of free space
${\epsilon_{r,i}}^j$ = relative permittivity of material
${\epsilon_i}^j$ = permittivity of material
${\chi_{e,i}}^j$ = electric susceptibility
$\mu_0$ = permeability of free space
${\mu_{r,i}}^j$ = relative permeability of material
${\mu_i}^j$ = permeability of material
${\chi_{m,i}}^j$ = magnetic susceptibility
$D_i = \epsilon_0 E_i + P_i$
$P_i = \epsilon_0 {\chi_{e,i}}^j E_j$
$D_i = \epsilon_0 E_i + \epsilon_0 {\chi_{e,i}}^j E_j$
$D_i = \epsilon_0 (\delta_i^j + {\chi_{e,i}}^j) E_j$
$D_i = \epsilon_0 {\epsilon_{r,i}}^j E_j$
$D_i = {\epsilon_i}^j E_j$
$B_i = \mu_0 H_i + M_i$
$M_i = \mu_0 {\chi_{m,i}}^j H_j$
$B_i = \mu_0 H_i + \mu_0 {\chi_{m,i}}^j H_j$
$B_i = \mu_0 (\delta_i^j + {\chi_{m,i}}^j) H_j$
$B_i = \mu_0 {\mu_{r,i}}^j H_j$
$B_i = {\mu_i}^j H_j$
$E_i = {(\epsilon^{-1})_i}^j D_j$
$H_i = {(\mu^{-1})_i}^j B_j$
${D^i}_{,i} = \rho_{free}$ ... where $\rho_{free}$ = free charge (densitized?)
${B^i}_{,i} = 0$
$D_{i,t} = {\epsilon_i}^{jk} H_{k,j} - J_{i,free}$
$B_{i,t} = -{\epsilon_i}^{jk} E_{k,j}$
$D_{i,t} = {\epsilon_i}^{jk} (\mu^{-1} B)_{k,j} - J_{i,free}$
$B_{i,t} = -{\epsilon_i}^{jk} (\epsilon^{-1} D)_{k,j}$
$D_{i,t} = {\epsilon_i}^{jk} ({(\mu^{-1})_k}^l B_l)_{,j} - J_{i,free}$
$B_{i,t} = -{\epsilon_i}^{jk} ({(\epsilon^{-1})_k}^l D_l)_{,j}$
$D_{i,t} - \gamma_{im} \epsilon^{mjk} {(\mu^{-1})_k}^l {B_l}_{,j} = {\epsilon_i}^{jk} {{(\mu^{-1})_k}^l}_{,j} B_l - J_{i,free}$
$B_{i,t} + \gamma_{im} \epsilon^{mjk} {(\epsilon^{-1})_k}^l D_{l,j} = {\epsilon_i}^{jk} {{(\epsilon^{-1})_k}^l}_{,j} D_l$
$D_{i,t} - \frac{1}{\sqrt\gamma} \gamma_{im} \bar\epsilon^{mjk} {(\mu^{-1})_k}^l {B_l}_{,j} = {\epsilon_i}^{jk} {{(\mu^{-1})_k}^l}_{,j} B_l - J_{i,free}$
$B_{i,t} + \frac{1}{\sqrt\gamma} \gamma_{im} \bar\epsilon^{mjk} {(\epsilon^{-1})_k}^l D_{l,j} = {\epsilon_i}^{jk} {{(\epsilon^{-1})_k}^l}_{,j} D_l$
$\pmatrix{
D_{i,t} \\
B_{i,t}
} + \frac{1}{\sqrt\gamma} \pmatrix{
\gamma_{im} & 0 \\
0 & \gamma_{im}
} \pmatrix{
0 & -\bar\epsilon^{mjk} \\
\bar\epsilon^{mjk} & 0
} \pmatrix{
{(\mu^{-1})_k}^l & 0 \\
0 & {(\epsilon^{-1})_k}^l
} \pmatrix{
{B_l}_{,j} \\
D_{l,j}
} = \pmatrix{
{\epsilon_i}^{jk} {{(\mu^{-1})_k}^l}_{,j} B_l - J_{i,free} \\
{\epsilon_i}^{jk} {{(\epsilon^{-1})_k}^l}_{,j} D_l
}$