generated with LuaJIT 2.1.1710398010

.name MultiLine SingleLine LaTeX / MathJax C JavaScript Lua GnuPlot Mathematica Verbose SymMath
_i
_i
_i
$i$
$i$
_i
_i
ffi.new("complex", 0, 1)
{0,1}
ii
_i|0+1i
symmath.i
e
e
e
$e$
$e$
e
e
e
e
e
e
var("e")
π
π
π
$π$
$π$
M_PI
Math.PI
math.pi
pi
π
π|3.1415926535898
symmath.pi
inf
$\infty$
$\infty$
INFINITY
Infinity
math.huge
inf
inf
inf|inf
symmath.inf
Invalid
nan
nan
$¿$
$¿$
NAN
(0/0)
Invalid
(0/0)
¿
Invalid
symmath.invalid
x
x
x
$x$
$x$
x
x
x
x
x
x
var("x")
y
y
y
$y$
$y$
y
y
y
y
y
y
var("y")
+
x + y
x + y
${x} + {y}$
${x} + {y}$
x + y
x + y
x + y
x + y
x + y
+[x, y]
(
	var("x") +
	var("y")
)
+
x-y
x - y
${x}{-{y}}$
${x}{-{y}}$
x + -y
x + -y
x + -y
x + -y
x + -y
+[x, unm(y)]
(
	var("x") +
	-(
		var("y")
	)
)
*
x * y
x * y
${{x}} {{y}}$
${{x}} {{y}}$
x * y
x * y
x * y
x * y
x * y
*[x, y]
(
	var("x") *
	var("y")
)
/
 x 
╶─╴
 y 
x / y
${\frac{1}{y}} {x}$
${\frac{1}{y}} {x}$
x / y
x / y
x / y
x / y
x / y
/[x, y]
(
	var("x") /
	var("y")
)
%
x % y
x % y
${x} \mod {y}$
${x} \mod {y}$
x % y
x % y
x % y
x % y
x % y
%[x, y]
(
	var("x") %
	var("y")
)
^
 y
x 
x^y
${x}^{y}$
${x}^{y}$
pow(x, y)
Math.pow(x, y)
x ^ y
((x) ** (y))
(x ^ y)
^[x, y]
(
	var("x") ^
	var("y")
)
unm
-x
-x
$-{x}$
$-{x}$
-x
-x
-x
-x
-x
unm(x)
-(
	var("x")
)
/
 x 
╶─╴
 2 
x / 2
${\frac{1}{2}} {x}$
${\frac{1}{2}} {x}$
x / 2.
x / 2
x / 2
x / 2.
x / 2
/[x, 2]
(
	var("x") /
	Constant(2)
)
*
 1     
╶─╴ * x
 2     
1 / 2 * x
${{\frac{1}{2}}} {{x}}$
${{\frac{1}{2}}} {{x}}$
1. / 2. * x
1 / 2 * x
1 / 2 * x
1. / 2. * x
1 / 2 * x
*[/[1, 2], x]
(
	(
		Constant(1) /
		Constant(2)
	) *
	var("x")
)
*
2 * x
2 * x
${{2}} {{x}}$
${{2}} {{x}}$
2. * x
2 * x
2 * x
2. * x
2 * x
*[2, x]
(
	Constant(2) *
	var("x")
)
*
2 * (x + 1)
2 * (x + 1)
${{2}} {{\left({{x} + {1}}\right)}}$
${{2}} {{\left({{x} + {1}}\right)}}$
2. * (x + 1.)
2 * (x + 1)
2 * (x + 1)
2. * (x + 1.)
2 * (x + 1)
*[2, +[x, 1]]
(
	Constant(2) *
	(
		var("x") +
		Constant(1)
	)
)
^
 2
x 
x^2
${x}^{2}$
${x}^{2}$
(x * x)
Math.pow(x, 2)
x ^ 2
((x) ** (2.))
(x ^ 2)
^[x, 2]
(
	var("x") ^
	Constant(2)
)
^
       2
(1 + x) 
(1 + x)^2
${\left({{1} + {x}}\right)}^{2}$
${\left({{1} + {x}}\right)}^{2}$
((1. + x) * (1. + x))
Math.pow(1 + x, 2)
(1 + x) ^ 2
((1. + x) ** (2.))
(1 + x ^ 2)
^[+[1, x], 2]
(
	(
		Constant(1) +
		var("x")
	) ^
	Constant(2)
)
^
       (1 + y)
(1 + x)       
(1 + x)^(1 + y)
${\left({{1} + {x}}\right)}^{{1} + {y}}$
${\left({{1} + {x}}\right)}^{{1} + {y}}$
pow(1. + x, 1. + y)
Math.pow(1 + x, 1 + y)
(1 + x) ^ (1 + y)
((1. + x) ** (1. + y))
(1 + x ^ 1 + y)
^[+[1, x], +[1, y]]
(
	(
		Constant(1) +
		var("x")
	) ^
	(
		Constant(1) +
		var("y")
	)
)
^
 (1 + y)
2       
2^(1 + y)
${2}^{{1} + {y}}$
${2}^{{1} + {y}}$
pow(2., 1. + y)
Math.pow(2, 1 + y)
2 ^ (1 + y)
((2.) ** (1. + y))
(2 ^ 1 + y)
^[2, +[1, y]]
(
	Constant(2) ^
	(
		Constant(1) +
		var("y")
	)
)
^
 (1 + y)
e       
e^(1 + y)
${e}^{{1} + {y}}$
${e}^{{1} + {y}}$
pow(e, 1. + y)
Math.pow(e, 1 + y)
e ^ (1 + y)
((e) ** (1. + y))
(e ^ 1 + y)
^[e, +[1, y]]
(
	var("e") ^
	(
		Constant(1) +
		var("y")
	)
)
abs
│x│
|x|
$\left| x\right|$
$\left| x\right|$
abs(x)
Math.abs(x)
math.abs(x)
abs(x)
abs[x]
abs[x]
abs(
	var("x")
)
sqrt
√(x)
√(x)
$\sqrt{x}$
$\sqrt{x}$
sqrt(x)
Math.sqrt(x)
math.sqrt(x)
sqrt(x)
sqrt[x]
sqrt[x]
sqrt(
	var("x")
)
cbrt
cbrt(x)
