Back

If we define our covariant derivative such that it eliminates the metric:
0=c(gabeaeb)
0=ec(gab)eaeb+gabceaeb+gabeaceb
0=ec(gab)eaebgabΓacueuebgabeaΓbcueu
ec(gab)eaeb=(Γbca+Γacb)eaeb
ec(gab)=Γbca+Γacb

Due to this constraint, we can say that all metric-eliminating connections are symmetric possess this identity:
Γ(a|b|c)=12eb(gac)

From here we can define our covariant derivative in terms of structure constants and torsion:
ea(gbc)=Γcab+Γbac
eb(gac)=Γabc+Γcba
ec(gab)=Γbca+Γacb
...subtract...
ec(gab)+eb(gac)ea(gbc)=Γbca+Γacb+Γabc+ΓcbaΓcabΓbac
ec(gab)+eb(gac)ea(gbc)=2ΓabccacbTbaccabcTcabcbcaTabc
Γabc=12(ec(gab)+eb(gac)ea(gbc)+cabc+cacbccba+Tcab+TbacTacb)

Notice that can be defined to have any Γabc, however there is only one Γ^abc such that the torsion is zero, and that is the Levi-Civita connection. Let ^ be the covariant derivative associated with the zero-torsion connection Γ^.
Γ^abc=12(ec(gab)+eb(gac)ea(gbc)+cabc+cacbccba)
This is also known as the "Christoffel symbol of the 1st kind".

Misner Thorne Wheeler "Gravitation" list this as Γ^abc=12(ec(gab)+eb(gac)ea(gbc)+cabc+cacbcbca), so notice the last commutation coefficient is negative'd. This coincides with its reversed definition of bec=Γacbea, which would make sense. If you reverse b and c then the one term that is negative'd is the last commutation term. However, in contrast, Wikipedia here holds my un-reversed definition of Γabc but still lists the same anholonomic definition. Maybe the authors of the different sections of the page used different conventions?

Christoffel of the 2nd kind / affine connection: Γ^abc=gadΓ^dbc

in a holonomic basis (so cabc=0):
Γ^abc=12(ec(gab)+eb(gac)ea(gbc))

Levi-Civita connection in a non-coordinate basis:
If ea=eaa~a~ and ea=eaa~dxa~ are linear combinations of a coordinate basis a~ and dual dxa~ then we can calculate the following:
Using the identities that δba=eau~ebu~ and δb~a~=eua~eub~
Let g~a~b~=a~b~
Let gab=eaeb=eaa~a~ebb~b~=eaa~ebb~g~a~b~.
Let cabcec=[ea,eb], so (from the 'structure constants' worksheet on structure constants of a linear transform of a coordinate basis) cabc=2e[a(eb]c~)ecc~
Γ^abc=12(ec(gab)+eb(gac)ea(gbc)+cacb+cabcccba)
=12(ec(eaa~ebb~g~a~b~)+eb(eaa~ecc~g~a~c~)ea(ebb~ecc~g~b~c~)+2e[a(ec]d~)edd~gdb+2e[a(eb]d~)edd~gdc2e[c(eb]d~)edd~gda)
=12(ec(eaa~)ebb~g~a~b~+eaa~ec(ebb~)g~a~b~+eaa~ebb~ec(g~a~b~)+eb(eaa~)ecc~g~a~c~+eaa~eb(ecc~)g~a~c~+eaa~ecc~eb(g~a~c~)ea(ebb~)ecc~g~b~c~ebb~ea(ecc~)g~b~c~ebb~ecc~ea(g~b~c~)+ea(ecd~)ebd~ec(ead~)ebd~+ea(ebd~)ecd~eb(ead~)ecd~ec(ebd~)ead~+eb(ecd~)ead~)
=12(ec(eaa~)eba~+ec(ebb~)eab~+eaa~ebb~ec(g~a~b~)+eb(eaa~)eca~+eb(ecc~)eac~+eaa~ecc~eb(g~a~c~)ea(ebb~)ecb~ea(ecc~)ebc~ebb~ecc~ea(g~b~c~)+ea(ecd~)ebd~ec(ead~)ebd~+ea(ebd~)ecd~eb(ead~)ecd~ec(ebd~)ead~+eb(ecd~)ead~)
=12(eaa~ebb~ecc~c~(g~a~b~)+eaa~ecc~ebb~b~(g~a~c~)ebb~ecc~eaa~a~(g~b~c~))+eb(ecc~)eac~
Γ^abc=eaa~ebb~ecc~Γ~a~b~c~+eaa~eb(eca~)
Γ^abc=eaa~ebb~ecc~Γ~a~b~c~+eaa~eb(eca~)
...where Γ~a~b~c~ is the Levi-Civita connection associated with the coordinate basis a~.

