.name |
MultiLine
|
SingleLine
|
LaTeX
/ MathJax
|
C
|
JavaScript
|
Lua
|
GnuPlot
|
Mathematica
|
Verbose
|
SymMath
|
_i |
_i
|
_i
|
$i$
$i$
|
_i
|
_i
|
ffi.new("complex", 0, 1)
|
{0,1}
|
ii
|
_i|0+1i
|
symmath.i
|
e |
e
|
e
|
$e$
$e$
|
e
|
e
|
e
|
e
|
e
|
e
|
var("e")
|
π |
π
|
π
|
$π$
$π$
|
M_PI
|
Math.PI
|
math.pi
|
pi
|
π
|
π|3.1415926535898
|
symmath.pi
|
inf |
∞
|
∞
|
$\infty$
$\infty$
|
INFINITY
|
Infinity
|
math.huge
|
inf
|
inf
|
inf|inf
|
symmath.inf
|
Invalid |
nan
|
nan
|
$¿$
$¿$
|
NAN
|
(0/0)
|
Invalid
|
(0/0)
|
¿
|
Invalid
|
symmath.invalid
|
x |
x
|
x
|
$x$
$x$
|
x
|
x
|
x
|
x
|
x
|
x
|
var("x")
|
y |
y
|
y
|
$y$
$y$
|
y
|
y
|
y
|
y
|
y
|
y
|
var("y")
|
+ |
x + y
|
x + y
|
${x} + {y}$
${x} + {y}$
|
x + y
|
x + y
|
x + y
|
x + y
|
x + y
|
+[x, y]
|
(
var("x") +
var("y")
)
|
+ |
x-y
|
x - y
|
${x}{-{y}}$
${x}{-{y}}$
|
x + -y
|
x + -y
|
x + -y
|
x + -y
|
x + -y
|
+[x, unm(y)]
|
(
var("x") +
-(
var("y")
)
)
|
* |
x * y
|
x * y
|
${{x}} {{y}}$
${{x}} {{y}}$
|
x * y
|
x * y
|
x * y
|
x * y
|
x * y
|
*[x, y]
|
(
var("x") *
var("y")
)
|
/ |
x
╶─╴
y
|
x / y
|
${\frac{1}{y}} {x}$
${\frac{1}{y}} {x}$
|
x / y
|
x / y
|
x / y
|
x / y
|
x / y
|
/[x, y]
|
(
var("x") /
var("y")
)
|
% |
x % y
|
x % y
|
${x} \mod {y}$
${x} \mod {y}$
|
x % y
|
x % y
|
x % y
|
x % y
|
x % y
|
%[x, y]
|
(
var("x") %
var("y")
)
|
^ |
y
x
|
x^y
|
${x}^{y}$
${x}^{y}$
|
pow(x, y)
|
Math.pow(x, y)
|
x ^ y
|
((x) ** (y))
|
(x ^ y)
|
^[x, y]
|
(
var("x") ^
var("y")
)
|
unm |
-x
|
-x
|
$-{x}$
$-{x}$
|
-x
|
-x
|
-x
|
-x
|
-x
|
unm(x)
|
-(
var("x")
)
|
/ |
x
╶─╴
2
|
x / 2
|
${\frac{1}{2}} {x}$
${\frac{1}{2}} {x}$
|
x / 2.
|
x / 2
|
x / 2
|
x / 2.
|
x / 2
|
/[x, 2]
|
(
var("x") /
Constant(2)
)
|
* |
1
╶─╴ * x
2
|
1 / 2 * x
|
${{\frac{1}{2}}} {{x}}$
${{\frac{1}{2}}} {{x}}$
|
1. / 2. * x
|
1 / 2 * x
|
1 / 2 * x
|
1. / 2. * x
|
1 / 2 * x
|
*[/[1, 2], x]
|
(
(
Constant(1) /
Constant(2)
) *
var("x")
)
|
* |
2 * x
|
2 * x
|
${{2}} {{x}}$
${{2}} {{x}}$
|
2. * x
|
2 * x
|
2 * x
|
2. * x
|
2 * x
|
*[2, x]
|
(
Constant(2) *
var("x")
)
|
* |
2 * (x + 1)
|
2 * (x + 1)
|
${{2}} {{\left({{x} + {1}}\right)}}$
${{2}} {{\left({{x} + {1}}\right)}}$
|
2. * (x + 1.)
