print(sqrt(-1)())
| $i$ GOOD |
time: 0.817000ms stack: size: 9
|
simplifyAssertEq(sqrt(-1), i)
|
${\sqrt{-1}} = {i}$
GOOD |
time: 0.674000ms stack: size: 9
|
| ||
make sure, when distributing sqrt()'s, that the negative signs on the inside are simplified in advance
| ||
simplifyAssertEq( ((((-x*a - x*b)))^frac(1,2)), i * (sqrt(x) * sqrt(a+b)) )
|
${{\left({{ {-{x}} {{a}}}{-{{{x}} {{b}}}}}\right)}^{\frac{1}{2}}} = {{{i}} {{\sqrt{x}}} {{\sqrt{{a} + {b}}}}}$
GOOD |
time: 10.220000ms stack: size: 16
|
simplifyAssertEq( (-(((-x*a - x*b)))^frac(1,2)), -i * (sqrt(x) * sqrt(a+b)) )
|
${-{{\left({{ {-{x}} {{a}}}{-{{{x}} {{b}}}}}\right)}^{\frac{1}{2}}}} = { {-{i}} {{\sqrt{x}}} {{\sqrt{{a} + {b}}}}}$
GOOD |
time: 9.515000ms stack: size: 21
|
| ||
simplifyAssertEq( ((((-x*a - x*b)*-1))^frac(1,2)), (sqrt(x) * sqrt(a+b)) )
|
${{\left({{{\left({{ {-{x}} {{a}}}{-{{{x}} {{b}}}}}\right)}} \cdot {{-1}}}\right)}^{\frac{1}{2}}} = {{{\sqrt{x}}} {{\sqrt{{a} + {b}}}}}$
GOOD |
time: 5.549000ms stack: size: 15
|
simplifyAssertEq( (-(((-x*a - x*b)*-1))^frac(1,2)), -(sqrt(x) * sqrt(a+b)) )
|
${-{{\left({{{\left({{ {-{x}} {{a}}}{-{{{x}} {{b}}}}}\right)}} \cdot {{-1}}}\right)}^{\frac{1}{2}}}} = {-{{{\sqrt{x}}} {{\sqrt{{a} + {b}}}}}}$
GOOD |
time: 5.671000ms stack: size: 20
|
If sqrt, -1, and mul factor run out of order then -sqrt(-x) and sqrt(-x) will end up equal. And that isn't good for things like solve() on quadratics.
| ||
simplifyAssertEq( ((((-x*a - x*b)/-1)/y)^frac(1,2)), (sqrt(x) * sqrt(a+b)) / sqrt(y) )
|
${{\left({{\frac{1}{y}} {{\frac{1}{-1}}{\left({{ {-{x}} {{a}}}{-{{{x}} {{b}}}}}\right)}}}\right)}^{\frac{1}{2}}} = {\frac{{{\sqrt{x}}} {{\sqrt{{a} + {b}}}}}{\sqrt{y}}}$
GOOD |
time: 14.229000ms stack: size: 35
|
simplifyAssertEq( (-(((-x*a - x*b)/-1)/y)^frac(1,2)), -(sqrt(x) * sqrt(a+b)) / sqrt(y) )
|
${-{{\left({{\frac{1}{y}} {{\frac{1}{-1}}{\left({{ {-{x}} {{a}}}{-{{{x}} {{b}}}}}\right)}}}\right)}^{\frac{1}{2}}}} = {\frac{-{{{\sqrt{x}}} {{\sqrt{{a} + {b}}}}}}{\sqrt{y}}}$
GOOD |
time: 13.795000ms stack: size: 41
|
| ||
| ||
simplifying expressions with sqrts in them
| ||
simplifyAssertEq( 2^frac(-1,2) + 2^frac(1,2), frac(3, sqrt(2)) )
|
${{{2}^{\frac{-1}{2}}} + {{2}^{\frac{1}{2}}}} = {\frac{3}{\sqrt{2}}}$
GOOD |
time: 3.861000ms stack: size: 12
|
simplifyAssertEq( 2*2^frac(-1,2) + 2^frac(1,2), 2 * sqrt(2) )
|
${{{{2}} \cdot {{{2}^{\frac{-1}{2}}}}} + {{2}^{\frac{1}{2}}}} = {{{2}} {{\sqrt{2}}}}$
GOOD |
time: 1.912000ms stack: size: 13
|
simplifyAssertEq( 4*2^frac(-1,2) + 2^frac(1,2), 3 * sqrt(2) )
|
${{{{4}} \cdot {{{2}^{\frac{-1}{2}}}}} + {{2}^{\frac{1}{2}}}} = {{{3}} {{\sqrt{2}}}}$
GOOD |
time: 1.976000ms stack: size: 13
|
| ||
simplifyAssertEq( (1 + sqrt(3))^2 + (1 - sqrt(3))^2, 8 )
|
${{{\left({{1} + {\sqrt{3}}}\right)}^{2}} + {{\left({{1}{-{\sqrt{3}}}}\right)}^{2}}} = {8}$
GOOD |
time: 6.228000ms stack: size: 7
|
| ||
simplifyAssertEq( (frac(1,2)*sqrt(3))*(frac(sqrt(2),sqrt(3))) + (-frac(1,2))*(frac(1,3)*-sqrt(2)) , 2 * sqrt(2) / 3)
|
${{{{\frac{1}{2}}} {{\sqrt{3}}} {{\frac{\sqrt{2}}{\sqrt{3}}}}} + { {-{\frac{1}{2}}} {{\frac{1}{3}}} \cdot {-{\sqrt{2}}}}} = {{\frac{1}{3}} {{{2}} {{\sqrt{2}}}}}$
GOOD |
time: 9.600000ms stack: size: 13
|
| ||
simplifyAssertEq( -frac(1,3)*-frac(1+sqrt(3),3) + -frac(2,3)*frac(1,3) + -frac(2,3) * frac(1-sqrt(3),3), -frac(1 - sqrt(3), 3))
|
${{ {-{\frac{1}{3}}} \cdot {-{{\frac{1}{3}}{\left({{1} + {\sqrt{3}}}\right)}}}} + { {-{\frac{2}{3}}} {{\frac{1}{3}}}} + { {-{\frac{2}{3}}} {{{\frac{1}{3}}{\left({{1}{-{\sqrt{3}}}}\right)}}}}} = {-{{\frac{1}{3}}{\left({{1}{-{\sqrt{3}}}}\right)}}}$
GOOD |
time: 13.015000ms stack: size: 24
|
| ||
simplifyAssertEq( -sqrt(3)*sqrt(2)/(2*sqrt(3)) + sqrt(2)/6, -sqrt(2)/3 )
|
${{\frac{ {-{\sqrt{3}}} {{\sqrt{2}}}}{{{2}} {{\sqrt{3}}}}} + {{\frac{1}{6}} {\sqrt{2}}}} = {{\frac{1}{3}}{\left({-{\sqrt{2}}}\right)}}$
GOOD |
time: 4.790000ms stack: size: 17
|
| ||
simplifyAssertEq( 1 + 5*sqrt(5) + sqrt(5), 1 + 6*sqrt(5) )
|
${{1} + {{{5}} {{\sqrt{5}}}} + {\sqrt{5}}} = {{1} + {{{6}} {{\sqrt{5}}}}}$
GOOD |
time: 2.171000ms stack: size: 10
|
powers of the sqrt sometimes get caught simplifying as merging the exponents, and don't add.simplifyAssertEq( 1 + 25*sqrt(5) + sqrt(5), 1 + 26*sqrt(5) )
|
${{1} + {{{25}} {{\sqrt{5}}}} + {\sqrt{5}}} = {{1} + {{{26}} {{\sqrt{5}}}}}$
GOOD |
time: 2.123000ms stack: size: 10
|
simplifyAssertEq( 1 + 5*sqrt(5) - 5*sqrt(5), 1 )
|
${{{1} + {{{5}} {{\sqrt{5}}}}}{-{{{5}} {{\sqrt{5}}}}}} = {1}$
GOOD |
time: 1.132000ms stack: size: 7
|
| ||
simplifyAssertEq( -(1 + sqrt(5))/(2*sqrt(3)) , frac(1,2)*(-frac(1,sqrt(3)))*(1 + sqrt(5)) )
|
${\frac{-{\left({{1} + {\sqrt{5}}}\right)}}{{{2}} {{\sqrt{3}}}}} = {{{\frac{1}{2}}} \cdot {-{\frac{1}{\sqrt{3}}}} {{\left({{1} + {\sqrt{5}}}\right)}}}$
GOOD |
time: 17.324000ms stack: size: 83
|
| ||
simplifyAssertEq( (-(1-sqrt(3))/3)*(frac(1,3)) + ((2+sqrt(3))/6)*(-(1-sqrt(3))/3) + (-(1+2*sqrt(3))/6)*(-(1+sqrt(3))/3) , (1 + sqrt(3))/3 )
|