From there, of course,
Γ^a[bc]=eaa~ebb~ecc~Γ~a~[b~c~]+eaa~e[b(ec]a~)
and a coordinate basis has no commutation, so Γ~a~[b~c~]=0
so Γ^a[bc]=eaa~e[b(ec]a~)=12cbca

If we use un-tilde-d indexes to denote transformation by the eaa~ basis from the coordinate (tilde) to non-coordinate (non-tilde) basis, then we can represent the transformed coordinate basis Levi-Civita connections as then we can represent this as Γ~abc=eaa~ebb~ecc~Γ~a~b~c~,
and the identity becomes:
Γ^abc=Γ~abc+eaa~eb(eca~)
Notice how this matches up with the covariant derivative definition: Γabc=ea(bec)

If we want to transforms all this to the coordinate basis:
eaa~ebb~ecc~Γ^abc=Γ~a~b~c~+ecc~ebb~eb(eca~)
eaa~ebb~ecc~Γ^abc=Γ~a~b~c~+ecc~b~(eca~)



What does the non-coordinate metric-cancelling torsion-free covariant derivative of a object look like when represented with coordinate-basis indexes?
Let ~ be the coordinate-metric-cancelling torsion-free covariant-derivative (for coordinate metric g~a~b~).
Let ^ be the non-coordinate-metric-cancelling torsion-free covariant-derivative (for non-coordinate metric gij).
From the worksheet on "covariant derivative":
~u~(TA~B~A~dxB~)=(u~(TA~B~)+TA~B~aicΓ~aiucTAB~bjcΓ~cubj)A~dxB~
So in a non-coordinate basis for a non-coordinate-metric-cancelling torsion-free covariant-derivative:
^u(TABeAeB)=(eu(TAB)+TABaicΓ^aiucTABbjcΓ^cubj)eAeB
... using Γ^abc=Γ~abc+eaa~eb(eca~) (where tilde indexes are coordinate-basis and non-tilde are non-coordinate-basis)
^u(TABeAeB)=(eu(TAB)+TABaic(Γ~aiuc+eaia~ieu(eca~i))TABbjc(Γ~cubj+ecc~eu(ebjc~)))eAeB
...transform all indexes outside of derivatives from non-coordinate-basis to coordinate-basis:
=euu~(u~(TAB)eaia~i...ebib~i...+TA~B~a~ic~(Γ~a~iu~c~+u~(eca~i)ecc~)TA~B~b~jc~(Γ~c~u~b~j+u~(ecc~)ecb~j))A~dxB~
...transform indexes within partial derivative:
=euu~(u~(TC~D~eaic~i...ebic~i...)eaia~i...ebib~i...+TA~B~a~ic~(Γ~a~iu~c~+u~(eca~i)ecc~)TA~B~b~jc~(Γ~c~u~b~j+u~(ecc~)ecb~j))A~dxB~
...distribute partial through basis transforms of indexes of T:
=euu~((u~(TC~D~)eaic~i...ebic~i...+TC~D~...u~eaic~i...ebic~i...+TC~D~eaic~i...u~ebic~i...)eaia~i...ebib~i...+TA~B~a~ic~(Γ~a~iu~c~+u~(eca~i)ecc~)TA~B~b~jc~(Γ~c~u~b~j+u~(ecc~)ecb~j))A~dxB~
=euu~(u~(TA~B~)+TA~B~a~ic~u~(eaic~)eaia~i+TA~B~b~ic~u~(ebic~)ebib~i+TA~B~a~ic~(Γ~a~iu~c~+u~(eca~i)ecc~)TA~B~b~jc~(Γ~c~u~b~j+u~(ecc~)ecb~j))A~dxB~
...rearrange...