cbrt(x)
$\sqrt[3]{x}$
$\sqrt[3]{x}$
cbrt(x)
Math.cbrt(x)
x ^ (1 / 3)
cbrt(x)
cbrt[x]
cbrt[x]
cbrt(
	var("x")
)
^
  x
_e 
_e^x
$\exp\left( x\right)$
$\exp\left( x\right)$
exp(x)
Math.exp(x)
math.exp(x)
(exp(x))
exp[x]
^[_e|2.718281828459, x]
(
symmath.e ^
	var("x")
)
log
log(x)
log(x)
$\log\left(  x\right)$
$\log\left( x\right)$
log(x)
Math.log(x)
math.log(x)
log(x)
log[x]
log[x]
log(
	var("x")
)
Heaviside
Heaviside(x)
Heaviside(x)
$\mathcal{H}\left(  x\right)$
$\mathcal{H}\left( x\right)$
(x >= 0 ? 1 : 0)
(x >= 0 ? 1 : 0)
((x >= 0) and 1 or 0)
(x >= 0.)
Heaviside[x]
Heaviside[x]
Heaviside(
	var("x")
)
sin
sin(x)
sin(x)
$\sin\left(  x\right)$
$\sin\left( x\right)$
sin(x)
Math.sin(x)
math.sin(x)
sin(x)
sin[x]
sin[x]
sin(
	var("x")
)
cos
cos(x)
cos(x)
$\cos\left(  x\right)$
$\cos\left( x\right)$
cos(x)
Math.cos(x)
math.cos(x)
cos(x)
cos[x]
cos[x]
cos(
	var("x")
)
tan
tan(x)
tan(x)
$\tan\left(  x\right)$
$\tan\left( x\right)$
tan(x)
Math.tan(x)
math.tan(x)
tan(x)
tan[x]
tan[x]
tan(
	var("x")
)
asin
asin(x)
asin(x)
$asin\left(  x\right)$
$asin\left( x\right)$
asin(x)
Math.asin(x)
math.asin(x)
asin(x)
asin[x]
asin[x]
asin(
	var("x")
)
acos
acos(x)
acos(x)
$acos\left(  x\right)$
$acos\left( x\right)$
acos(x)
Math.acos(x)
math.acos(x)
acos(x)
acos[x]
acos[x]
acos(
	var("x")
)
atan
atan(x)
atan(x)
$atan\left(  x\right)$
$atan\left( x\right)$
atan(x)
Math.atan(x)
math.atan(x)
atan(x)
atan[x]
atan[x]
atan(
	var("x")
)
atan2
atan2(x)
atan2(x)
$atan2\left(  x\right)$
$atan2\left( x\right)$
atan2(x)
Math.atan2(x)
math.atan2(x)
atan2(x)
atan2[x]
atan2[x]
atan2(
	var("x")
)
sinh
sinh(x)
sinh(x)
$\sinh\left(  x\right)$
$\sinh\left( x\right)$
sinh(x)
Math.sinh(x)
math.sinh(x)
sinh(x)
sinh[x]
sinh[x]
sinh(
	var("x")
)
cosh
cosh(x)
cosh(x)
$\cosh\left(  x\right)$
$\cosh\left( x\right)$
cosh(x)
Math.cosh(x)
math.cosh(x)
cosh(x)
cosh[x]
cosh[x]
cosh(
	var("x")
)
tanh
tanh(x)
tanh(x)
$\tanh\left(  x\right)$
$\tanh\left( x\right)$
tanh(x)
Math.tanh(x)
math.tanh(x)
tanh(x)
tanh[x]
tanh[x]
tanh(
	var("x")
)
asinh
asinh(x)
asinh(x)
$asinh\left(  x\right)$
$asinh\left( x\right)$
asinh(x)
Math.asinh(x)
math.asinh(x)
asinh(x)
asinh[x]
asinh[x]
asinh(
	var("x")
)
acosh
acosh(x)
acosh(x)
$acosh\left(  x\right)$
$acosh\left( x\right)$
acosh(x)
Math.acosh(x)
math.acosh(x)
acosh(x)
acosh[x]
acosh[x]
acosh(
	var("x")
)
atanh
atanh(x)
atanh(x)
$atanh\left(  x\right)$
$atanh\left( x\right)$
atanh(x)
Math.atanh(x)
math.atanh(x)
atanh(x)
atanh[x]
atanh[x]
atanh(
	var("x")
)
=
x = y
x = y
${x} = {y}$
${x} = {y}$
x == y
x == y
x == y
x == y
x == y
=[x, y]
(
	var("x")
):eq(
	var("y")
)
x ≠ y
x ≠ y
${x} \ne {y}$
${x} \ne {y}$
x != y
x != y
x ~= y
x != y
x != y
≠[x, y]
(
	var("x")
):ne(
	var("y")
)
<
x < y
x < y
${x} \lt {y}$
${x} \lt {y}$
x < y
x < y
x < y
x < y
x < y
<[x, y]
(
	var("x")
):lt(
	var("y")
)
x ≤ y
x ≤ y
${x} \le {y}$
${x} \le {y}$
x <= y
x <= y
x <= y
x <= y
x <= y
≤[x, y]
(
	var("x")
):le(
	var("y")
)
>
x > y
x > y
${x} \gt {y}$
${x} \gt {y}$
x > y
x > y
x > y
x > y
x > y
>[x, y]
(
	var("x")
):gt(
	var("y")
)
x ≥ y
x ≥ y
${x} \ge {y}$
${x} \ge {y}$
x >= y
x >= y
x >= y
x >= y
x >= y
≥[x, y]
(
	var("x")
):ge(
	var("y")
)
x ≈ y
x ≈ y
${x} \approx {y}$
${x} \approx {y}$
x == y
x == y
x == y
x == y
x == y
≈[x, y]
(
	var("x")
):approx(
	var("y")
)
Limit
     