${{{{{\frac{1}{3}}{\left({-{\left({{1}{-{\sqrt{3}}}}\right)}}\right)}}} {{\frac{1}{3}}}} + {{{{\frac{1}{6}}{\left({{2} + {\sqrt{3}}}\right)}}} {{{\frac{1}{3}}{\left({-{\left({{1}{-{\sqrt{3}}}}\right)}}\right)}}}} + {{{{\frac{1}{6}}{\left({-{\left({{1} + {{{2}} {{\sqrt{3}}}}}\right)}}\right)}}} {{{\frac{1}{3}}{\left({-{\left({{1} + {\sqrt{3}}}\right)}}\right)}}}}} = {{\frac{1}{3}}{\left({{1} + {\sqrt{3}}}\right)}}$
GOOD |
time: 14.257000ms stack: size: 10
|
| ||
simplifyAssertEq( (-sqrt(sqrt(5) + 1) * (1 - sqrt(5))) / (4 * sqrt(sqrt(5) - 1)) , frac(1,2))
|
${\frac{ {-{\sqrt{{\sqrt{5}} + {1}}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}{{{4}} {{\sqrt{{\sqrt{5}}{-{1}}}}}}} = {\frac{1}{2}}$
GOOD |
time: 10.615000ms stack: size: 7
|
| ||
ok this is hard to explain ..simplifyAssertNe( 6 + 6 * sqrt(3), 12)
|
${{6} + {{{6}} {{\sqrt{3}}}}} \ne {12}$
GOOD |
time: 2.935000ms stack: size: 7
|
| ||
simplifyAssertEq( (sqrt(5) + 1) * (sqrt(5) - 1), 4)
|
${{{\left({{\sqrt{5}} + {1}}\right)}} {{\left({{\sqrt{5}}{-{1}}}\right)}}} = {4}$
GOOD |
time: 2.051000ms stack: size: 7
|
simplifyAssertEq( sqrt((sqrt(5) + 1) * (sqrt(5) - 1)), 2)
|
${\sqrt{{{\left({{\sqrt{5}} + {1}}\right)}} {{\left({{\sqrt{5}}{-{1}}}\right)}}}} = {2}$
GOOD |
time: 2.512000ms stack: size: 7
|
| ||
simplifyAssertEq( (1 + 2 / sqrt(3)) / (2 * sqrt(3)), (2 + sqrt(3)) / 6 )
|
${\frac{{1} + {\frac{2}{\sqrt{3}}}}{{{2}} {{\sqrt{3}}}}} = {{\frac{1}{6}}{\left({{2} + {\sqrt{3}}}\right)}}$
GOOD |
time: 6.311000ms stack: size: 10
|
| ||
simplifyAssertEq( (frac(1,3)*(-(1-sqrt(3)))) * (frac(1,3)*(-(1-sqrt(3)))) + (frac(1,6)*(2+sqrt(3))) * (frac(1,3)*(1+sqrt(3))) + (frac(1,6)*-(1+2*sqrt(3))) * frac(1,3), (4 - sqrt(3))/6 )
|
${{{{\frac{1}{3}}} \cdot {-{\left({{1}{-{\sqrt{3}}}}\right)}} {{\frac{1}{3}}} \cdot {-{\left({{1}{-{\sqrt{3}}}}\right)}}} + {{{\frac{1}{6}}} {{\left({{2} + {\sqrt{3}}}\right)}} {{\frac{1}{3}}} {{\left({{1} + {\sqrt{3}}}\right)}}} + {{{\frac{1}{6}}} \cdot {-{\left({{1} + {{{2}} {{\sqrt{3}}}}}\right)}} {{\frac{1}{3}}}}} = {{\frac{1}{6}}{\left({{4}{-{\sqrt{3}}}}\right)}}$
GOOD |
time: 13.332000ms stack: size: 11
|
| ||
simplifyAssertEq( 1/sqrt(6) + 1/sqrt(6), 2/sqrt(6) )
|
${{\frac{1}{\sqrt{6}}} + {\frac{1}{\sqrt{6}}}} = {\frac{2}{\sqrt{6}}}$
GOOD |
time: 2.362000ms stack: size: 23
|
| ||
simplifyAssertEq( (32 * sqrt(3) + 32 * sqrt(15)) / 384, (sqrt(3) + sqrt(15)) / 12 )
|
${{\frac{1}{384}}{\left({{{{32}} {{\sqrt{3}}}} + {{{32}} {{\sqrt{15}}}}}\right)}} = {{\frac{1}{12}}{\left({{\sqrt{3}} + {\sqrt{15}}}\right)}}$
GOOD |
time: 31.563000ms stack: size: 17
|
| ||
simplifyAssertEq( sqrt(5)/(2*sqrt(3)), sqrt(15)/6 )
|
${\frac{\sqrt{5}}{{{2}} {{\sqrt{3}}}}} = {{\frac{1}{6}} {\sqrt{15}}}$
GOOD |
time: 6.134000ms stack: size: 111
|
| ||
simplifyAssertEq( -1/(2*sqrt(3)), -sqrt(frac(1,12)) )
|
${\frac{-1}{{{2}} {{\sqrt{3}}}}} = {-{\sqrt{\frac{1}{12}}}}$
GOOD |
time: 5.803000ms stack: size: 98
|
simplifyAssertNe( -sqrt(frac(1,12)), sqrt(frac(1,12)) )
|
${-{\sqrt{\frac{1}{12}}}} \ne {\sqrt{\frac{1}{12}}}$
GOOD |
time: 6.492000ms stack: size: 137
|
| ||
simplifyAssertEq( (sqrt(2)*sqrt(frac(1,3))) * -frac(1,3) + (-frac(1,2)) * (sqrt(2)/sqrt(3)) + (frac(1,2)*1/sqrt(3)) * (-sqrt(2)/3), -sqrt(2) / sqrt(3) )
|
${{{{\sqrt{2}}} {{\sqrt{\frac{1}{3}}}} \cdot {-{\frac{1}{3}}}} + { {-{\frac{1}{2}}} {{\frac{\sqrt{2}}{\sqrt{3}}}}} + {{{\frac{\frac{1}{2}}{\sqrt{3}}}} {{{\frac{1}{3}}{\left({-{\sqrt{2}}}\right)}}}}} = {\frac{-{\sqrt{2}}}{\sqrt{3}}}$
GOOD |
time: 20.320000ms stack: size: 22
|
| ||
simplifyAssertEq( 1 + ( -(7 - 3*sqrt(5)) / (3*(3 - sqrt(5))) )*(1 + frac(1,2)), (1 + sqrt(5))/4 )
|
${{1} + {{{\frac{-{\left({{7}{-{{{3}} {{\sqrt{5}}}}}}\right)}}{{{3}} {{\left({{3}{-{\sqrt{5}}}}\right)}}}}} {{\left({{1} + {\frac{1}{2}}}\right)}}}} = {{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}$
GOOD |
time: 5.219000ms stack: size: 10
|
| ||
simplifyAssertEq( (-(sqrt(5)-1)/2)/sqrt((-(sqrt(5)-1)/2)^2 + 1), -sqrt( (sqrt(5) - 1) / (2 * sqrt(5)) ))
|
${\frac{{\frac{1}{2}}{\left({-{\left({{\sqrt{5}}{-{1}}}\right)}}\right)}}{\sqrt{{{\left({{\frac{1}{2}}{\left({-{\left({{\sqrt{5}}{-{1}}}\right)}}\right)}}\right)}^{2}} + {1}}}} = {-{\sqrt{\frac{{\sqrt{5}}{-{1}}}{{{2}} {{\sqrt{5}}}}}}}$
GOOD |
time: 35.123000ms stack: size: 120
|
| ||
simplifyAssertEq(sqrt(frac(15,16)) * sqrt(frac(2,3)), sqrt(5)/(2*sqrt(2)))
|
${{{\sqrt{\frac{15}{16}}}} {{\sqrt{\frac{2}{3}}}}} = {\frac{\sqrt{5}}{{{2}} {{\sqrt{2}}}}}$
GOOD |
time: 3.974000ms stack: size: 18
|
| ||
| ||
simplify() was introducing an unflattened mul where there originally was none
| ||
TODO NOTICE - if there's just sqrt(2)*sqrt(3) then the sqrts will merge ... so should they merge if that extra 2 is out front?
| ||
local expr = 2*sqrt(2)*sqrt(3) local sexpr = expr() printbr(Verbose(expr), '=', Verbose(sexpr)) simplifyAssertEq(expr,sexpr)
|
*[2, sqrt[2], sqrt[3]] = *[2, sqrt[2], sqrt[3]]
${{{2}} {{\sqrt{2}}} {{\sqrt{3}}}} = {{{2}} {{\sqrt{2}}} {{\sqrt{3}}}}$ GOOD |