=euu~(u~(TA~B~)+TA~B~a~ic~Γ~a~iu~c~TA~B~b~jc~Γ~c~u~b~j+TA~B~a~ic~u~(eaic~)eaia~i+TA~B~a~ic~u~(eca~i)ecc~+TA~B~b~ic~u~(ebic~)ebib~iTA~B~b~jc~u~(ecc~)ecb~j)A~dxB~
...using e times e-inverse equals identity, therefore u~(eaic~)eaia~i=eaic~u~(eaia~i)
=euu~(u~(TA~B~)+TA~B~a~ic~Γ~a~iu~c~TA~B~b~jc~Γ~c~u~b~jTA~B~a~ic~u~(eaia~i)eaic~+TA~B~a~ic~u~(eca~i)ecc~+TA~B~b~ic~u~(ebic~)ebib~iTA~B~b~jc~u~(ecc~)ecb~j)A~dxB~
...relabel sum indexes and cancel like terms:
=euu~(u~(TA~B~)+TA~B~a~ic~Γ~a~iu~c~TA~B~b~jc~Γ~c~u~b~j)A~dxB~
=euu~~u~(TA~B~A~dxB~)
Looks like the metric-cancelling torsion-free covariant-derivative of one basis is just the transform of the metric-cancelling torsion-free covariant-derivative of another.
Hence the covariant derivative of a tensor is a tensor.



Let the contorsion tensor be the difference between an arbitrary connection and the Levi-Civita connection:
Kabc=ΓabcΓ^abc
=12(Tcab+Tbac+Tabc)

This shows that any connection can be uniquely defined by its contorsion, which is defined by its torsion.

Now let's revisit the definition of the non-coordinate metric-cancelling torsion-free connection with regards to the coordinate:
Γ^abc=Γ~abc+eaa~eb(eca~)
...substitute Γ^abc=ΓabcKabc
ΓabcKabc=Γ~abc+eaa~eb(eca~)
...and solve:
Γabc=Γ~abc+eaa~eb(eca~)+Kabc
So any metric-cancelling connection can be represented as the sum of the coordinate-basis torsion-free connection, plus the partial of the vielbein, plus the contorsion.

And if there is one unique Levi-Civita torsion-free metric-cancelling connection per metric, and there is one unique linear transform from coordinate to non-coordinate basis per diagonalized metric, then there is only one unique torsion-free metric-cancelling connection per diagonalized metric (or per any non-coordinate basis?).
TODO but there isn't one unique transform for diagonalization.

Antisymmetry of contorsion tensor:
Ka[bc]=12(T[cab]+T[bac]+Ta[bc])=12Ta[bc]=12Tabc

Trace of contorsion tensor:
Kuau=12(Tuua+Tauu+Tuau)
...cancelling trace of the antisymmetric components of the torsion...
Kuau=12(Tuua+Tuau)
...applying the antisymmetry of the torsion...
Kuau=0

Jacobi formula applied to metric tensor (more on worksheet #13):
ea(g)=gguvea(guv)
12gea(g)=12guvea(guv)
12ea(log|g|)=12guvea(guv)
ea(log|g|)=12guvea(guv)
...in a non-coordinate basis that is a linear map of a coordinate basis...
ea(log|g|)=12guvea(guv)