lim  
    y
x→0  
     
lim_x→0 y
${\underset{ x\rightarrow 0}{\lim}}{{y}}$
${\underset{ x\rightarrow 0}{\lim}}{{y}}$
limit([](double* out, double x) {
	double out1 = y;
	out[0] = out1;
}, 0.)
limit(function(x) {
	const out1 = y;
	return out1;
}, 0)
limit(function(x)
	local out1 = y
	return out1
end, 0)
limit((x) =
	out1 = y
	return out1, 0.)
limit([x_] :=
	out1 = y;
	out1;, 0)
Limit{y, x, 0, {}}
Limit(
	var("y"),
	var("x"),
	Constant(0),
	(

	)
)
Limit
      
 lim  
     y
x→0+  
      
lim_x→0+ y
${\underset{ x\rightarrow{ 0{}^+}}{\lim}}{{y}}$
${\underset{ x\rightarrow{ 0{}^+}}{\lim}}{{y}}$
limit_plus([](double* out, double x) {
	double out1 = y;
	out[0] = out1;
}, 0.)
limit_plus(function(x) {
	const out1 = y;
	return out1;
}, 0)
limit_plus(function(x)
	local out1 = y
	return out1
end, 0)
limit_plus((x) =
	out1 = y
	return out1, 0.)
limit_plus([x_] :=
	out1 = y;
	out1;, 0)
Limit{y, x, 0, +{}}
Limit(
	var("y"),
	var("x"),
	Constant(0),
	+(