|
2 * (x + 1)
|
2 * (x + 1)
|
2. * (x + 1.)
|
2 * (x + 1)
|
*[2, +[x, 1]]
|
(
Constant(2) *
(
var("x") +
Constant(1)
)
)
|
^ |
2
x
|
x^2
|
${x}^{2}$
${x}^{2}$
|
(x * x)
|
Math.pow(x, 2)
|
x ^ 2
|
((x) ** (2.))
|
(x ^ 2)
|
^[x, 2]
|
(
var("x") ^
Constant(2)
)
|
^ |
2
(1 + x)
|
(1 + x)^2
|
${\left({{1} + {x}}\right)}^{2}$
${\left({{1} + {x}}\right)}^{2}$
|
((1. + x) * (1. + x))
|
Math.pow(1 + x, 2)
|
(1 + x) ^ 2
|
((1. + x) ** (2.))
|
(1 + x ^ 2)
|
^[+[1, x], 2]
|
(
(
Constant(1) +
var("x")
) ^
Constant(2)
)
|
^ |
(1 + y)
(1 + x)
|
(1 + x)^(1 + y)
|
${\left({{1} + {x}}\right)}^{{1} + {y}}$
${\left({{1} + {x}}\right)}^{{1} + {y}}$
|
pow(1. + x, 1. + y)
|
Math.pow(1 + x, 1 + y)
|
(1 + x) ^ (1 + y)
|
((1. + x) ** (1. + y))
|
(1 + x ^ 1 + y)
|
^[+[1, x], +[1, y]]
|
(
(
Constant(1) +
var("x")
) ^
(
Constant(1) +
var("y")
)
)
|
^ |
(1 + y)
2
|
2^(1 + y)
|
${2}^{{1} + {y}}$
${2}^{{1} + {y}}$
|
pow(2., 1. + y)
|
Math.pow(2, 1 + y)
|
2 ^ (1 + y)
|
((2.) ** (1. + y))
|
(2 ^ 1 + y)
|
^[2, +[1, y]]
|
(
Constant(2) ^
(
Constant(1) +
var("y")
)
)
|
^ |
(1 + y)
e
|
e^(1 + y)
|
${e}^{{1} + {y}}$
${e}^{{1} + {y}}$
|
pow(e, 1. + y)
|
Math.pow(e, 1 + y)
|
e ^ (1 + y)
|
((e) ** (1. + y))
|
(e ^ 1 + y)
|
^[e, +[1, y]]
|
(
var("e") ^
(
Constant(1) +
var("y")
)
)
|
abs |
│x│
|
|x|
|
$\left| x\right|$
$\left| x\right|$
|
abs(x)
|
Math.abs(x)
|
math.abs(x)
|
abs(x)
|
abs[x]
|
abs[x]
|
abs(
var("x")
)
|
sqrt |
√(x)
|
√(x)
|
$\sqrt{x}$
$\sqrt{x}$
|
sqrt(x)
|
Math.sqrt(x)
|
math.sqrt(x)
|
sqrt(x)
|
sqrt[x]
|
sqrt[x]
|
sqrt(
var("x")
)
|
cbrt |
cbrt(x)
|
cbrt(x)
|
$\sqrt[3]{x}$
$\sqrt[3]{x}$
|
cbrt(x)
|
Math.cbrt(x)
|
x ^ (1 / 3)
|
cbrt(x)
|
cbrt[x]
|
cbrt[x]
|
cbrt(
var("x")
)
|
^ |
x
_e
|
_e^x
|
$\exp\left( x\right)$
$\exp\left( x\right)$
|
exp(x)
|
Math.exp(x)
|
math.exp(x)
|
(exp(x))
|
exp[x]
|
^[_e|2.718281828459, x]
|
(
symmath.e ^
var("x")
)
|
log |
log(x)
|
log(x)
|
$\log\left( x\right)$
$\log\left( x\right)$
|
log(x)
|
Math.log(x)
|
math.log(x)
|
log(x)
|
log[x]
|
log[x]
|
log(
var("x")
)
|
Heaviside |
Heaviside(x)
|
Heaviside(x)
|
$\mathcal{H}\left( x\right)$
$\mathcal{H}\left( x\right)$
|
(x >= 0 ? 1 : 0)
|
(x >= 0 ? 1 : 0)
|
((x >= 0) and 1 or 0)
|
(x >= 0.)