Jacobi formula of a coordinate metric in a coordinate basis:
Remember, guv=euev is a non-coordinate metric expressed in the non-coordinate basis and g~u~v~=u~v~ is the coordinate metric expressed in the coordinate basis.
a~(log|g~|)=12g~u~v~a~(g~u~v~)
a~(log|g~|)=12guveuu~evv~a~(gcdecu~edv~)
a~(log|g~|)=12guveuu~evv~(a~(gcd)ecu~edv~+gcda~(ecu~)edv~+gcdecu~a~(edv~))
a~(log|g~|)=12guva~(guv)+evu~a~(evu~)
a~(log|g~|)=12guva~(guv)evu~a~(evu~)

Going further:
a~(log|g~|)=12guva~(guv)+evu~a~(evu~)
a~(log|g~|)=12ga~g+1ea~e
a~(log|g~|)=12a~(log(|g|))+a~(log(e))
transform both sides:
eaa~a~(log|g~|)=eaa~a~(log(|g|))+eaa~a~(log(e))
ea(log|g~|)=ea(log(|g|))+ea(log(e))
ea(log|g~|)=Γ^bab+ea(log(e))

Trace of Levi-Civita connection on 1 and 3:
Γ^uau=12guv(eu(gva)+ea(gvu)ev(gau)+cvau+cvuacuav)
Γ^uau=12guvea(guv)
Γ^uau=ea(log|g|)
Mind you, even in non-coordinate orthonormal frames where g= constant, log(|g|)= constant, and e(log(|g|))=0, this identity holds.
I mean, the trace of the connection isn't necessarily the volume element. Sometimes it is just zero.

Trace of Levi-Civita connection on 1 and 2:
Γ^uua=12guv(ea(gvu)+eu(gva)ev(gua)+cvua+cvaucauv)
=12guvea(gvu)cauu
=ea(log|g|)+cuau

using Γ^abc=eaa~ebb~ecc~Γ~a~b~c~+eaa~eb(eca~)
and using Γ~u~a~u~=1|g~|a~(|g~|)
therefore
Γ^uau=eaa~Γ~u~a~u~+euu~ea(euu~)
1|g|ea(|g|)=eaa~Γ~u~a~u~ea(euu~)euu~
1|g|ea(|g|)=1|g~|eaa~a~(|g~|)1eea(e)
1|g|ea(|g|)=1|g~|ea(|g~|)1eea(e)
...and keep going to find...
1|g|ea(|g|)=1e|g|ea(e|g|)1eea(e)
1|g|ea(|g|)=1e|g|eea(|g|)+1e|g||g|ea(e)1eea(e)
1|g|ea(|g|)=1gea(|g|)+1eea(e)1eea(e)
1|g|ea(|g|)=1gea(|g|)

What about Γ^uua=eaa~Γ~u~u~a~+euu~eu(eau~)
And Γ~u~u~a~ is symmetric and therefore equal to Γ~u~a~u~, which is equal to a~(log|g~|)
Γ^uua=eaa~a~(log|g~|)+euu~eu(eau~)
Γ^uua=ea(log|g~|)+euu~eu(eau~)

Equate the two definitions of Γ^uua to find:
ea(log|g|)+cuau=ea(log|g~|)+euu~eu(eau~)

Now this is the connection that a covariant divergence would use:
^v
=eb^b(vaea)
=eb(va)eb(ea)+eb(bea)va
=ea(va)+Γ^bbava
=ea(va)+vbΓ^aab
=ea(va)+vb(eb(log(|g~|))+ea(ebb~)eab~)
=ea(va)+va1|g~|ea(|g~|)+vbea(ebb~)eab~
=1|g~|ea(|g~|va)+vbea(ebb~)eab~
=1|g~|a~(|g~|eaa~va)
=1|g~|eba~eb(|g~|eaa~va)
This is the Voss-Weyl identity.