	)
)
Limit
      
 lim  
     y
x→0-  
      
lim_x→0- y
${\underset{ x\rightarrow{ 0{}^-}}{\lim}}{{y}}$
${\underset{ x\rightarrow{ 0{}^-}}{\lim}}{{y}}$
limit_minus([](double* out, double x) {
	double out1 = y;
	out[0] = out1;
}, 0.)
limit_minus(function(x) {
	const out1 = y;
	return out1;
}, 0)
limit_minus(function(x)
	local out1 = y
	return out1
end, 0)
limit_minus((x) =
	out1 = y
	return out1, 0.)
limit_minus([x_] :=
	out1 = y;
	out1;, 0)
Limit{y, x, 0, -{}}
Limit(
	var("y"),
	var("x"),
	Constant(0),
	-(

	)
)
Limit
        
 lim  1 
     ╶─╴
x→0-  x 
        
lim_x→0- 1 / x
${\underset{ x\rightarrow{ 0{}^-}}{\lim}}{{\frac{1}{x}}}$
${\underset{ x\rightarrow{ 0{}^-}}{\lim}}{{\frac{1}{x}}}$
limit_minus([](double* out, double x) {
	double out1 = 1. / x;
	out[0] = out1;
}, 0.)
limit_minus(function(x) {
	const out1 = 1 / x;
	return out1;
}, 0)
limit_minus(function(x)
	local out1 = 1 / x
	return out1
end, 0)
limit_minus((x) =
	out1 = 1. / x
	return out1, 0.)
limit_minus([x_] :=
	out1 = 1 / x;
	out1;, 0)
Limit{/[1, x], x, 0, -{}}
Limit(
	(
		Constant(1) /
		var("x")
	),
	var("x"),
	Constant(0),
	-(

	)
)
Limit
         
 lim   1 
     ╶──╴
x→0-   2 
      x  
lim_x→0- 1 / x^2
${\underset{ x\rightarrow{ 0{}^-}}{\lim}}{{\frac{1}{{x}^{2}}}}$
${\underset{ x\rightarrow{ 0{}^-}}{\lim}}{{\frac{1}{{x}^{2}}}}$
limit_minus([](double* out, double x) {
	double out1 = 1. / (x * x);
	out[0] = out1;
}, 0.)
limit_minus(function(x) {
	const out1 = 1 / (x * x);
	return out1;
}, 0)
limit_minus(function(x)
	local out1 = 1 / (x * x)
	return out1
end, 0)
limit_minus((x) =
	out1 = 1. / (x * x)
	return out1, 0.)
limit_minus([x_] :=
	out1 = 1 / (x * x);
	out1;, 0)
Limit{/[1, ^[x, 2]], x, 0, -{}}
Limit(
	(
		Constant(1) /
		(
			var("x") ^
			Constant(2)
		)
	),
	var("x"),
	Constant(0),
	-(

	)
)
Limit
             
 lim   ╭ -1 ╮
       │╶──╴│
x→0-   ╰  x ╯
     _e      
lim_x→0- _e^(-1 / x)
${\underset{ x\rightarrow{ 0{}^-}}{\lim}}{{\exp\left({\frac{-1}{x}}\right)}}$
${\underset{ x\rightarrow{ 0{}^-}}{\lim}}{{\exp\left({\frac{-1}{x}}\right)}}$
limit_minus([](double* out, double x) {
	double out1 = exp(-1. / x);
	out[0] = out1;
}, 0.)
limit_minus(function(x) {
	const out1 = Math.exp(-1 / x);
	return out1;
}, 0)
limit_minus(function(x)
	local out1 = math.exp(-1 / x)
	return out1
end, 0)
limit_minus((x) =
	out1 = (exp(-1. / x))
	return out1, 0.)
limit_minus([x_] :=
	out1 = exp[-1 / x];
	out1;, 0)
Limit{^[_e|2.718281828459, /[-1, x]], x, 0, -{}}
Limit(
	(
symmath.e ^
		(
			Constant(-1) /
			var("x")
		)
	),
	var("x"),
	Constant(0),
	-(

	)
)
Limit
           
lim        
    (1 + x)
x→0        
           
lim_x→0 1 + x
${\underset{ x\rightarrow 0}{\lim}}{{\left({{1} + {x}}\right)}}$
${\underset{ x\rightarrow 0}{\lim}}{{\left({{1} + {x}}\right)}}$
limit([](double* out, double x) {
	double out1 = 1. + x;
	out[0] = out1;
}, 0.)
limit(function(x) {
	const out1 = 1 + x;
	return out1;
}, 0)
limit(function(x)
	local out1 = 1 + x
	return out1
end, 0)
limit((x) =
	out1 = 1. + x
	return out1, 0.)
limit([x_] :=
	out1 = 1 + x;
	out1;, 0)
Limit{+[1, x], x, 0, {}}
Limit(
	(
		Constant(1) +
		var("x")
	),
	var("x"),
	Constant(0),
	(

	)
)
Limit
        
lim     
    (-x)
x→0     
        
lim_x→0 -x
${\underset{ x\rightarrow 0}{\lim}}{{\left( -{x}\right)}}$
${\underset{ x\rightarrow 0}{\lim}}{{\left( -{x}\right)}}$
limit([](double* out, double x) {
	double out1 = -x;
	out[0] = out1;
}, 0.)
limit(function(x) {
	const out1 = -x;
	return out1;
}, 0)
limit(function(x)
	local out1 = -x
	return out1
end, 0)
limit((x) =
	out1 = -x
	return out1, 0.)
limit([x_] :=
	out1 = -x;
	out1;, 0)
Limit{unm(x), x, 0, {}}
Limit(
	-(
		var("x")
	),
	var("x"),
	Constant(0),
	(