|
Heaviside[x]
|
Heaviside[x]
|
Heaviside(
var("x")
)
|
sin |
sin(x)
|
sin(x)
|
$\sin\left( x\right)$
$\sin\left( x\right)$
|
sin(x)
|
Math.sin(x)
|
math.sin(x)
|
sin(x)
|
sin[x]
|
sin[x]
|
sin(
var("x")
)
|
cos |
cos(x)
|
cos(x)
|
$\cos\left( x\right)$
$\cos\left( x\right)$
|
cos(x)
|
Math.cos(x)
|
math.cos(x)
|
cos(x)
|
cos[x]
|
cos[x]
|
cos(
var("x")
)
|
tan |
tan(x)
|
tan(x)
|
$\tan\left( x\right)$
$\tan\left( x\right)$
|
tan(x)
|
Math.tan(x)
|
math.tan(x)
|
tan(x)
|
tan[x]
|
tan[x]
|
tan(
var("x")
)
|
asin |
asin(x)
|
asin(x)
|
$asin\left( x\right)$
$asin\left( x\right)$
|
asin(x)
|
Math.asin(x)
|
math.asin(x)
|
asin(x)
|
asin[x]
|
asin[x]
|
asin(
var("x")
)
|
acos |
acos(x)
|
acos(x)
|
$acos\left( x\right)$
$acos\left( x\right)$
|
acos(x)
|
Math.acos(x)
|
math.acos(x)
|
acos(x)
|
acos[x]
|
acos[x]
|
acos(
var("x")
)
|
atan |
atan(x)
|
atan(x)
|
$atan\left( x\right)$
$atan\left( x\right)$
|
atan(x)
|
Math.atan(x)
|
math.atan(x)
|
atan(x)
|
atan[x]
|
atan[x]
|
atan(
var("x")
)
|
atan2 |
atan2(x)
|
atan2(x)
|
$atan2\left( x\right)$
$atan2\left( x\right)$
|
atan2(x)
|
Math.atan2(x)
|
math.atan2(x)
|
atan2(x)
|
atan2[x]
|
atan2[x]
|
atan2(
var("x")
)
|
sinh |
sinh(x)
|
sinh(x)
|
$\sinh\left( x\right)$
$\sinh\left( x\right)$
|
sinh(x)
|
Math.sinh(x)
|
math.sinh(x)
|
sinh(x)
|
sinh[x]
|
sinh[x]
|
sinh(
var("x")
)
|
cosh |
cosh(x)
|
cosh(x)
|
$\cosh\left( x\right)$
$\cosh\left( x\right)$
|
cosh(x)
|
Math.cosh(x)
|
math.cosh(x)
|
cosh(x)
|
cosh[x]
|
cosh[x]
|
cosh(
var("x")
)
|
tanh |
tanh(x)
|
tanh(x)
|
$\tanh\left( x\right)$
$\tanh\left( x\right)$
|
tanh(x)
|
Math.tanh(x)
|
math.tanh(x)
|
tanh(x)
|
tanh[x]
|
tanh[x]
|
tanh(
var("x")
)
|
asinh |
asinh(x)
|
asinh(x)
|
$asinh\left( x\right)$
$asinh\left( x\right)$
|
asinh(x)
|
Math.asinh(x)
|
math.asinh(x)
|
asinh(x)
|
asinh[x]
|
asinh[x]
|
asinh(
var("x")
)
|
acosh |
acosh(x)
|
acosh(x)
|
$acosh\left( x\right)$
$acosh\left( x\right)$
|
acosh(x)
|
Math.acosh(x)
|
math.acosh(x)
|
acosh(x)
|
acosh[x]