time: 1.748000ms stack: size: 20
|
| ||
| ||
these go bad when I don't have mul/Prune/combineMulOfLikePow_mulPowAdd
| ||
simplifyAssertEq( ( sqrt(f) * (g + f * sqrt(g)) )() , sqrt(f) * sqrt(g) * (sqrt(g) + f))
|
${{{\sqrt{f}}} {{\sqrt{g}}} {{\left({{\sqrt{g}} + {f}}\right)}}} = {{{\sqrt{f}}} {{\sqrt{g}}} {{\left({{\sqrt{g}} + {f}}\right)}}}$
GOOD |
time: 9.469000ms stack: size: 21
|
simplifyAssertEq( ( sqrt(f) * (g + sqrt(g)) )() , sqrt(f) * sqrt(g) * (sqrt(g) + 1))
|
${{{{\sqrt{f}}} {{\sqrt{g}}}} + {{{g}} {{\sqrt{f}}}}} = {{{\sqrt{f}}} {{\sqrt{g}}} {{\left({{\sqrt{g}} + {1}}\right)}}}$
GOOD |
time: 5.059000ms stack: size: 23
|
| ||
| ||
hmm having constant factor and sqrt/pow simplification problems
| ||
workssimplifyAssertEq( sqrt(15) - sqrt(15), 0)
|
${{\sqrt{15}}{-{\sqrt{15}}}} = {0}$
GOOD |
time: 0.666000ms stack: size: 7
|
workssimplifyAssertEq( sqrt(6) - sqrt(Constant(2)*3), 0)
|
${{\sqrt{6}}{-{\sqrt{{{2}} \cdot {{3}}}}}} = {0}$
GOOD |
time: 0.486000ms stack: size: 7
|
simplifyAssertEq( sqrt(6) - sqrt(2)*sqrt(3), 0)
|
${{\sqrt{6}}{-{{{\sqrt{2}}} {{\sqrt{3}}}}}} = {0}$
GOOD |
time: 0.525000ms stack: size: 7
|
simplifyAssertEq( sqrt(15)/2 - sqrt(15)/2, 0)
|
${{{\frac{1}{2}} {\sqrt{15}}}{-{{\frac{1}{2}} {\sqrt{15}}}}} = {0}$
GOOD |
time: 1.504000ms stack: size: 7
|
simplifyAssertEq( sqrt(6*x) - sqrt(2)*sqrt(3)*sqrt(x), 0)
|
${{\sqrt{{{6}} {{x}}}}{-{{{\sqrt{2}}} {{\sqrt{3}}} {{\sqrt{x}}}}}} = {0}$
GOOD |
time: 0.700000ms stack: size: 7
|
| ||
| ||
without the extra product our difference-of-squares picks up fine ...simplifyAssertEq( (3+sqrt(5)) * (3 - sqrt(5)), 4 )
|
${{{\left({{3} + {\sqrt{5}}}\right)}} {{\left({{3}{-{\sqrt{5}}}}\right)}}} = {4}$
GOOD |
time: 1.742000ms stack: size: 7
|
and it does recognize without the sqrts as a simplified form ...assertEq( (4 * sqrt(3+sqrt(5)))(), 4 * sqrt(3+sqrt(5)) )
|
${{{4}} {{\sqrt{{3} + {\sqrt{5}}}}}} = {{{4}} {{\sqrt{{3} + {\sqrt{5}}}}}}$
GOOD |
time: 1.101000ms stack: size: 11
|
but with and extra product of a sqrt of a sum ... it doesn't ... in fact specifically because the sqrt(3+sqrt(5)) matches the non-sqrt (3+sqrt(5)), so the powers combine, and then we can't merge all the sqrts into one as we did beforesimplifyAssertEq( (3+sqrt(5)) * (3 - sqrt(5)) * sqrt(3+sqrt(5)) , 4 * sqrt(3+sqrt(5)))
|
${{{\left({{3} + {\sqrt{5}}}\right)}} {{\left({{3}{-{\sqrt{5}}}}\right)}} {{\sqrt{{3} + {\sqrt{5}}}}}} = {{{4}} {{\sqrt{{3} + {\sqrt{5}}}}}}$
expected ${{\left({{3} + {\sqrt{5}}}\right)}} {{\left({{3}{-{\sqrt{5}}}}\right)}} {{\sqrt{{3} + {\sqrt{5}}}}}$ to equal ${{4}} {{\sqrt{{3} + {\sqrt{5}}}}}$ found ${{\left({{3} + {\sqrt{5}}}\right)}} {{\sqrt{{3} + {\sqrt{5}}}}} {{\left({{3}{-{\sqrt{5}}}}\right)}}$ vs ${{4}} {{\sqrt{{3} + {\sqrt{5}}}}}$ lhs stack Init ${{\left({{3} + {\sqrt{5}}}\right)}} {{\left({{3}{-{\sqrt{5}}}}\right)}} {{\sqrt{{3} + {\sqrt{5}}}}}$ *[+[3, sqrt[5]], +[3, unm(sqrt[5])], sqrt[+[3, sqrt[5]]]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] sqrt:Prune:apply ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] sqrt:Prune:apply ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] unm:Prune:doubleNegative ${{-1}} \cdot {{{5}^{\frac{1}{2}}}}$ *[-1, ^[5, /[1, 2]]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] sqrt:Prune:apply ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] sqrt:Prune:apply ${\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}$ ^[+[3, ^[5, /[1, 2]]], /[1, 2]] +:Prune:combineConstants $3$ 3 +:Prune:factorOutDivs $\frac{3}{2}$ /[3, 2] +:Prune:combineConstants $\frac{3}{2}$ /[3, 2] *:Prune:combinePows ${{{\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{3}{2}}}} {{\left({{3} + {{{-1}} \cdot {{{5}^{\frac{1}{2}}}}}}\right)}}$ *[^[+[3, ^[5, /[1, 2]]], /[3, 2]], +[3, *[-1, ^[5, /[1, 2]]]]] Prune ${{{\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{3}{2}}}} {{\left({{3} + {{{-1}} \cdot {{{5}^{\frac{1}{2}}}}}}\right)}}$ *[^[+[3, ^[5, /[1, 2]]], /[3, 2]], +[3, *[-1, ^[5, /[1, 2]]]]] *:Expand:apply ${{{{\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{3}{2}}}} {{3}}} + {{{{\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{3}{2}}}} {{{{-1}} \cdot {{{5}^{\frac{1}{2}}}}}}}$ +[*[^[+[3, ^[5, /[1, 2]]], /[3, 2]], 3], *[^[+[3, ^[5, /[1, 2]]], /[3, 2]], *[-1, ^[5, /[1, 2]]]]] Expand ${{{{\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{3}{2}}}} {{3}}} + {{{{\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{3}{2}}}} {{{{-1}} \cdot {{{5}^{\frac{1}{2}}}}}}}$ +[*[^[+[3, ^[5, /[1, 2]]], /[3, 2]], 3], *[^[+[3, ^[5, /[1, 2]]], /[3, 2]], *[-1, ^[5, /[1, 2]]]]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] *:Prune:flatten ${{-1}} \cdot {{{5}^{\frac{1}{2}}}} {{{\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{3}{2}}}}$ *[-1, ^[5, /[1, 2]], ^[+[3, ^[5, /[1, 2]]], /[3, 2]]] Prune ${{{3}} {{{\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{3}{2}}}}} + {{{-1}} \cdot {{{5}^{\frac{1}{2}}}} {{{\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{3}{2}}}}}$ +[*[3, ^[+[3, ^[5, /[1, 2]]], /[3, 2]]], *[-1, ^[5, /[1, 2]], ^[+[3, ^[5, /[1, 2]]], /[3, 2]]]] Factor ${{{\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{3}{2}}}} {{\left({{3} + {{{-1}} \cdot {{{5}^{\frac{1}{2}}}}}}\right)}}$ *[^[+[3, ^[5, /[1, 2]]], /[3, 2]], +[3, *[-1, ^[5, /[1, 2]]]]] Prune ${{{\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{3}{2}}}} {{\left({{3} + {{{-1}} \cdot {{{5}^{\frac{1}{2}}}}}}\right)}}$ *[^[+[3, ^[5, /[1, 2]]], /[3, 2]], +[3, *[-1, ^[5, /[1, 2]]]]] Tidy ${{\left({{3} + {\sqrt{5}}}\right)}} {{\sqrt{{3} + {\sqrt{5}}}}} {{\left({{3}{-{\sqrt{5}}}}\right)}}$ *[+[3, sqrt[5]], sqrt[+[3, sqrt[5]]], +[3, unm(sqrt[5])]] rhs stack Init ${{4}} {{\sqrt{{3} + {\sqrt{5}}}}}$ *[4, sqrt[+[3, sqrt[5]]]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] sqrt:Prune:apply ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] sqrt:Prune:apply ${\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}$ ^[+[3, ^[5, /[1, 2]]], /[1, 2]] Prune ${{4}} {{{\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}$ *[4, ^[+[3, ^[5, /[1, 2]]], /[1, 2]]] Expand ${{4}} {{{\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}$ *[4, ^[+[3, ^[5, /[1, 2]]], /[1, 2]]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] Prune ${{4}} {{{\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}$ *[4, ^[+[3, ^[5, /[1, 2]]], /[1, 2]]] Factor ${{4}} {{{\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}$ *[4, ^[+[3, ^[5, /[1, 2]]], /[1, 2]]] Prune ${{4}} {{{\left({{3} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}$ *[4, ^[+[3, ^[5, /[1, 2]]], /[1, 2]]] Tidy ${{4}} {{\sqrt{{3} + {\sqrt{5}}}}}$ *[4, sqrt[+[3, sqrt[5]]]] BAD /home/chris/Projects/lua/symmath/tests/unit/unit.lua:125: failed stack traceback: /home/chris/Projects/lua/symmath/tests/unit/unit.lua:246: in function [C]: in function 'error' /home/chris/Projects/lua/symmath/tests/unit/unit.lua:125: in function 'simplifyAssertEq' [string "simplifyAssertEq( (3+sqrt(5)) * (3 - sqrt(5))..."]:1: in main chunk /home/chris/Projects/lua/symmath/tests/unit/unit.lua:238: in function [C]: in function 'xpcall' /home/chris/Projects/lua/symmath/tests/unit/unit.lua:237: in function 'exec' sqrt.lua:120: in function 'cb' /home/chris/Projects/lua/ext/timer.lua:58: in function 'timer' sqrt.lua:9: in main chunk [C]: at 0x5cbe028e2380 |
time: 7.440000ms stack: size: 11
|
seesimplifyAssertEq( (3+sqrt(5)) * (3 - sqrt(5)) * sqrt(2+sqrt(5)) , 4 * sqrt(2+sqrt(5)))
|
${{{\left({{3} + {\sqrt{5}}}\right)}} {{\left({{3}{-{\sqrt{5}}}}\right)}} {{\sqrt{{2} + {\sqrt{5}}}}}} = {{{4}} {{\sqrt{{2} + {\sqrt{5}}}}}}$
GOOD |
time: 8.075000ms stack: size: 11
|
so I need to merge powers if the power is a fraction *and* the denominator matches
| ||
| ||
these are in simplification loops
| ||
| ||
start with -1 / ( (√√5 √(√5 - 1)) / √2 ) ... what mine gets now vs what mathematica gets
| ||
simplifyAssertEq( -1 / ( sqrt(sqrt(5) * (sqrt(5) - 1)) / sqrt(2) ), sqrt((5 + sqrt(5)) / 10))
|
${\frac{-1}{\frac{\sqrt{{{\sqrt{5}}} {{\left({{\sqrt{5}}{-{1}}}\right)}}}}{\sqrt{2}}}} = {\sqrt{{\frac{1}{10}}{\left({{5} + {\sqrt{5}}}\right)}}}$
expected $\frac{-1}{\frac{\sqrt{{{\sqrt{5}}} {{\left({{\sqrt{5}}{-{1}}}\right)}}}}{\sqrt{2}}}$ to equal $\sqrt{{\frac{1}{10}}{\left({{5} + {\sqrt{5}}}\right)}}$ found $-{\frac{{{{\sqrt{2}}} {{\sqrt{{-{1}} + {\sqrt{5}}}}}} + {{{\sqrt{10}}} {{\sqrt{{-{1}} + {\sqrt{5}}}}}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}}$ vs $\frac{\sqrt{{1} + {\sqrt{5}}}}{{{\sqrt{2}}} {{{5}^{\frac{1}{4}}}}}$ lhs stack Init $\frac{-1}{\frac{\sqrt{{{\sqrt{5}}} {{\left({{\sqrt{5}}{-{1}}}\right)}}}}{\sqrt{2}}}$ /[-1, /[sqrt[*[sqrt[5], +[sqrt[5], unm(1)]]], sqrt[2]]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] sqrt:Prune:apply ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] sqrt:Prune:apply ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] unm:Prune:doubleNegative $-1$ -1 ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] +:Prune:combineConstants ${-1} + {{5}^{\frac{1}{2}}}$ +[-1, ^[5, /[1, 2]]] +:Prune:combineConstants $2$ 2 *:Prune:combinePows ${\left({\frac{1}{2}}\right)}^{2}$ ^[/[1, 2], 2] ^:Prune:distributePow ${5}^{{\left({\frac{1}{2}}\right)}^{2}}$ ^[5, ^[/[1, 2], 2]] ^:Prune:expandMulOfLikePow ${{{5}^{{\left({\frac{1}{2}}\right)}^{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}$ *[^[5, ^[/[1, 2], 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]] sqrt:Prune:apply ${{{5}^{{\left({\frac{1}{2}}\right)}^{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}$ *[^[5, ^[/[1, 2], 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]] ^:Prune:sqrtFix4 ${2}^{\frac{1}{2}}$ ^[2, /[1, 2]] sqrt:Prune:apply ${2}^{\frac{1}{2}}$ ^[2, /[1, 2]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] unm:Prune:doubleNegative ${{-1}} \cdot {{{5}^{\frac{1}{2}}}}$ *[-1, ^[5, /[1, 2]]] ^:Prune:simplifyConstantPowers $1$ 1 ^:Prune:simplifyConstantPowers $1$ 1 *:Prune:apply $5$ 5 *:Prune:apply $-5$ -5 unm:Prune:doubleNegative $-5$ -5 +:Prune:combineConstants $-4$ -4 unm:Prune:doubleNegative ${{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}} {{\left({{-1} + {{{-1}} \cdot {{{5}^{\frac{1}{2}}}}}}\right)}}$ *[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]], +[-1, *[-1, ^[5, /[1, 2]]]]] unm:Prune:doubleNegative ${{4}} \cdot {{{5}^{{\left({\frac{1}{2}}\right)}^{2}}}}$ *[4, ^[5, ^[/[1, 2], 2]]] /:Prune:negOverNeg $\frac{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}} {{\left({{-1} + {{{-1}} \cdot {{{5}^{\frac{1}{2}}}}}}\right)}}}{{{4}} \cdot {{{5}^{{\left({\frac{1}{2}}\right)}^{2}}}}}$ /[*[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]], +[-1, *[-1, ^[5, /[1, 2]]]]], *[4, ^[5, ^[/[1, 2], 2]]]] /:Prune:conjOfSqrtInDenom $\frac{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}} {{\left({{-1} + {{{-1}} \cdot {{{5}^{\frac{1}{2}}}}}}\right)}}}{{{4}} \cdot {{{5}^{{\left({\frac{1}{2}}\right)}^{2}}}}}$ /[*[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]], +[-1, *[-1, ^[5, /[1, 2]]]]], *[4, ^[5, ^[/[1, 2], 2]]]] /:Prune:mulBySqrtConj $\frac{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}} {{\left({{-1} + {{{-1}} \cdot {{{5}^{\frac{1}{2}}}}}}\right)}}}{{{4}} \cdot {{{5}^{{\left({\frac{1}{2}}\right)}^{2}}}}}$ /[*[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]], +[-1, *[-1, ^[5, /[1, 2]]]]], *[4, ^[5, ^[/[1, 2], 2]]]] /:Prune:qIsDiv $\frac{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}} {{\left({{-1} + {{{-1}} \cdot {{{5}^{\frac{1}{2}}}}}}\right)}}}{{{4}} \cdot {{{5}^{{\left({\frac{1}{2}}\right)}^{2}}}}}$ /[*[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]], +[-1, *[-1, ^[5, /[1, 2]]]]], *[4, ^[5, ^[/[1, 2], 2]]]] Prune $\frac{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}} {{\left({{-1} + {{{-1}} \cdot {{{5}^{\frac{1}{2}}}}}}\right)}}}{{{4}} \cdot {{{5}^{{\left({\frac{1}{2}}\right)}^{2}}}}}$ /[*[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]], +[-1, *[-1, ^[5, /[1, 2]]]]], *[4, ^[5, ^[/[1, 2], 2]]]] *:Expand:apply ${{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}} \cdot {{-1}}} + {{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}} {{{{-1}} \cdot {{{5}^{\frac{1}{2}}}}}}}$ +[*[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]], -1], *[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]], *[-1, ^[5, /[1, 2]]]]] ^:Expand:integerPower ${{1}} \cdot {{1}}$ *[1, 1] ^:Expand:integerPower ${{2}} \cdot {{2}}$ *[2, 2] ^:Expand:frac $\frac{{{1}} \cdot {{1}}}{{{2}} \cdot {{2}}}$ /[*[1, 1], *[2, 2]] Expand $\frac{{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}} \cdot {{-1}}} + {{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}} {{{{-1}} \cdot {{{5}^{\frac{1}{2}}}}}}}}{{{4}} \cdot {{{5}^{\frac{{{1}} \cdot {{1}}}{{{2}} \cdot {{2}}}}}}}$ /[+[*[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]], -1], *[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]], *[-1, ^[5, /[1, 2]]]]], *[4, ^[5, /[*[1, 1], *[2, 2]]]]] ^:Prune:sqrtFix4 ${2}^{\frac{1}{2}}$ ^[2, /[1, 2]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] ^:Prune:sqrtFix4 ${2}^{\frac{1}{2}}$ ^[2, /[1, 2]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] *:Prune:apply $10$ 10 *:Prune:combineMulOfLikePow_constants ${{-1}} \cdot {{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}$ *[-1, ^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]] *:Prune:flatten ${{-1}} \cdot {{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}$ *[-1, ^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]] *:Prune:apply $1$ 1 *:Prune:apply $4$ 4 Prune $\frac{{{{-1}} \cdot {{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}} + {{{-1}} \cdot {{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}$ /[+[*[-1, ^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]], *[-1, ^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]], *[4, ^[5, /[1, 4]]]] Factor $\frac{{{-1}} {{\left({{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}} + {{{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}\right)}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}$ /[*[-1, +[*[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]], *[^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]]], *[4, ^[5, /[1, 4]]]] Prune $\frac{{{-1}} {{\left({{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}} + {{{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}\right)}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}$ /[*[-1, +[*[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]], *[^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]]], *[4, ^[5, /[1, 4]]]] Expand $\frac{{{{-1}} {{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}} + {{{-1}} {{{{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}$ /[+[*[-1, *[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]], *[-1, *[^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]]], *[4, ^[5, /[1, 4]]]] Prune $\frac{{{{-1}} \cdot {{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}} + {{{-1}} \cdot {{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}$ /[+[*[-1, ^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]], *[-1, ^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]], *[4, ^[5, /[1, 4]]]] Factor $\frac{{{-1}} {{\left({{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}} + {{{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}\right)}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}$ /[*[-1, +[*[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]], *[^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]]], *[4, ^[5, /[1, 4]]]] Prune $\frac{{{-1}} {{\left({{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}} + {{{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}\right)}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}$ /[*[-1, +[*[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]], *[^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]]], *[4, ^[5, /[1, 4]]]] Tidy $-{\frac{{{{\sqrt{2}}} {{\sqrt{{-{1}} + {\sqrt{5}}}}}} + {{{\sqrt{10}}} {{\sqrt{{-{1}} + {\sqrt{5}}}}}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}}$ unm(/[+[*[sqrt[2], sqrt[+[unm(1), sqrt[5]]]], *[sqrt[10], sqrt[+[unm(1), sqrt[5]]]]], *[4, ^[5, /[1, 4]]]]) rhs stack Init $\sqrt{{\frac{1}{10}}{\left({{5} + {\sqrt{5}}}\right)}}$ sqrt[/[+[5, sqrt[5]], 10]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] sqrt:Prune:apply ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] sqrt:Prune:apply ${\left({{\frac{1}{10}}{\left({{5} + {{5}^{\frac{1}{2}}}}\right)}}\right)}^{\frac{1}{2}}$ ^[/[+[5, ^[5, /[1, 2]]], 10], /[1, 2]] Prune ${\left({{\frac{1}{10}}{\left({{5} + {{5}^{\frac{1}{2}}}}\right)}}\right)}^{\frac{1}{2}}$ ^[/[+[5, ^[5, /[1, 2]]], 10], /[1, 2]] ^:Expand:frac $\frac{{\left({{5} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}{{10}^{\frac{1}{2}}}$ /[^[+[5, ^[5, /[1, 2]]], /[1, 2]], ^[10, /[1, 2]]] Expand $\frac{{\left({{5} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}{{10}^{\frac{1}{2}}}$ /[^[+[5, ^[5, /[1, 2]]], /[1, 2]], ^[10, /[1, 2]]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] ^:Prune:sqrtFix4 ${10}^{\frac{1}{2}}$ ^[10, /[1, 2]] Prune $\frac{{\left({{5} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}{{10}^{\frac{1}{2}}}$ /[^[+[5, ^[5, /[1, 2]]], /[1, 2]], ^[10, /[1, 2]]] Factor $\frac{{{{{5}^{\frac{1}{2}}}^{\frac{1}{2}}}} {{{\left({{1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}{{10}^{\frac{1}{2}}}$ /[*[^[^[5, /[1, 2]], /[1, 2]], ^[+[1, ^[5, /[1, 2]]], /[1, 2]]], ^[10, /[1, 2]]] Prune $\frac{{\left({{1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}{{{{2}^{\frac{1}{2}}}} {{{5}^{\frac{1}{4}}}}}$ /[^[+[1, ^[5, /[1, 2]]], /[1, 2]], *[^[2, /[1, 2]], ^[5, /[1, 4]]]] Expand $\frac{{\left({{1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}{{{{2}^{\frac{1}{2}}}} {{{5}^{\frac{1}{4}}}}}$ /[^[+[1, ^[5, /[1, 2]]], /[1, 2]], *[^[2, /[1, 2]], ^[5, /[1, 4]]]] Prune $\frac{{\left({{1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}{{{{2}^{\frac{1}{2}}}} {{{5}^{\frac{1}{4}}}}}$ /[^[+[1, ^[5, /[1, 2]]], /[1, 2]], *[^[2, /[1, 2]], ^[5, /[1, 4]]]] Factor $\frac{{\left({{1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}{{{{2}^{\frac{1}{2}}}} {{{5}^{\frac{1}{4}}}}}$ /[^[+[1, ^[5, /[1, 2]]], /[1, 2]], *[^[2, /[1, 2]], ^[5, /[1, 4]]]] Prune $\frac{{\left({{1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}{{{{2}^{\frac{1}{2}}}} {{{5}^{\frac{1}{4}}}}}$ /[^[+[1, ^[5, /[1, 2]]], /[1, 2]], *[^[2, /[1, 2]], ^[5, /[1, 4]]]] Tidy $\frac{\sqrt{{1} + {\sqrt{5}}}}{{{\sqrt{2}}} {{{5}^{\frac{1}{4}}}}}$ /[sqrt[+[1, sqrt[5]]], *[sqrt[2], ^[5, /[1, 4]]]] BAD /home/chris/Projects/lua/symmath/tests/unit/unit.lua:125: failed stack traceback: /home/chris/Projects/lua/symmath/tests/unit/unit.lua:246: in function [C]: in function 'error' /home/chris/Projects/lua/symmath/tests/unit/unit.lua:125: in function 'simplifyAssertEq' [string "simplifyAssertEq( -1 / ( sqrt(sqrt(5) * (sqrt..."]:1: in main chunk /home/chris/Projects/lua/symmath/tests/unit/unit.lua:238: in function [C]: in function 'xpcall' /home/chris/Projects/lua/symmath/tests/unit/unit.lua:237: in function 'exec' sqrt.lua:120: in function 'cb' /home/chris/Projects/lua/ext/timer.lua:58: in function 'timer' sqrt.lua:9: in main chunk [C]: at 0x5cbe028e2380 |
time: 20.274000ms stack: size: 17
|
simplifyAssertEq( -(sqrt( 10 * (sqrt(5) - 1) ) + sqrt(2 * (sqrt(5) - 1))) / (4 * sqrt(sqrt(5))), sqrt((5 + sqrt(5)) / 10))
|
${\frac{-{\left({{\sqrt{{{10}} {{\left({{\sqrt{5}}{-{1}}}\right)}}}} + {\sqrt{{{2}} {{\left({{\sqrt{5}}{-{1}}}\right)}}}}}\right)}}{{{4}} {{\sqrt{\sqrt{5}}}}}} = {\sqrt{{\frac{1}{10}}{\left({{5} + {\sqrt{5}}}\right)}}}$