	)
)
Derivative
 ∂y 
╶──╴
 ∂x 
∂/{∂x}[y]
$\frac{\partial y}{\partial x}$
$\frac{\partial y}{\partial x}$
dy_dx
dy_dx
dy_dx
dy_dx
dy_dx
Derivative{y, x}
Derivative(
	var("y"),
	var("x")
)
TotalDerivative
 dy 
╶──╴
 dx 
d/{dx}[y]
$\frac{d y}{d x}$
$\frac{d y}{d x}$
Dy_dx
Dy_dx
Dy_dx
Dy_dx
Dy_dx
TotalDerivative{y, x}
TotalDerivative(
	var("y"),
	var("x")
)
Derivative
 ∂^2 y 
╶─────╴
  ∂x^2 
∂^2/{∂x^2}[y]
$\frac{\partial^ 2 y}{\partial x^ 2}$
$\frac{\partial^ 2 y}{\partial x^ 2}$
d2y_dx_dx
d2y_dx_dx
d2y_dx_dx
d2y_dx_dx
d2y_dx_dx
Derivative{y, x, x}
Derivative(
	var("y"),
	var("x"),
	var("x")
)
TotalDerivative
 d^2 y 
╶─────╴
  dx^2 
d^2/{dx^2}[y]
$\frac{d^ 2 y}{d x^ 2}$
$\frac{d^ 2 y}{d x^ 2}$
D2y_dx_dx
D2y_dx_dx
D2y_dx_dx
D2y_dx_dx
D2y_dx_dx
TotalDerivative{y, x, x}
TotalDerivative(
	var("y"),
	var("x"),
	var("x")
)
Derivative
 ∂^2 y 
╶─────╴
 ∂x ∂y 
∂^2/{∂x ∂y}[y]
$\frac{\partial^ 2 y}{\partial y\partial x}$
$\frac{\partial^ 2 y}{\partial y\partial x}$
d2y_dx_dy
d2y_dx_dy
d2y_dx_dy
d2y_dx_dy
d2y_dx_dy
Derivative{y, x, y}
Derivative(
	var("y"),
	var("x"),
	var("y")
)
TotalDerivative
 d^2 y 
╶─────╴
 dx dy 
d^2/{dx dy}[y]
$\frac{d^ 2 y}{d y d x}$
$\frac{d^ 2 y}{d y d x}$
D2y_dx_dy
D2y_dx_dy
D2y_dx_dy
D2y_dx_dy
D2y_dx_dy
TotalDerivative{y, x, y}
TotalDerivative(
	var("y"),
	var("x"),
	var("y")
)
Derivative
  ∂      
╶──╴╭  x╮
 ∂x ╰_e ╯
∂/{∂x}[_e^x]
${\frac{\partial}{\partial x}}\left({\exp\left( x\right)}\right)$
${\frac{\partial}{\partial x}}\left({\exp\left( x\right)}\right)$
d([](double* out, double x) {
	double out1 = exp(x);
	out[0] = out1;
})
d(function(x) {
	const out1 = Math.exp(x);
	return out1;
})
d(function(x)
	local out1 = math.exp(x)
	return out1
end)
d((x) =
	out1 = (exp(x))
	return out1)
d([x_] :=
	out1 = exp[x];
	out1;)
Derivative{^[_e|2.718281828459, x], x}
Derivative(
	(
symmath.e ^
		var("x")
	),
	var("x")
)
Derivative
  ∂          
╶──╴ ╭     2╮
 ∂x √╰1 - x ╯
∂/{∂x}[√(1 - x^2)]
${\frac{\partial}{\partial x}}\left({\sqrt{{1}{-{{x}^{2}}}}}\right)$
${\frac{\partial}{\partial x}}\left({\sqrt{{1}{-{{x}^{2}}}}}\right)$
d([](double* out, double x) {
	double out1 = sqrt(1. + -x * x);
	out[0] = out1;
})
d(function(x) {
	const out1 = Math.sqrt(1 + -x * x);
	return out1;
})
d(function(x)
	local out1 = math.sqrt(1 + -x * x)
	return out1
end)
d((x) =
	out1 = sqrt(1. + -x * x)
	return out1)
d([x_] :=
	out1 = sqrt[1 + -x * x];
	out1;)
Derivative{sqrt[+[1, unm(^[x, 2])]], x}
Derivative(
	sqrt(
		(
			Constant(1) +
			-(
				(
					var("x") ^
					Constant(2)
				)
			)
		)
	),
	var("x")
)
Integral
⌠     
⌡ y dx
∫(y, x )
$\int{{y}}d x$
$\int{{y}}d x$
integrate([](double* out, double x) {
	double out1 = y;
	out[0] = out1;
})
integrate(function(x) {
	const out1 = y;
	return out1;
})
integrate(function(x)
	local out1 = y
	return out1
end)
integrate((x) =
	out1 = y
	return out1)
integrate([x_] :=
	out1 = y;
	out1;)
Integral{y, x}
Integral(
	var("y"),
	var("x")
)
Integral
⌠1     
│  y dx
⌡0     
∫(y, x, 0, 1 )
$\int\limits_{{0}}^{{1}}{{y}}d x$
$\int\limits_{{0}}^{{1}}{{y}}d x$
integrate([](double* out, double x) {
	double out1 = y;
	out[0] = out1;
}, 0., 1.)
integrate(function(x) {
	const out1 = y;
	return out1;
}, 0, 1)
integrate(function(x)
	local out1 = y
	return out1
end, 0, 1)
integrate((x) =
	out1 = y
	return out1, 0., 1.)
integrate([x_] :=
	out1 = y;
	out1;, 0, 1)
Integral{y, x, 0, 1}
Integral(
	var("y"),
	var("x"),
	Constant(0),
	Constant(1)
)
Integral
⌠1              
│    ╭     2╮   
⌡-1 √╰1 - x ╯ dx
∫(√(1 - x^2), x, -1, 1 )
$\int\limits_{{-1}}^{{1}}{{\sqrt{{1}{-{{x}^{2}}}}}}d x$
$\int\limits_{{-1}}^{{1}}{{\sqrt{{1}{-{{x}^{2}}}}}}d x$
integrate([](double* out, double x) {
	double out1 = sqrt(1. + -x * x);
	out[0] = out1;
}, -1., 1.)
integrate(function(x) {
	const out1 = Math.sqrt(1 + -x * x);
	return out1;
}, -1, 1)
integrate(function(x)
	local out1 = math.sqrt(1 + -x * x)
	return out1
end, -1, 1)
integrate((x) =
	out1 = sqrt(1. + -x * x)
	return out1, -1., 1.)
integrate([x_] :=
	out1 = sqrt[1 + -x * x];
	out1;, -1, 1)
Integral{sqrt[+[1, unm(^[x, 2])]], x, -1, 1}
Integral(
	sqrt(
		(
			Constant(1) +
			-(
				(
					var("x") ^
					Constant(2)
				)
			)
		)
	),
	var("x"),
	Constant(-1),
	Constant(1)
)
Integral
⌠1      
│  -x dx
⌡0      
∫(-x, x, 0, 1 )
$\int\limits_{{0}}^{{1}}{{\left( -{x}\right)}}d x$
$\int\limits_{{0}}^{{1}}{{\left( -{x}\right)}}d x$
integrate([](double* out, double x) {
	double out1 = -x;
	out[0] = out1;
}, 0., 1.)
integrate(function(x) {
	const out1 = -x;
	return out1;
}, 0, 1)
integrate(function(x)
	local out1 = -x
	return out1
end, 0, 1)
integrate((x) =
	out1 = -x
	return out1, 0., 1.)
integrate([x_] :=
	out1 = -x;
	out1;, 0, 1)
Integral{unm(x), x, 0, 1}
Integral(
	-(
		var("x")
	),
	var("x"),
	Constant(0),
	Constant(1)
)
Integral
⌠1         
│  1 + x dx
⌡0         
∫(1 + x, x, 0, 1 )
$\int\limits_{{0}}^{{1}}{{\left({{1} + {x}}\right)}}d x$
$\int\limits_{{0}}^{{1}}{{\left({{1} + {x}}\right)}}d x$
integrate([](double* out, double x) {
	double out1 = 1. + x;
	out[0] = out1;
}, 0., 1.)
integrate(function(x) {
	const out1 = 1 + x;
	return out1;
}, 0, 1)
integrate(function(x)
	local out1 = 1 + x
	return out1
end, 0, 1)
integrate((x) =
	out1 = 1. + x
	return out1, 0., 1.)
integrate([x_] :=
	out1 = 1 + x;
	out1;, 0, 1)
Integral{+[1, x], x, 0, 1}
Integral(
	(
		Constant(1) +
		var("x")
	),
	var("x"),
	Constant(0),
	Constant(1)
)
Array
┌ ┐
│x│
│ │
│y│
└ ┘
[x, y]
$\left[\begin{matrix} x \\ y\end{matrix}\right]$
$\left[\begin{matrix} x \\ y\end{matrix}\right]$