|
acosh[x]
|
acosh(
var("x")
)
|
atanh |
atanh(x)
|
atanh(x)
|
$atanh\left( x\right)$
$atanh\left( x\right)$
|
atanh(x)
|
Math.atanh(x)
|
math.atanh(x)
|
atanh(x)
|
atanh[x]
|
atanh[x]
|
atanh(
var("x")
)
|
= |
x = y
|
x = y
|
${x} = {y}$
${x} = {y}$
|
x == y
|
x == y
|
x == y
|
x == y
|
x == y
|
=[x, y]
|
(
var("x")
):eq(
var("y")
)
|
≠ |
x ≠ y
|
x ≠ y
|
${x} \ne {y}$
${x} \ne {y}$
|
x != y
|
x != y
|
x ~= y
|
x != y
|
x != y
|
≠[x, y]
|
(
var("x")
):ne(
var("y")
)
|
< |
x < y
|
x < y
|
${x} \lt {y}$
${x} \lt {y}$
|
x < y
|
x < y
|
x < y
|
x < y
|
x < y
|
<[x, y]
|
(
var("x")
):lt(
var("y")
)
|
≤ |
x ≤ y
|
x ≤ y
|
${x} \le {y}$
${x} \le {y}$
|
x <= y
|
x <= y
|
x <= y
|
x <= y
|
x <= y
|
≤[x, y]
|
(
var("x")
):le(
var("y")
)
|
> |
x > y
|
x > y
|
${x} \gt {y}$
${x} \gt {y}$
|
x > y
|
x > y
|
x > y
|
x > y
|
x > y
|
>[x, y]
|
(
var("x")
):gt(
var("y")
)
|
≥ |
x ≥ y
|
x ≥ y
|
${x} \ge {y}$
${x} \ge {y}$
|
x >= y
|
x >= y
|
x >= y
|
x >= y
|
x >= y
|
≥[x, y]
|
(
var("x")
):ge(
var("y")
)
|
≈ |
x ≈ y
|
x ≈ y
|
${x} \approx {y}$
${x} \approx {y}$
|
x == y
|
x == y
|
x == y
|
x == y
|
x == y
|
≈[x, y]
|
(
var("x")
):approx(
var("y")
)
|
Limit |
lim
y
x→0
|
lim_x→0 y
|
${\underset{ x\rightarrow 0}{\lim}}{{y}}$
${\underset{ x\rightarrow 0}{\lim}}{{y}}$
|
limit([](double* out, double x) {
double out1 = y;
out[0] = out1;
}, 0.)
|
limit(function(x) {
const out1 = y;
return out1;
}, 0)
|
limit(function(x)
local out1 = y
return out1
end, 0)
|
limit((x) =
out1 = y
return out1, 0.)
|
limit([x_] :=
out1 = y;
out1;, 0)
|
Limit{y, x, 0, {}}
|
Limit(
var("y"),
var("x"),
Constant(0),
(
)
)
|
Limit |
lim
y
x→0+
|
lim_x→0+ y
|
${\underset{ x\rightarrow{ 0{}^+}}{\lim}}{{y}}$
${\underset{ x\rightarrow{ 0{}^+}}{\lim}}{{y}}$
|
limit_plus([](double* out, double x) {
double out1 = y;
out[0] = out1;
}, 0.)
|
limit_plus(function(x) {
const out1 = y;
return out1;
}, 0)
|
limit_plus(function(x)
local out1 = y
return out1
end, 0)
|
limit_plus((x) =
out1 = y
return out1, 0.)
