simplifyAssertEq(#{x:eq(0):solve(x)}, 1)
|
${1} = {1}$
GOOD |
time: 0.918000ms stack: size: 7
|
simplifyAssertEq(x:eq(0):solve(x), x:eq(0)) |
${{x} = {0}} = {{x} = {0}}$
GOOD |
time: 2.940000ms stack: size: 7
|
|
| ||
simplifyAssertEq(#{x:eq(1):solve(x)}, 1)
|
${1} = {1}$
GOOD |
time: 1.307000ms stack: size: 7
|
simplifyAssertEq(x:eq(1):solve(x), x:eq(1)) |
${{x} = {1}} = {{x} = {1}}$
GOOD |
time: 1.977000ms stack: size: 7
|
|
| ||
simplifyAssertEq(#{(x+1):eq(0):solve(x)}, 1)
|
${1} = {1}$
GOOD |
time: 1.054000ms stack: size: 7
|
simplifyAssertEq((x+1):eq(0):solve(x), x:eq(-1)) |
${{x} = {-{1}}} = {{x} = {-1}}$
GOOD |
time: 1.753000ms stack: size: 8
|
|
| ||
simplifyAssertEq(#{(x^2):eq(1):solve(x)}, 2)
|
${2} = {2}$
GOOD |
time: 3.909000ms stack: size: 7
|
simplifyAssertEq((x^2):eq(1):solve(x), x:eq(1)) |
${{x} = {1}} = {{x} = {1}}$
GOOD |
time: 3.706000ms stack: size: 7
|
simplifyAssertEq(select(2, (x^2):eq(1):solve(x)), x:eq(-1)) |
${{x} = {-{1}}} = {{x} = {-1}}$
GOOD |
time: 3.905000ms stack: size: 8
|
|
| ||
simplifyAssertEq(#{(x^2):eq(-1):solve(x)}, 2)
|
${2} = {2}$
GOOD |
time: 5.354000ms stack: size: 7
|
simplifyAssertEq((x^2):eq(-1):solve(x), x:eq(i)) |
${{x} = {i}} = {{x} = {i}}$
GOOD |
time: 4.067000ms stack: size: 7
|
simplifyAssertEq(select(2, (x^2):eq(-1):solve(x)), x:eq(-i)) |
${{x} = {-{i}}} = {{x} = {-{i}}}$
GOOD |
time: 5.630000ms stack: size: 11
|
|
| ||
print((x^2):eq(0):solve(x)) | ${x} = {0}$ ${x} = {0}$ GOOD |
time: 3.745000ms stack: size: 10
|
simplifyAssertEq(#{(x^2):eq(0):solve(x)}, 2)
|
${2} = {2}$
GOOD |
time: 2.390000ms stack: size: 7
|
simplifyAssertEq((x^2):eq(0):solve(x), x:eq(0)) |
${{x} = {0}} = {{x} = {0}}$
GOOD |
time: 2.788000ms stack: size: 7
|
simplifyAssertEq(select(2, (x^2):eq(0):solve(x)), x:eq(0)) |
${{x} = {0}} = {{x} = {0}}$
GOOD |
time: 2.512000ms stack: size: 7
|
|
| ||
|
same with 3 ... | ||
print((x^3):eq(0):solve(x)) | ${x} = {0}$ ${x} = {0}$ ${x} = {0}$ GOOD |
time: 47.266000ms stack: size: 13
|
simplifyAssertEq(#{(x^3):eq(0):solve(x)}, 3)
|
${3} = {3}$
GOOD |
time: 30.758000ms stack: size: 7
|
simplifyAssertEq((x^3):eq(0):solve(x), x:eq(0)) |
${{x} = {0}} = {{x} = {0}}$
GOOD |
time: 31.224000ms stack: size: 7
|
simplifyAssertEq(select(2, (x^3):eq(0):solve(x)), x:eq(0)) |
${{x} = {0}} = {{x} = {0}}$
GOOD |
time: 27.939000ms stack: size: 7
|
simplifyAssertEq(select(3, (x^3):eq(0):solve(x)), x:eq(0)) |