{x, y}
[x, y]
{x, y}
{x, y}
{x, y}
Array{x, y}
Array(
	var("x"),
	var("y")
)
Matrix
┌ ┐
│x│
│ │
│y│
└ ┘
[[x], [y]]
$\left[\begin{array}{c} x\\ y\end{array}\right]$
$\left[\begin{array}{c} x\\ y\end{array}\right]$
{{x}, {y}}
[[x], [y]]
{{x}, {y}}
{{x}, {y}}
{{x}, {y}}
Matrix{Matrix{x}, Matrix{y}}
Matrix(
	Matrix(
		var("x")
	),
	Matrix(
		var("y")
	)
)
Matrix
┌    ┐
│x  y│
└    ┘
[[x, y]]
$\left[\begin{array}{cc} x& y\end{array}\right]$
$\left[\begin{array}{cc} x& y\end{array}\right]$
{{x, y}}
[[x, y]]
{{x, y}}
{{x, y}}
{{x, y}}
Matrix{Matrix{x, y}}
Matrix(
	Matrix(
		var("x"),
		var("y")
	)
)
Matrix
┌    ┐
│a  b│
│    │
│c  d│
└    ┘
[[a, b], [c, d]]
$\left[\begin{array}{cc} a& b\\ c& d\end{array}\right]$
$\left[\begin{array}{cc} a& b\\ c& d\end{array}\right]$
{{a, b}, {c, d}}
[[a, b], [c, d]]
{{a, b}, {c, d}}
{{a, b}, {c, d}}
{{a, b}, {c, d}}
Matrix{Matrix{a, b}, Matrix{c, d}}
Matrix(
	Matrix(
		var("a"),
		var("b")
	),
	Matrix(
		var("c"),
		var("d")
	)
)
Tensor
_i↓
┌ ┐
│a│
│ │
│b│
└ ┘
[a, b]
$\overset{i\downarrow}{\left[\begin{matrix} a \\ b\end{matrix}\right]}$
$\overset{i\downarrow}{\left[\begin{matrix} a \\ b\end{matrix}\right]}$
{a, b}
[a, b]
{a, b}
{a, b}
{a, b}
Tensor{a, b}_i
Tensor(
	{
Tensor.Index{lower=true, symbol="i"}
	},
	var("a"),
	var("b")
)
Tensor
_i↓_j→
┌    ┐
│a  b│
│    │
│c  d│
└    ┘
[[a, b], [c, d]]
$\overset{i\downarrow j\rightarrow}{\left[\begin{array}{cc} a& b\\ c& d\end{array}\right]}$
$\overset{i\downarrow j\rightarrow}{\left[\begin{array}{cc} a& b\\ c& d\end{array}\right]}$
{{a, b}, {c, d}}
[[a, b], [c, d]]
{{a, b}, {c, d}}
{{a, b}, {c, d}}
{{a, b}, {c, d}}
Tensor{Tensor{a, b}_j, Tensor{c, d}_j}_i_j
Tensor(
	{
Tensor.Index{lower=true, symbol="i"},
Tensor.Index{lower=true, symbol="j"}
	},
	Tensor(
		{
Tensor.Index{lower=true, symbol="j"}
		},
		var("a"),
		var("b")
	),
	Tensor(
		{
Tensor.Index{lower=true, symbol="j"}
		},
		var("c"),
		var("d")
	)
)
Tensor
_i↓[_j↓_k→]
┌      ┐   
│_j↓_k→│   
│┌    ┐│   
││a  b││   
││    ││   
││c  d││   
│└    ┘│   
│      │   
│_j↓_k→│   
│┌    ┐│   
││e  f││   
││    ││   
││g  h││   
│└    ┘│   
└      ┘   
[[[a, b], [c, d]], [[e, f], [g, h]]]
$\overset{i\downarrow[{j\downarrow k\rightarrow}]}{\left[\begin{matrix} \overset{j\downarrow k\rightarrow}{\left[\begin{array}{cc} a& b\\ c& d\end{array}\right]} \\ \overset{j\downarrow k\rightarrow}{\left[\begin{array}{cc} e& f\\ g& h\end{array}\right]}\end{matrix}\right]}$
$\overset{i\downarrow[{j\downarrow k\rightarrow}]}{\left[\begin{matrix} \overset{j\downarrow k\rightarrow}{\left[\begin{array}{cc} a& b\\ c& d\end{array}\right]} \\ \overset{j\downarrow k\rightarrow}{\left[\begin{array}{cc} e& f\\ g& h\end{array}\right]}\end{matrix}\right]}$
{{{a, b}, {c, d}}, {{e, f}, {g, h}}}
[[[a, b], [c, d]], [[e, f], [g, h]]]
{{{a, b}, {c, d}}, {{e, f}, {g, h}}}
{{{a, b}, {c, d}}, {{e, f}, {g, h}}}
{{{a, b}, {c, d}}, {{e, f}, {g, h}}}
Tensor{Tensor{Tensor{a, b}_k, Tensor{c, d}_k}_j_k, Tensor{Tensor{e, f}_k, Tensor{g, h}_k}_j_k}_i_j_k
Tensor(
	{
Tensor.Index{lower=true, symbol="i"},
Tensor.Index{lower=true, symbol="j"},
Tensor.Index{lower=true, symbol="k"}
	},
	Tensor(
		{
Tensor.Index{lower=true, symbol="j"},
Tensor.Index{lower=true, symbol="k"}
		},
		Tensor(
			{
Tensor.Index{lower=true, symbol="k"}
			},
			var("a"),
			var("b")
		),
		Tensor(
			{
Tensor.Index{lower=true, symbol="k"}
			},
			var("c"),
			var("d")
		)
	),
	Tensor(
		{
Tensor.Index{lower=true, symbol="j"},
Tensor.Index{lower=true, symbol="k"}
		},
		Tensor(
			{
Tensor.Index{lower=true, symbol="k"}
			},
			var("e"),
			var("f")
		),
		Tensor(
			{
Tensor.Index{lower=true, symbol="k"}
			},
			var("g"),
			var("h")
		)
	)
)
Tensor.Ref
x_a
x_a
${ x} _a$
${ x} _a$
x_Da
x_Da
x_Da
x_Da
x_Da
Tensor.Ref{x, Tensor.Index{_a}}
Tensor.Ref(
	var("x"),
	Tensor.Index{lower=true, symbol="a"}
)
Tensor.Ref
x^a
x^a
${ x} ^a$
${ x} ^a$
x_Ua
x_Ua
x_Ua
x_Ua
x_Ua
Tensor.Ref{x, Tensor.Index{^a}}
Tensor.Ref(
	var("x"),
	Tensor.Index{lower=false, symbol="a"}
)
Tensor.Ref
x_\mu
x_\mu
${ x} _{\mu}$
${ x} _{\mu}$
x_D\mu
x_D\mu
x_D\mu
x_D\mu
x_D\mu
Tensor.Ref{x, Tensor.Index{_\mu}}
Tensor.Ref(
	var("x"),
	Tensor.Index{lower=true, symbol="\\mu"}
)
Tensor.Ref
x^\mu
x^\mu
${ x} ^{\mu}$
${ x} ^{\mu}$
x_U\mu
x_U\mu
x_U\mu
x_U\mu
x_U\mu
Tensor.Ref{x, Tensor.Index{^\mu}}
Tensor.Ref(
	var("x"),
	Tensor.Index{lower=false, symbol="\\mu"}
)
Tensor.Ref
x_ab
x_ab
${{ x} _a} _b$
${{ x} _a} _b$
x_Da_Db
x_Da_Db
x_Da_Db
x_Da_Db
x_Da_Db
Tensor.Ref{x, Tensor.Index{_a}, Tensor.Index{_b}}
Tensor.Ref(
	var("x"),
	Tensor.Index{lower=true, symbol="a"},
	Tensor.Index{lower=true, symbol="b"}
)
Tensor.Ref
x^ab
x^ab
${{ x} ^a} ^b$
${{ x} ^a} ^b$
x_Ua_Ub
x_Ua_Ub
x_Ua_Ub
x_Ua_Ub
x_Ua_Ub
Tensor.Ref{x, Tensor.Index{^a}, Tensor.Index{^b}}
Tensor.Ref(
	var("x"),
	Tensor.Index{lower=false, symbol="a"},
	Tensor.Index{lower=false, symbol="b"}
)
Tensor.Ref
x_\mu_\nu
x_\mu_\nu
${{ x} _{\mu}} _{\nu}$
${{ x} _{\mu}} _{\nu}$
x_D\mu_D\nu
x_D\mu_D\nu
x_D\mu_D\nu
x_D\mu_D\nu
x_D\mu_D\nu
Tensor.Ref{x, Tensor.Index{_\mu}, Tensor.Index{_\nu}}
Tensor.Ref(
	var("x"),
	Tensor.Index{lower=true, symbol="\\mu"},
	Tensor.Index{lower=true, symbol="\\nu"}
)
Tensor.Ref
x^\mu^\nu
x^\mu^\nu
${{ x} ^{\mu}} ^{\nu}$
${{ x} ^{\mu}} ^{\nu}$
x_U\mu_U\nu
x_U\mu_U\nu
x_U\mu_U\nu
x_U\mu_U\nu
x_U\mu_U\nu
Tensor.Ref{x, Tensor.Index{^\mu}, Tensor.Index{^\nu}}
Tensor.Ref(
	var("x"),
	Tensor.Index{lower=false, symbol="\\mu"},
	Tensor.Index{lower=false, symbol="\\nu"}
)