|
limit_plus([x_] :=
out1 = y;
out1;, 0)
|
Limit{y, x, 0, +{}}
|
Limit(
var("y"),
var("x"),
Constant(0),
+(
)
)
|
Limit |
lim
y
x→0-
|
lim_x→0- y
|
${\underset{ x\rightarrow{ 0{}^-}}{\lim}}{{y}}$
${\underset{ x\rightarrow{ 0{}^-}}{\lim}}{{y}}$
|
limit_minus([](double* out, double x) {
double out1 = y;
out[0] = out1;
}, 0.)
|
limit_minus(function(x) {
const out1 = y;
return out1;
}, 0)
|
limit_minus(function(x)
local out1 = y
return out1
end, 0)
|
limit_minus((x) =
out1 = y
return out1, 0.)
|
limit_minus([x_] :=
out1 = y;
out1;, 0)
|
Limit{y, x, 0, -{}}
|
Limit(
var("y"),
var("x"),
Constant(0),
-(
)
)
|
Limit |
lim 1
╶─╴
x→0- x
|
lim_x→0- 1 / x
|
${\underset{ x\rightarrow{ 0{}^-}}{\lim}}{{\frac{1}{x}}}$
${\underset{ x\rightarrow{ 0{}^-}}{\lim}}{{\frac{1}{x}}}$
|
limit_minus([](double* out, double x) {
double out1 = 1. / x;
out[0] = out1;
}, 0.)
|
limit_minus(function(x) {
const out1 = 1 / x;
return out1;
}, 0)
|
limit_minus(function(x)
local out1 = 1 / x
return out1
end, 0)
|
limit_minus((x) =
out1 = 1. / x
return out1, 0.)
|
limit_minus([x_] :=
out1 = 1 / x;
out1;, 0)
|
Limit{/[1, x], x, 0, -{}}
|
Limit(
(
Constant(1) /
var("x")
),
var("x"),
Constant(0),
-(
)
)
|
Limit |
lim 1
╶──╴
x→0- 2
x
|
lim_x→0- 1 / x^2
|
${\underset{ x\rightarrow{ 0{}^-}}{\lim}}{{\frac{1}{{x}^{2}}}}$
${\underset{ x\rightarrow{ 0{}^-}}{\lim}}{{\frac{1}{{x}^{2}}}}$
|
limit_minus([](double* out, double x) {
double out1 = 1. / (x * x);
out[0] = out1;
}, 0.)
|
limit_minus(function(x) {
const out1 = 1 / (x * x);
return out1;
}, 0)
|
limit_minus(function(x)
local out1 = 1 / (x * x)
return out1
end, 0)
|
limit_minus((x) =
out1 = 1. / (x * x)
return out1, 0.)
|
limit_minus([x_] :=
out1 = 1 / (x * x);
out1;, 0)
|
Limit{/[1, ^[x, 2]], x, 0, -{}}
|
Limit(
(
Constant(1) /
(
var("x") ^
Constant(2)
)
),
var("x"),
Constant(0),
-(
)
)
|
Limit |
lim ╭ -1 ╮
│╶──╴│
x→0- ╰ x ╯
_e
|
lim_x→0- _e^(-1 / x)
|
${\underset{ x\rightarrow{ 0{}^-}}{\lim}}{{\exp\left({\frac{-1}{x}}\right)}}$
${\underset{ x\rightarrow{ 0{}^-}}{\lim}}{{\exp\left({\frac{-1}{x}}\right)}}$
|
limit_minus([](double* out, double x) {
double out1 = exp(-1. / x);
out[0] = out1;
}, 0.)
|
limit_minus(function(x) {
const out1 = Math.exp(-1 / x);
return out1;
}, 0)
|
limit_minus(function(x)
local out1 = math.exp(-1 / x)
return out1
end, 0)
|
limit_minus((x) =
out1 = (exp(-1. / x))
return out1, 0.)