${{x} = {0}} = {{x} = {0}}$
GOOD |
time: 33.311000ms stack: size: 7
|
|
| ||
|
same with 4 ... | ||
print((x^4):eq(0):solve(x)) | ${x} = {0}$ ${x} = {0}$ ${x} = {0}$ ${x} = {0}$ GOOD |
time: 5.549000ms stack: size: 11
|
simplifyAssertEq(#{(x^4):eq(0):solve(x)}, 4)
|
${4} = {4}$
GOOD |
time: 6.191000ms stack: size: 7
|
simplifyAssertEq((x^4):eq(0):solve(x), x:eq(0)) |
${{x} = {0}} = {{x} = {0}}$
GOOD |
time: 6.937000ms stack: size: 7
|
simplifyAssertEq(select(2, (x^4):eq(0):solve(x)), x:eq(0)) |
${{x} = {0}} = {{x} = {0}}$
GOOD |
time: 5.521000ms stack: size: 7
|
simplifyAssertEq(select(3, (x^4):eq(0):solve(x)), x:eq(0)) |
${{x} = {0}} = {{x} = {0}}$
GOOD |
time: 7.336000ms stack: size: 7
|
simplifyAssertEq(select(4, (x^4):eq(0):solve(x)), x:eq(0)) |
${{x} = {0}} = {{x} = {0}}$
GOOD |
time: 7.167000ms stack: size: 7
|
|
| ||
|
Deterministic order of roots? | ||
|
For quadratics it is plus sqrt(discr) first then minus | ||
|
For x^n times P(x) it is the zeroes first (TODO how about instead of enumerating all roots, we provide multiplicity, so (x^n):eq(0):solve(x) can return (for n != 0, x=0 n-times) | ||
|
| ||
|
distinguish between x*(x^2 + 2x + 1) and (x^3 + 2x^2 + x) , because the solver handles one but not the other | ||
printbr( (x * (x^2 + 2*x + 1)):eq(0):solve(x) ) |
${x} = {0}$ ${x} = {-{1}}$ ${x} = {-{1}}$
GOOD |
time: 3.363000ms stack: size: 22
|
simplifyAssertEq(#{(x * (x^2 + 2*x + 1)):eq(0):solve(x)}, 3)
|
${3} = {3}$
GOOD |
time: 5.445000ms stack: size: 7
|
simplifyAssertEq((x * (x^2 + 2*x + 1)):eq(0):solve(x), x:eq(0)) |
${{x} = {0}} = {{x} = {0}}$
GOOD |
time: 4.806000ms stack: size: 7
|
simplifyAssertEq(select(2, (x * (x^2 + 2*x + 1)):eq(0):solve(x)), x:eq(-1)) |
${{x} = {-{1}}} = {{x} = {-1}}$
GOOD |
time: 3.842000ms stack: size: 8
|
simplifyAssertEq(select(3, (x * (x^2 + 2*x + 1)):eq(0):solve(x)), x:eq(-1)) |
${{x} = {-{1}}} = {{x} = {-1}}$
GOOD |
time: 3.955000ms stack: size: 8
|
|
| ||
printbr( (x^3 + 2*x^2 + x):eq(0):solve(x) ) |
${x} = {0}$ ${x} = {-{{\frac{1}{2}}{\left({{1} + {{{i}} {{\sqrt{3}}}}}\right)}}}$ ${x} = {{\frac{1}{2}}{\left({{-{1}} + {{{i}} {{\sqrt{3}}}}}\right)}}$
GOOD |
time: 29.271000ms stack: size: 15
|
simplifyAssertEq(#{(x^3 + 2*x^2 + x):eq(0):solve(x)}, 3)
|
${3} = {3}$
GOOD |
time: 25.055000ms stack: size: 7
|
simplifyAssertEq((x * (x^2 + 2*x + 1)):eq(0):solve(x), x:eq(0)) |
${{x} = {0}} = {{x} = {0}}$
GOOD |
time: 2.993000ms stack: size: 7