with symmath.fixVariableNames == false:
.name MultiLine SingleLine LaTeX / MathJax C JavaScript Lua GnuPlot Mathematica Verbose SymMath
alpha
alpha
alpha
$alpha$
$alpha$
alpha
alpha
alpha
alpha
alpha
alpha
var("alpha")
beta
beta
beta
$beta$
$beta$
beta
beta
beta
beta
beta
beta
var("beta")
gamma
gamma
gamma
$gamma$
$gamma$
gamma
gamma
gamma
gamma
gamma
gamma
var("gamma")
delta
delta
delta
$delta$
$delta$
delta
delta
delta
delta
delta
delta
var("delta")
epsilon
epsilon
epsilon
$epsilon$
$epsilon$
epsilon
epsilon
epsilon
epsilon
epsilon
epsilon
var("epsilon")
zeta
zeta
zeta
$zeta$
$zeta$
zeta
zeta
zeta
zeta
zeta
zeta
var("zeta")
eta
eta
eta
$eta$
$eta$
eta
eta
eta
eta
eta
eta
var("eta")
theta
theta
theta
$theta$
$theta$
theta
theta
theta
theta
theta
theta
var("theta")
iota
iota
iota
$iota$
$iota$
iota
iota
iota
iota
iota
iota
var("iota")
kappa
kappa
kappa
$kappa$
$kappa$
kappa
kappa
kappa
kappa
kappa
kappa
var("kappa")
lambda
lambda
lambda
$lambda$
$lambda$
lambda
lambda
lambda
lambda
lambda
lambda
var("lambda")
mu
mu
mu
$mu$
$mu$
mu
mu
mu
mu
mu
mu
var("mu")
nu
nu
nu
$nu$
$nu$
nu
nu
nu
nu
nu
nu
var("nu")
xi
xi
xi
$xi$
$xi$
xi
xi
xi
xi
xi
xi
var("xi")
omicron
omicron
omicron
$omicron$
$omicron$
omicron
omicron
omicron
omicron
omicron
omicron
var("omicron")
pi
pi
pi
$pi$
$pi$
pi
pi
pi
pi
pi
pi
var("pi")
rho
rho
rho
$rho$
$rho$
rho
rho
rho
rho
rho
rho
var("rho")
sigma
sigma
sigma
$sigma$
$sigma$
sigma
sigma
sigma
sigma
sigma
sigma
var("sigma")
tau
tau
tau
$tau$
$tau$
tau
tau
tau
tau
tau
tau
var("tau")
upsilon
upsilon
upsilon
$upsilon$
$upsilon$
upsilon
upsilon
upsilon
upsilon
upsilon
upsilon
var("upsilon")
phi
phi
phi
$phi$
$phi$
phi
phi
phi
phi
phi
phi
var("phi")
chi
chi
chi
$chi$
$chi$
chi
chi
chi
chi
chi
chi
var("chi")
psi
psi
psi
$psi$
$psi$
psi
psi
psi
psi
psi
psi
var("psi")
omega
omega
omega
$omega$
$omega$
omega
omega
omega
omega
omega
omega
var("omega")
Alpha
Alpha
Alpha
$Alpha$
$Alpha$
Alpha
Alpha
Alpha
Alpha
Alpha
Alpha
var("Alpha")
Beta
Beta
Beta
$Beta$
$Beta$
Beta
Beta
Beta
Beta
Beta
Beta
var("Beta")
Gamma
Gamma
Gamma
$Gamma$
$Gamma$
Gamma
Gamma
Gamma
Gamma
Gamma
Gamma
var("Gamma")
Delta
Delta
Delta
$Delta$
$Delta$
Delta
Delta
Delta
Delta
Delta
Delta
var("Delta")
Epsilon
Epsilon
Epsilon
$Epsilon$
$Epsilon$
Epsilon
Epsilon
Epsilon
Epsilon
Epsilon
Epsilon
var("Epsilon")
Zeta
Zeta
Zeta
$Zeta$
$Zeta$
Zeta
Zeta
Zeta
Zeta
Zeta
Zeta
var("Zeta")
Eta
Eta
Eta
$Eta$
$Eta$
Eta
Eta
Eta
Eta
Eta
Eta
var("Eta")
Theta
Theta
Theta
$Theta$
$Theta$
Theta
Theta
Theta
Theta
Theta
Theta
var("Theta")
Iota
Iota
Iota
$Iota$
$Iota$
Iota
Iota
Iota
Iota
Iota
Iota
var("Iota")
Kappa
Kappa
Kappa
$Kappa$
$Kappa$
Kappa
Kappa
Kappa
Kappa
Kappa
Kappa
var("Kappa")
Lambda
Lambda
Lambda
$Lambda$
$Lambda$
Lambda
Lambda
Lambda
Lambda
Lambda
Lambda
var("Lambda")
Mu
Mu
Mu
$Mu$
$Mu$
Mu
Mu
Mu
Mu
Mu
Mu
var("Mu")
Nu
Nu
Nu
$Nu$
$Nu$
Nu
Nu
Nu
Nu
Nu
Nu
var("Nu")
Xi
Xi
Xi
$Xi$
$Xi$
Xi
Xi
Xi
Xi
Xi
Xi
var("Xi")
Omicron
Omicron
Omicron
$Omicron$
$Omicron$
Omicron
Omicron
Omicron
Omicron
Omicron
Omicron
var("Omicron")
Pi
Pi
Pi
$Pi$
$Pi$
Pi
Pi
Pi
Pi
Pi
Pi
var("Pi")
Rho
Rho
Rho
$Rho$
$Rho$
Rho
Rho
Rho
Rho
Rho
Rho
var("Rho")
Sigma
Sigma
Sigma
$Sigma$
$Sigma$
Sigma
Sigma
Sigma
Sigma
Sigma
Sigma
var("Sigma")
Tau
Tau
Tau
$Tau$
$Tau$
Tau
Tau
Tau
Tau
Tau
Tau
var("Tau")
Upsilon
Upsilon
Upsilon
$Upsilon$
$Upsilon$
Upsilon
Upsilon
Upsilon
Upsilon
Upsilon
Upsilon
var("Upsilon")
Phi
Phi
Phi
$Phi$
$Phi$
Phi
Phi
Phi
Phi
Phi
Phi
var("Phi")
Chi
Chi
Chi
$Chi$
$Chi$
Chi
Chi
Chi
Chi
Chi
Chi
var("Chi")
Psi
Psi
Psi
$Psi$
$Psi$
Psi
Psi
Psi
Psi
Psi
Psi
var("Psi")
Omega
Omega
Omega
$Omega$
$Omega$
Omega
Omega
Omega
Omega
Omega
Omega
var("Omega")
Tensor.Ref
x_mu
x_mu
${ x} _{mu}$
${ x} _{mu}$
x_Dmu
x_Dmu
x_Dmu
x_Dmu
x_Dmu
Tensor.Ref{x, Tensor.Index{_mu}}
Tensor.Ref(
	var("x"),
	Tensor.Index{lower=true, symbol="mu"}
)
Tensor.Ref
x^mu
x^mu
${ x} ^{mu}$
${ x} ^{mu}$
x_Umu
x_Umu
x_Umu
x_Umu
x_Umu
Tensor.Ref{x, Tensor.Index{^mu}}
Tensor.Ref(
	var("x"),
	Tensor.Index{lower=false, symbol="mu"}
)
Tensor.Ref
x_mu_nu
x_mu_nu
${{ x} _{mu}} _{nu}$
${{ x} _{mu}} _{nu}$
x_Dmu_Dnu
x_Dmu_Dnu
x_Dmu_Dnu
x_Dmu_Dnu
x_Dmu_Dnu
Tensor.Ref{x, Tensor.Index{_mu}, Tensor.Index{_nu}}
Tensor.Ref(
	var("x"),
	Tensor.Index{lower=true, symbol="mu"},
	Tensor.Index{lower=true, symbol="nu"}
)
Tensor.Ref
x^mu^nu
x^mu^nu
${{ x} ^{mu}} ^{nu}$
${{ x} ^{mu}} ^{nu}$
x_Umu_Unu
x_Umu_Unu
x_Umu_Unu
x_Umu_Unu
x_Umu_Unu
Tensor.Ref{x, Tensor.Index{^mu}, Tensor.Index{^nu}}
Tensor.Ref(
	var("x"),
	Tensor.Index{lower=false, symbol="mu"},
	Tensor.Index{lower=false, symbol="nu"}
)