Levi-Civita connection antisymmetry on 2nd and 3rd indexes:
Γ^a[bc]
=Γa[bc]Ka[bc]
=12(Tabc+cbca)12Ta[bc]
=12cbca
In a holonomic basis this gives Γ^a[bc]=0

Notice that Γ^uua=Γ^uau+cuau
Therefore Γ^uua=Γ^uau+cuau
Γ^uua=ea(log|g|)+cuau
Which looks just like our trace of the Levi-Civita connection above.

Trace of an arbitrary connection:
Γuau=Γ^uau+Kuau=ea(log|g|)
ΓuuaΓuau=Tuua+cuau
Γuua=ea(log|g|)+cuau+Tuua

Trace of the Levi-Civita connection of the coordinate basis (which will equal the volume gradient):
Γ~u~a~u~=a~(log|g~|)
...transformed into non-coordinates...
Γ~uau=ea(log|g~|)
Difference of Levi-Civita connection of the coordinate basis vs the non-coordinate basis:
Γ^uau=Γ~uau+euu~ea(euu~)
Γ~uau=Γ^uaueuu~ea(euu~)
Trace of the Levi-Civita connection of the coordinate basis, in terms of the non-coordinate Levi-Civita connection:
Γ~uau=ea(log|g~|)
Equate:
Γ^uaueuu~ea(euu~)=ea(log|g~|)
... subsitute euu~ea(euu~)=ea(log|g~|)12guvea(guv) ...
Γ^uau+ea(log|g~|)12guvea(guv)=ea(log|g~|)
Γ^uau=12guvea(guv)



Levi-Civita change-of-basis:
ec(gab)=xc(gab)
ec(gab)=xc(gab)
=xc(gabxaxaxbxb)
=xcxcxc(gabxaxaxbxb)
=(xc(gab)xaxaxbxb+gab(xc(xaxa)xbxb+xaxaxc(xbxb)))xcxc
=xc(gab)xaxaxbxbxcxc+gab(xc(xaxa)xbxb+xaxaxc(xbxb))xcxc
=xc(gab)xaxaxbxbxcxc+gab(xc(xaxa)xbxb+xaxaxc(xbxb))

change of basis of connection:
Γabc=12(ec(gab)+eb(gac)ea(gbc))
Γabc=12(ec(gab)+eb(gac)ea(gbc))
=12(xc(gab)xaxaxbxbxcxc+gab(xc(xaxa)xbxb+xaxaxc(xbxb))+xb(gac)xaxaxcxcxbxb+gac(xb(xaxa)xcxc+xaxaxb(xcxc))xa(gcb)xcxcxbxbxaxagcb(xa(xcxc)xbxb+xcxcxa(xbxb)))
=12(xc(gab)+xb(gac)xa(gcb))xcxcxbxbxaxa+12(gabxc(xaxa)xbxb+gabxc(xbxb)xaxa+gacxb(xaxa)xcxc+gacxb(xcxc)xaxagcbxa(xcxc)xbxbgcbxa(xbxb)xcxc)
=Γabcxcxcxbxbxaxa+12(gabxc(xaxa)xbxb+gabxc(xbxb)xaxa+gacxb(xaxa)xcxc+gacxb(xcxc)xaxagcbxa(xcxc)xbxbgcbxa(xbxb)xcxc)