|
limit_minus([x_] :=
out1 = exp[-1 / x];
out1;, 0)
|
Limit{^[_e|2.718281828459, /[-1, x]], x, 0, -{}}
|
Limit(
(
symmath.e ^
(
Constant(-1) /
var("x")
)
),
var("x"),
Constant(0),
-(
)
)
|
Limit |
lim
(1 + x)
x→0
|
lim_x→0 1 + x
|
${\underset{ x\rightarrow 0}{\lim}}{{\left({{1} + {x}}\right)}}$
${\underset{ x\rightarrow 0}{\lim}}{{\left({{1} + {x}}\right)}}$
|
limit([](double* out, double x) {
double out1 = 1. + x;
out[0] = out1;
}, 0.)
|
limit(function(x) {
const out1 = 1 + x;
return out1;
}, 0)
|
limit(function(x)
local out1 = 1 + x
return out1
end, 0)
|
limit((x) =
out1 = 1. + x
return out1, 0.)
|
limit([x_] :=
out1 = 1 + x;
out1;, 0)
|
Limit{+[1, x], x, 0, {}}
|
Limit(
(
Constant(1) +
var("x")
),
var("x"),
Constant(0),
(
)
)
|
Limit |
lim
(-x)
x→0
|
lim_x→0 -x
|
${\underset{ x\rightarrow 0}{\lim}}{{\left( -{x}\right)}}$
${\underset{ x\rightarrow 0}{\lim}}{{\left( -{x}\right)}}$
|
limit([](double* out, double x) {
double out1 = -x;
out[0] = out1;
}, 0.)
|
limit(function(x) {
const out1 = -x;
return out1;
}, 0)
|
limit(function(x)
local out1 = -x
return out1
end, 0)
|
limit((x) =
out1 = -x
return out1, 0.)
|
limit([x_] :=
out1 = -x;
out1;, 0)
|
Limit{unm(x), x, 0, {}}
|
Limit(
-(
var("x")
),
var("x"),
Constant(0),
(
)
)
|
Derivative |
∂y
╶──╴
∂x
|
∂/{∂x}[y]
|
$\frac{\partial y}{\partial x}$
$\frac{\partial y}{\partial x}$
|
dy_dx
|
dy_dx
|
dy_dx
|
dy_dx
|
dy_dx
|
Derivative{y, x}
|
Derivative(
var("y"),
var("x")
)
|
TotalDerivative |
dy
╶──╴
dx
|
d/{dx}[y]
|
$\frac{d y}{d x}$
$\frac{d y}{d x}$
|
Dy_dx
|
Dy_dx
|
Dy_dx
|
Dy_dx
|
Dy_dx
|
TotalDerivative{y, x}
|
TotalDerivative(
var("y"),
var("x")
)
|
Derivative |
∂^2 y
╶─────╴
∂x^2
|
∂^2/{∂x^2}[y]
|
$\frac{\partial^ 2 y}{\partial x^ 2}$
$\frac{\partial^ 2 y}{\partial x^ 2}$
|
d2y_dx_dx
|
d2y_dx_dx
|
d2y_dx_dx
|
d2y_dx_dx
|
d2y_dx_dx
|
Derivative{y, x, x}
|
Derivative(
var("y"),
var("x"),
var("x")
)
|
TotalDerivative |
d^2 y
╶─────╴
dx^2
|
d^2/{dx^2}[y]
|
$\frac{d^ 2 y}{d x^ 2}$
$\frac{d^ 2 y}{d x^ 2}$
|
D2y_dx_dx
|
D2y_dx_dx
|
D2y_dx_dx
|
D2y_dx_dx
|
D2y_dx_dx
|
TotalDerivative{y, x, x}
|
TotalDerivative(
var("y"),
var("x"),
var("x")
)
|
Derivative |
∂^2 y
╶─────╴
∂x ∂y
|
∂^2/{∂x ∂y}[y]
|
$\frac{\partial^ 2 y}{\partial y\partial x}$
$\frac{\partial^ 2 y}{\partial y\partial x}$
|
d2y_dx_dy
|
d2y_dx_dy
|
d2y_dx_dy