with symmath.fixVariableNames == true:
.name MultiLine SingleLine LaTeX / MathJax C JavaScript Lua GnuPlot Mathematica Verbose SymMath
alpha
α
α
$\alpha$
$\alpha$
alpha
alpha
alpha
alpha
alpha
alpha
var("alpha")
beta
β
β
$\beta$
$\beta$
beta
beta
beta
beta
beta
beta
var("beta")
gamma
γ
γ
$\gamma$
$\gamma$
gamma
gamma
gamma
gamma
gamma
gamma
var("gamma")
delta
δ
δ
$\delta$
$\delta$
delta
delta
delta
delta
delta
delta
var("delta")
epsilon
ε
ε
$\epsilon$
$\epsilon$
epsilon
epsilon
epsilon
epsilon
epsilon
epsilon
var("epsilon")
zeta
ζ
ζ
$\zeta$
$\zeta$
zeta
zeta
zeta
zeta
zeta
zeta
var("zeta")
eta
η
η
$\eta$
$\eta$
eta
eta
eta
eta
eta
eta
var("eta")
theta
θ
θ
$\theta$
$\theta$
theta
theta
theta
theta
theta
theta
var("theta")
iota
ι
ι
$\iota$
$\iota$
iota
iota
iota
iota
iota
iota
var("iota")
kappa
κ
κ
$\kappa$
$\kappa$
kappa
kappa
kappa
kappa
kappa
kappa
var("kappa")
lambda
λ
λ
$\lambda$
$\lambda$
lambda
lambda
lambda
lambda
lambda
lambda
var("lambda")
mu
μ
μ
$\mu$
$\mu$
mu
mu
mu
mu
mu
mu
var("mu")
nu
ν
ν
$\nu$
$\nu$
nu
nu
nu
nu
nu
nu
var("nu")
xi
ξ
ξ
$\xi$
$\xi$
xi
xi
xi
xi
xi
xi
var("xi")
omicron
ο
ο
$\omicron$
$\omicron$
omicron
omicron
omicron
omicron
omicron
omicron
var("omicron")
pi
π
π
$\pi$
$\pi$
pi
pi
pi
pi
pi
pi
var("pi")
rho
ρ
ρ
$\rho$
$\rho$
rho
rho
rho
rho
rho
rho
var("rho")
sigma
σ
σ
$\sigma$
$\sigma$
sigma
sigma
sigma
sigma
sigma
sigma
var("sigma")
tau
τ
τ
$\tau$
$\tau$
tau
tau
tau
tau
tau
tau
var("tau")
upsilon
υ
υ
$\upsilon$
$\upsilon$
upsilon
upsilon
upsilon
upsilon
upsilon
upsilon
var("upsilon")
phi
φ
φ
$\phi$
$\phi$
phi
phi
phi
phi
phi
phi
var("phi")
chi
χ
χ
$\chi$
$\chi$
chi
chi
chi
chi
chi
chi
var("chi")
psi
ψ
ψ
$\psi$
$\psi$
psi
psi
psi
psi
psi
psi
var("psi")
omega
ω
ω
$\omega$
$\omega$
omega
omega
omega
omega
omega
omega
var("omega")
Alpha
Α
Α
$A$
$A$
Alpha
Alpha
Alpha
Alpha
Alpha
Alpha
var("Alpha")
Beta
Β
Β
$B$
$B$
Beta
Beta
Beta
Beta
Beta
Beta
var("Beta")
Gamma
Γ
Γ
$\Gamma$
$\Gamma$
Gamma
Gamma
Gamma
Gamma
Gamma
Gamma
var("Gamma")
Delta
Δ
Δ
$\Delta$
$\Delta$
Delta
Delta
Delta
Delta
Delta
Delta
var("Delta")
Epsilon
Ε
Ε
$E$
$E$
Epsilon
Epsilon
Epsilon
Epsilon
Epsilon
Epsilon
var("Epsilon")
Zeta
Ζ
Ζ
$Z$
$Z$
Zeta
Zeta
Zeta
Zeta
Zeta
Zeta
var("Zeta")
Eta
Η
Η
$H$
$H$
Eta
Eta
Eta
Eta
Eta
Eta
var("Eta")
Theta
Θ
Θ
$\Theta$
$\Theta$
Theta
Theta
Theta
Theta
Theta
Theta
var("Theta")
Iota
Ι
Ι
$I$
$I$
Iota
Iota
Iota
Iota
Iota
Iota
var("Iota")
Kappa
Κ
Κ
$K$
$K$
Kappa
Kappa
Kappa
Kappa
Kappa
Kappa
var("Kappa")
Lambda
Λ
Λ
$\Lambda$
$\Lambda$
Lambda
Lambda
Lambda
Lambda
Lambda
Lambda
var("Lambda")
Mu
Μ
Μ
$M$
$M$
Mu
Mu
Mu
Mu
Mu
Mu
var("Mu")
Nu
Ν
Ν
$N$
$N$
Nu
Nu
Nu
Nu
Nu
Nu
var("Nu")
Xi
Ξ
Ξ
$\Xi$
$\Xi$
Xi
Xi
Xi
Xi
Xi
Xi
var("Xi")
Omicron
Ο
Ο
$O$
$O$
Omicron
Omicron
Omicron
Omicron
Omicron
Omicron
var("Omicron")
Pi
Π
Π
$\Pi$
$\Pi$
Pi
Pi
Pi
Pi
Pi
Pi
var("Pi")
Rho
Ρ
Ρ
$P$
$P$
Rho
Rho
Rho
Rho
Rho
Rho
var("Rho")
Sigma
Σ
Σ
$\Sigma$
$\Sigma$
Sigma
Sigma
Sigma
Sigma
Sigma
Sigma
var("Sigma")
Tau
Τ
Τ
$T$
$T$
Tau
Tau
Tau
Tau
Tau
Tau
var("Tau")
Upsilon
Υ
Υ
$\Upsilon$
$\Upsilon$
Upsilon
Upsilon
Upsilon
Upsilon
Upsilon
Upsilon
var("Upsilon")
Phi
Φ
Φ
$\Phi$
$\Phi$
Phi
Phi
Phi
Phi
Phi
Phi
var("Phi")
Chi
Χ
Χ
$X$
$X$
Chi
Chi
Chi
Chi
Chi
Chi
var("Chi")
Psi
Ψ
Ψ
$\Psi$
$\Psi$
Psi
Psi
Psi
Psi
Psi
Psi
var("Psi")
Omega
Ω
Ω
$\Omega$
$\Omega$
Omega
Omega
Omega
Omega
Omega
Omega
var("Omega")
Tensor.Ref
x_\mu
x_\mu
${ x} _{\mu}$
${ x} _{\mu}$
x_D\mu
x_D\mu
x_D\mu
x_D\mu
x_D\mu
Tensor.Ref{x, Tensor.Index{_\mu}}
Tensor.Ref(
	var("x"),
	Tensor.Index{lower=true, symbol="mu"}
)
Tensor.Ref
x^\mu
x^\mu
${ x} ^{\mu}$
${ x} ^{\mu}$
x_U\mu
x_U\mu
x_U\mu
x_U\mu
x_U\mu
Tensor.Ref{x, Tensor.Index{^\mu}}
Tensor.Ref(
	var("x"),
	Tensor.Index{lower=false, symbol="mu"}
)
Tensor.Ref
x_\mu_\nu
x_\mu_\nu
${{ x} _{\mu}} _{\nu}$
${{ x} _{\mu}} _{\nu}$
x_D\mu_D\nu
x_D\mu_D\nu
x_D\mu_D\nu
x_D\mu_D\nu
x_D\mu_D\nu
Tensor.Ref{x, Tensor.Index{_\mu}, Tensor.Index{_\nu}}
Tensor.Ref(
	var("x"),
	Tensor.Index{lower=true, symbol="mu"},
	Tensor.Index{lower=true, symbol="nu"}
)
Tensor.Ref
x^\mu^\nu
x^\mu^\nu
${{ x} ^{\mu}} ^{\nu}$
${{ x} ^{\mu}} ^{\nu}$
x_U\mu_U\nu
x_U\mu_U\nu
x_U\mu_U\nu
x_U\mu_U\nu
x_U\mu_U\nu
Tensor.Ref{x, Tensor.Index{^\mu}, Tensor.Index{^\nu}}
Tensor.Ref(
	var("x"),
	Tensor.Index{lower=false, symbol="mu"},
	Tensor.Index{lower=false, symbol="nu"}
)