Γabc=gadΓdbc
=gad(Γdbcxcxcxbxbxdxd+12(gdbxc(xdxd)xbxb+gdbxc(xbxb)xdxd+gdcxb(xdxd)xcxc+gdcxb(xcxc)xdxdgcbxd(xcxc)xbxbgcbxd(xbxb)xcxc))
=xaxaxdxegae(Γdbcxcxcxbxbxdxd+12(gdbxc(xdxd)xbxb+gdbxc(xbxb)xdxd+gdcxb(xdxd)xcxc+gdcxb(xcxc)xdxdgcbxd(xcxc)xbxbgcbxd(xbxb)xcxc))
=xaxaΓabcxcxcxbxb+xaxa2xaxbxc

geodesics minimize distance along a trajectory (using a coordinate basis):
Minimize S by solving for δS=0:
Let S=guvdxudτdxvdτdτ
We can just as easily minimize SS=guvdxudτdxvdτdτ
Now solve for δSδxa=0
S=guvx˙ux˙vdτ
δS=(δguvx˙ux˙v+2guvδx˙ux˙v)dτ
Next we use integration by parts and assign the total integral to zero: udv=uvvdu for uv=0
Using u=2guvx˙v, dv=δx˙u, and therefore v=δxu, du=2(g˙uvx˙v+guvx¨v)dτ
δS=(δguvx˙ux˙v2δxu(g˙uvx˙v+guvx¨v))dτ
Substitute δguv=guvxwδxw and guvτ=guvxwxwτ
δS=(δxwxwguvx˙ux˙v2δxu(xwguvx˙wx˙v+guvx¨v))dτ
Reindex and factor out δxu
δS=δxu(xugabx˙ax˙b2xagubx˙ax˙b2guvx¨v)dτ
Solve for δS=0
0=xugabx˙ax˙b2xagubx˙ax˙b2guvx¨v
0=gcu(xugabx˙ax˙b2xagubx˙ax˙b2guvx¨v)
x¨c12gcu(xugab2xagub)x˙ax˙b=0
Separate the term with a factor of 2:
x¨c+12gcu(xbgua+xagubxugab)x˙ax˙b=0
x¨c+Γcabx˙ax˙b=0
For Γcab=12gcu(xbgua+xagubxugab)
This fits with the above definition of a metric-cancelling covariant derivative that has no torsion and no commutation.

acceleration of geodesic motion:
^uu=0
ub^bu=0
ub(b(ua)+Γ^abcuc)=0
ubb(ua)+Γ^abcubuc=0
u˙a=Γ^abcubuc

...in the presence of torsion:
u˙a=(ΓabcKabc)ubuc
u˙a=(Γabc12(Tcab+Tbac+Tabc))ubuc
u˙a=Γabcubuc+Tbacubuc
u˙a=Γabcubuc+ubTbdcucgda

change of basis of torsion-free holonomic geodesic:
2xaτ2+Γabcxbτxcτ=0
τ(xaxaxaτ)+Γabcxbxbxbτxcxcxcτ=0
τxaxaxaτ+xaxaτxaτ+Γabcxbxbxcxcxbτxcτ=0
2xaτ2+(xaxaΓabcxbxbxcxc+xaxa2xaxbxc)xbτxcτ=0
This matches the change-of-basis of metric-cancelling connection, which we can now substitute:
2xaτ2+Γabcxbτxcτ=0




Holonomic Levi-Civita connection as the sum of two other connections, derived from their metrics:

gab=gab+gab
gab,c=gab,c+gab,c
Once again, (see Section 4 - metric tensor) rab=gacgcb and r=raa.

Γabc
=12(gab,c+gac,bgbc,a)
=12(gab,c+gac,bgbc,a)+12(gab,c+gac,bgbc,a)
=Γabc+Γabc

Γabc
=gadΓdbc
=(Γdbc+Γdbc)(gad(gaegefgfd)11+r)
=Γdbcgad(Γdbcgaegefgfd)11+r+ΓdbcgadΓdbc(gaegefgfd)11+r
=Γabc+gadΓdbcgaegefΓfbc11+rgaegefgfdΓdbc11+r
=Γabc+gadgdegefΓfbcgaegefΓfbc11+rgaegefgfdgdggghΓhbc11+r
=Γabc+gadgdeΓebcgaegefΓfbc11+rgaegefgfdgdgΓgbc11+r
=Γabc+radΓdbc11+rradΓdbc11+rradrdeΓebc



Tensor density.