|
simplifyAssertEq(select(2, (x * (x^2 + 2*x + 1)):eq(0):solve(x)), x:eq(-1)) |
${{x} = {-{1}}} = {{x} = {-1}}$
GOOD |
time: 3.040000ms stack: size: 8
|
simplifyAssertEq(select(3, (x * (x^2 + 2*x + 1)):eq(0):solve(x)), x:eq(-1)) |
${{x} = {-{1}}} = {{x} = {-1}}$
GOOD |
time: 2.724000ms stack: size: 8
|
|
| ||
|
same with x^3 + x^2 - x | ||
printbr( (x * (x^2 + x - 1)):eq(0):solve(x) ) |
${x} = {0}$ ${x} = {-{{\frac{1}{2}}{\left({{1} + {\sqrt{5}}}\right)}}}$ ${x} = {{\frac{1}{2}}{\left({{-{1}} + {\sqrt{5}}}\right)}}$
GOOD |
time: 13.537000ms stack: size: 16
|
simplifyAssertEq(#{(x * (x^2 + x - 1)):eq(0):solve(x)}, 3)
|
${3} = {3}$
GOOD |
time: 10.860000ms stack: size: 7
|
simplifyAssertEq((x * (x^2 + x - 1)):eq(0):solve(x), x:eq(0)) |
${{x} = {0}} = {{x} = {0}}$
GOOD |
time: 11.158000ms stack: size: 7
|
simplifyAssertEq(select(2, (x * (x^2 + x - 1)):eq(0):solve(x)), x:eq( -(1 + sqrt(5))/2 )) |
${{x} = {-{{\frac{1}{2}}{\left({{1} + {\sqrt{5}}}\right)}}}} = {{x} = {{\frac{1}{2}}{\left({-{\left({{1} + {\sqrt{5}}}\right)}}\right)}}}$
GOOD |
time: 28.235000ms stack: size: 13
|
simplifyAssertEq(select(3, (x * (x^2 + x - 1)):eq(0):solve(x)), x:eq( -(1 - sqrt(5))/2 )) |
${{x} = {{\frac{1}{2}}{\left({{-{1}} + {\sqrt{5}}}\right)}}} = {{x} = {{\frac{1}{2}}{\left({-{\left({{1}{-{\sqrt{5}}}}\right)}}\right)}}}$
GOOD |
time: 19.166000ms stack: size: 23
|
|
| ||
printbr( (x^3 + x^2 - x):eq(0):solve(x) ) |
${x} = {0}$ ${x} = {-{{\frac{1}{2}}{\left({{1} + {{{i}} {{\sqrt{3}}}}}\right)}}}$ ${x} = {{\frac{1}{2}}{\left({{-{1}} + {{{i}} {{\sqrt{3}}}}}\right)}}$
GOOD |
time: 22.088000ms stack: size: 15
|
simplifyAssertEq(#{(x^3 + x^2 - x):eq(0):solve(x)}, 3)
|
${3} = {3}$
GOOD |
time: 19.868000ms stack: size: 7
|
simplifyAssertEq((x * (x^2 + x - 1)):eq(0):solve(x), x:eq(0)) |
${{x} = {0}} = {{x} = {0}}$
GOOD |
time: 9.966000ms stack: size: 7
|
simplifyAssertEq(select(2, (x * (x^2 + x - 1)):eq(0):solve(x)), x:eq( -(1 + sqrt(5))/2 )) |
${{x} = {-{{\frac{1}{2}}{\left({{1} + {\sqrt{5}}}\right)}}}} = {{x} = {{\frac{1}{2}}{\left({-{\left({{1} + {\sqrt{5}}}\right)}}\right)}}}$
GOOD |
time: 25.729000ms stack: size: 13
|
simplifyAssertEq(select(3, (x * (x^2 + x - 1)):eq(0):solve(x)), x:eq( -(1 - sqrt(5))/2 )) |
${{x} = {{\frac{1}{2}}{\left({{-{1}} + {\sqrt{5}}}\right)}}} = {{x} = {{\frac{1}{2}}{\left({-{\left({{1}{-{\sqrt{5}}}}\right)}}\right)}}}$
GOOD |
time: 17.683000ms stack: size: 23
|