expected $\frac{-{\left({{\sqrt{{{10}} {{\left({{\sqrt{5}}{-{1}}}\right)}}}} + {\sqrt{{{2}} {{\left({{\sqrt{5}}{-{1}}}\right)}}}}}\right)}}{{{4}} {{\sqrt{\sqrt{5}}}}}$ to equal $\sqrt{{\frac{1}{10}}{\left({{5} + {\sqrt{5}}}\right)}}$ found $-{\frac{{{{\sqrt{2}}} {{\sqrt{{-{1}} + {\sqrt{5}}}}}} + {{{\sqrt{10}}} {{\sqrt{{-{1}} + {\sqrt{5}}}}}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}}$ vs $\frac{\sqrt{{1} + {\sqrt{5}}}}{{{\sqrt{2}}} {{{5}^{\frac{1}{4}}}}}$ lhs stack Init $\frac{-{\left({{\sqrt{{{10}} {{\left({{\sqrt{5}}{-{1}}}\right)}}}} + {\sqrt{{{2}} {{\left({{\sqrt{5}}{-{1}}}\right)}}}}}\right)}}{{{4}} {{\sqrt{\sqrt{5}}}}}$ /[unm(+[sqrt[*[10, +[sqrt[5], unm(1)]]], sqrt[*[2, +[sqrt[5], unm(1)]]]]), *[4, sqrt[sqrt[5]]]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] sqrt:Prune:apply ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] unm:Prune:doubleNegative $-1$ -1 ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] +:Prune:combineConstants ${-1} + {{5}^{\frac{1}{2}}}$ +[-1, ^[5, /[1, 2]]] ^:Prune:sqrtFix4 ${10}^{\frac{1}{2}}$ ^[10, /[1, 2]] ^:Prune:expandMulOfLikePow ${{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}$ *[^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]] sqrt:Prune:apply ${{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}$ *[^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] sqrt:Prune:apply ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] unm:Prune:doubleNegative $-1$ -1 ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] +:Prune:combineConstants ${-1} + {{5}^{\frac{1}{2}}}$ +[-1, ^[5, /[1, 2]]] ^:Prune:sqrtFix4 ${2}^{\frac{1}{2}}$ ^[2, /[1, 2]] ^:Prune:expandMulOfLikePow ${{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}$ *[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]] sqrt:Prune:apply ${{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}$ *[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]] unm:Prune:doubleNegative ${{-1}} {{\left({{{{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}} + {{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}\right)}}$ *[-1, +[*[^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]], *[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] sqrt:Prune:apply ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] +:Prune:combineConstants $2$ 2 *:Prune:combinePows ${\left({\frac{1}{2}}\right)}^{2}$ ^[/[1, 2], 2] ^:Prune:distributePow ${5}^{{\left({\frac{1}{2}}\right)}^{2}}$ ^[5, ^[/[1, 2], 2]] sqrt:Prune:apply ${5}^{{\left({\frac{1}{2}}\right)}^{2}}$ ^[5, ^[/[1, 2], 2]] Prune $\frac{{{-1}} {{\left({{{{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}} + {{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}\right)}}}{{{4}} \cdot {{{5}^{{\left({\frac{1}{2}}\right)}^{2}}}}}$ /[*[-1, +[*[^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]], *[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]]], *[4, ^[5, ^[/[1, 2], 2]]]] *:Expand:apply ${{{-1}} {{{{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}} + {{{-1}} {{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}}$ +[*[-1, *[^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]], *[-1, *[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]]] ^:Expand:integerPower ${{1}} \cdot {{1}}$ *[1, 1] ^:Expand:integerPower ${{2}} \cdot {{2}}$ *[2, 2] ^:Expand:frac $\frac{{{1}} \cdot {{1}}}{{{2}} \cdot {{2}}}$ /[*[1, 1], *[2, 2]] Expand $\frac{{{{-1}} {{{{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}} + {{{-1}} {{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}}}{{{4}} \cdot {{{5}^{\frac{{{1}} \cdot {{1}}}{{{2}} \cdot {{2}}}}}}}$ /[+[*[-1, *[^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]], *[-1, *[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]]], *[4, ^[5, /[*[1, 1], *[2, 2]]]]] ^:Prune:sqrtFix4 ${10}^{\frac{1}{2}}$ ^[10, /[1, 2]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] *:Prune:flatten ${{-1}} \cdot {{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}$ *[-1, ^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]] ^:Prune:sqrtFix4 ${2}^{\frac{1}{2}}$ ^[2, /[1, 2]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] *:Prune:flatten ${{-1}} \cdot {{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}$ *[-1, ^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]] *:Prune:apply $1$ 1 *:Prune:apply $4$ 4 Prune $\frac{{{{-1}} \cdot {{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}} + {{{-1}} \cdot {{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}$ /[+[*[-1, ^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]], *[-1, ^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]], *[4, ^[5, /[1, 4]]]] Factor $\frac{{{-1}} {{\left({{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}} + {{{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}\right)}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}$ /[*[-1, +[*[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]], *[^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]]], *[4, ^[5, /[1, 4]]]] Prune $\frac{{{-1}} {{\left({{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}} + {{{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}\right)}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}$ /[*[-1, +[*[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]], *[^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]]], *[4, ^[5, /[1, 4]]]] Expand $\frac{{{{-1}} {{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}} + {{{-1}} {{{{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}$ /[+[*[-1, *[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]], *[-1, *[^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]]], *[4, ^[5, /[1, 4]]]] Prune $\frac{{{{-1}} \cdot {{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}} + {{{-1}} \cdot {{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}$ /[+[*[-1, ^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]], *[-1, ^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]], *[4, ^[5, /[1, 4]]]] Factor $\frac{{{-1}} {{\left({{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}} + {{{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}\right)}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}$ /[*[-1, +[*[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]], *[^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]]], *[4, ^[5, /[1, 4]]]] Prune $\frac{{{-1}} {{\left({{{{{2}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}} + {{{{10}^{\frac{1}{2}}}} {{{\left({{-1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}}\right)}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}$ /[*[-1, +[*[^[2, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]], *[^[10, /[1, 2]], ^[+[-1, ^[5, /[1, 2]]], /[1, 2]]]]], *[4, ^[5, /[1, 4]]]] Tidy $-{\frac{{{{\sqrt{2}}} {{\sqrt{{-{1}} + {\sqrt{5}}}}}} + {{{\sqrt{10}}} {{\sqrt{{-{1}} + {\sqrt{5}}}}}}}{{{4}} \cdot {{{5}^{\frac{1}{4}}}}}}$ unm(/[+[*[sqrt[2], sqrt[+[unm(1), sqrt[5]]]], *[sqrt[10], sqrt[+[unm(1), sqrt[5]]]]], *[4, ^[5, /[1, 4]]]]) rhs stack Init $\sqrt{{\frac{1}{10}}{\left({{5} + {\sqrt{5}}}\right)}}$ sqrt[/[+[5, sqrt[5]], 10]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] sqrt:Prune:apply ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] sqrt:Prune:apply ${\left({{\frac{1}{10}}{\left({{5} + {{5}^{\frac{1}{2}}}}\right)}}\right)}^{\frac{1}{2}}$ ^[/[+[5, ^[5, /[1, 2]]], 10], /[1, 2]] Prune ${\left({{\frac{1}{10}}{\left({{5} + {{5}^{\frac{1}{2}}}}\right)}}\right)}^{\frac{1}{2}}$ ^[/[+[5, ^[5, /[1, 2]]], 10], /[1, 2]] ^:Expand:frac $\frac{{\left({{5} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}{{10}^{\frac{1}{2}}}$ /[^[+[5, ^[5, /[1, 2]]], /[1, 2]], ^[10, /[1, 2]]] Expand $\frac{{\left({{5} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}{{10}^{\frac{1}{2}}}$ /[^[+[5, ^[5, /[1, 2]]], /[1, 2]], ^[10, /[1, 2]]] ^:Prune:sqrtFix4 ${5}^{\frac{1}{2}}$ ^[5, /[1, 2]] ^:Prune:sqrtFix4 ${10}^{\frac{1}{2}}$ ^[10, /[1, 2]] Prune $\frac{{\left({{5} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}{{10}^{\frac{1}{2}}}$ /[^[+[5, ^[5, /[1, 2]]], /[1, 2]], ^[10, /[1, 2]]] Factor $\frac{{{{{5}^{\frac{1}{2}}}^{\frac{1}{2}}}} {{{\left({{1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}}}{{10}^{\frac{1}{2}}}$ /[*[^[^[5, /[1, 2]], /[1, 2]], ^[+[1, ^[5, /[1, 2]]], /[1, 2]]], ^[10, /[1, 2]]] Prune $\frac{{\left({{1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}{{{{2}^{\frac{1}{2}}}} {{{5}^{\frac{1}{4}}}}}$ /[^[+[1, ^[5, /[1, 2]]], /[1, 2]], *[^[2, /[1, 2]], ^[5, /[1, 4]]]] Expand $\frac{{\left({{1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}{{{{2}^{\frac{1}{2}}}} {{{5}^{\frac{1}{4}}}}}$ /[^[+[1, ^[5, /[1, 2]]], /[1, 2]], *[^[2, /[1, 2]], ^[5, /[1, 4]]]] Prune $\frac{{\left({{1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}{{{{2}^{\frac{1}{2}}}} {{{5}^{\frac{1}{4}}}}}$ /[^[+[1, ^[5, /[1, 2]]], /[1, 2]], *[^[2, /[1, 2]], ^[5, /[1, 4]]]] Factor $\frac{{\left({{1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}{{{{2}^{\frac{1}{2}}}} {{{5}^{\frac{1}{4}}}}}$ /[^[+[1, ^[5, /[1, 2]]], /[1, 2]], *[^[2, /[1, 2]], ^[5, /[1, 4]]]] Prune $\frac{{\left({{1} + {{5}^{\frac{1}{2}}}}\right)}^{\frac{1}{2}}}{{{{2}^{\frac{1}{2}}}} {{{5}^{\frac{1}{4}}}}}$ /[^[+[1, ^[5, /[1, 2]]], /[1, 2]], *[^[2, /[1, 2]], ^[5, /[1, 4]]]] Tidy $\frac{\sqrt{{1} + {\sqrt{5}}}}{{{\sqrt{2}}} {{{5}^{\frac{1}{4}}}}}$ /[sqrt[+[1, sqrt[5]]], *[sqrt[2], ^[5, /[1, 4]]]] BAD /home/chris/Projects/lua/symmath/tests/unit/unit.lua:125: failed stack traceback: /home/chris/Projects/lua/symmath/tests/unit/unit.lua:246: in function [C]: in function 'error' /home/chris/Projects/lua/symmath/tests/unit/unit.lua:125: in function 'simplifyAssertEq' [string "simplifyAssertEq( -(sqrt( 10 * (sqrt(5) - 1) ..."]:1: in main chunk /home/chris/Projects/lua/symmath/tests/unit/unit.lua:238: in function [C]: in function 'xpcall' /home/chris/Projects/lua/symmath/tests/unit/unit.lua:237: in function 'exec' sqrt.lua:120: in function 'cb' /home/chris/Projects/lua/ext/timer.lua:58: in function 'timer' sqrt.lua:9: in main chunk [C]: at 0x5cbe028e2380 |
time: 23.423000ms stack: size: 17
|