Assuming is a metric-cancelling covariant derivative, calculate the covariant derivative of the scalar of the metric determinant:
ag
=a(ϵ~u1...unΠni=1giui)
=ϵ~u1...una(Πni=1giui)
=ϵ~u1...unΣni=1(agiuiΠnj=1,jigjuj)
Using aguv=0:
=ϵ~u1...unΣni=1(0Πnj=1,jigjuj)
=ϵ~u1...unΣni=10
=0

Now we see that the covariant derivative of every scalar is not necessarily equal to the partial derivative of that scalar.

Raising it to a power:
a(g)m
=m(g)m1ag
=m(g)m10
=0

Equating this to the original "covariant derivative equals partial derivative plus connection" rule:
Γuau=ea(log(|g|))=ea(12log(|g|))=12|g|ea(|g|)=12gea(g)
So 2gΓuau=ea(g)
0=ag=ea(g)ea(g)=ea(g)2gΓuau

Same but for metric determinant raised to a power:
0=a(g)m
=ea((g)m)ea((g)m)
=ea((g)m)m(g)m1ea(g)
=ea((g)m)m(g)m12gΓuau
=ea((g)m)2m(g)mΓuau

Using the metric determinant square-root:
a(|g|)m=ea((|g|)m)m(|g|)mΓuau
From here on we will refer to any scalar function mapping from our manifold to a real value, if it is scaled by (|g|)m, then it will be "of weight m".

Combining this with the original (p, q) tensor definition of covariant derivatives:
Let T=Ta1...apb1...bqpi=1eaiqi=1ebi be a (p, q) tensor.
Let T=(|g|)mT=Ta1...apb1...bqpi=1eaiqi=1ebi=(|g|)mTa1...apb1...bqpi=1eaiqi=1ebi be a weight-m (p, q) tensor.

The covariant derivative of T is defined as:
T=euu((|g|)mTa1...apb1...bqpi=1eaiqi=1ebi)
=euu((|g|)m)Ta1...apb1...bqpi=1eaiqi=1ebi+eu(|g|)mu(Ta1...apb1...bqpi=1eaiqi=1ebi)
=((eu((|g|)m)m(|g|)mΓvuv)Ta1...apb1...bq+(|g|)m(eu(Ta1...apb1...bq)+ΓaiuvTa1...ai1vai+1...apb1...bqΓvubiTa1...apb1...bi1vbi+1...bq))eupi=1eaiqi=1ebi
=(eu((|g|)mTa1...apb1...bq)m(|g|)mΓvuvTa1...apb1...bq+(|g|)m(+ΓaiuvTa1...ai1vai+1...apb1...bqΓvubiTa1...apb1...bi1vbi+1...bq))eupi=1eaiqi=1ebi
=(eu(Ta1...apb1...bq)+ΓaiuvTa1...ai1vai+1...apb1...bqΓvubiTa1...apb1...bi1vbi+1...bqmΓvuvTa1...apb1...bq)eupi=1eaiqi=1ebi

And now we have the up-add/down-subtract definition for the metric-cancelling covariant derivative of a tensor density of weight m.
Keep twisting the knobs and we get...
=(eu(|g|mTa1...apb1...bq)+|g|mΓaiuvTa1...ai1vai+1...apb1...bq|g|mΓvubiTa1...apb1...bi1vbi+1...bqeu(|g|m)Ta1...apb1...bq)eupi=1eaiqi=1ebi
=|g|m(eu(Ta1...apb1...bq)+ΓaiuvTa1...ai1vai+1...apb1...bqΓvubiTa1...apb1...bi1vbi+1...bq)eupi=1eaiqi=1ebi
=|g|mT
And this is where I could have ended up much earlier if I had just used the chain rule without expanding the basis vectors/one-forms of the unweighted tensor's definition.

Back