|
d2y_dx_dy
|
d2y_dx_dy
|
Derivative{y, x, y}
|
Derivative(
var("y"),
var("x"),
var("y")
)
|
TotalDerivative |
d^2 y
╶─────╴
dx dy
|
d^2/{dx dy}[y]
|
$\frac{d^ 2 y}{d y d x}$
$\frac{d^ 2 y}{d y d x}$
|
D2y_dx_dy
|
D2y_dx_dy
|
D2y_dx_dy
|
D2y_dx_dy
|
D2y_dx_dy
|
TotalDerivative{y, x, y}
|
TotalDerivative(
var("y"),
var("x"),
var("y")
)
|
Derivative |
∂
╶──╴╭ x╮
∂x ╰_e ╯
|
∂/{∂x}[_e^x]
|
${\frac{\partial}{\partial x}}\left({\exp\left( x\right)}\right)$
${\frac{\partial}{\partial x}}\left({\exp\left( x\right)}\right)$
|
d([](double* out, double x) {
double out1 = exp(x);
out[0] = out1;
})
|
d(function(x) {
const out1 = Math.exp(x);
return out1;
})
|
d(function(x)
local out1 = math.exp(x)
return out1
end)
|
d((x) =
out1 = (exp(x))
return out1)
|
d([x_] :=
out1 = exp[x];
out1;)
|
Derivative{^[_e|2.718281828459, x], x}
|
Derivative(
(
symmath.e ^
var("x")
),
var("x")
)
|
Derivative |
∂
╶──╴ ╭ 2╮
∂x √╰1 - x ╯
|
∂/{∂x}[√(1 - x^2)]
|
${\frac{\partial}{\partial x}}\left({\sqrt{{1}{-{{x}^{2}}}}}\right)$
${\frac{\partial}{\partial x}}\left({\sqrt{{1}{-{{x}^{2}}}}}\right)$
|
d([](double* out, double x) {
double out1 = sqrt(1. + -x * x);
out[0] = out1;
})
|
d(function(x) {
const out1 = Math.sqrt(1 + -x * x);
return out1;
})
|
d(function(x)
local out1 = math.sqrt(1 + -x * x)
return out1
end)
|
d((x) =
out1 = sqrt(1. + -x * x)
return out1)
|
d([x_] :=
out1 = sqrt[1 + -x * x];
out1;)
|
Derivative{sqrt[+[1, unm(^[x, 2])]], x}
|
Derivative(
sqrt(
(
Constant(1) +
-(
(
var("x") ^
Constant(2)
)
)
)
),
var("x")
)
|
Integral |
⌠
⌡ y dx
|
∫(y, x )
|
$\int{{y}}d x$
$\int{{y}}d x$
|
integrate([](double* out, double x) {
double out1 = y;
out[0] = out1;
})
|
integrate(function(x) {
const out1 = y;
return out1;
})
|
integrate(function(x)
local out1 = y
return out1
end)
|
integrate((x) =
out1 = y
return out1)
|
integrate([x_] :=
out1 = y;
out1;)
|
Integral{y, x}
|
Integral(
var("y"),
var("x")
)
|
Integral |
⌠1
│ y dx
⌡0
|
∫(y, x, 0, 1 )
|
$\int\limits_{{0}}^{{1}}{{y}}d x$
$\int\limits_{{0}}^{{1}}{{y}}d x$
|
integrate([](double* out, double x) {
double out1 = y;
out[0] = out1;
}, 0., 1.)
|
integrate(function(x) {
const out1 = y;
return out1;
}, 0, 1)
|
integrate(function(x)
local out1 = y
return out1
end, 0, 1)
|
integrate((x) =
out1 = y
return out1, 0., 1.)
|
integrate([x_] :=
out1 = y;
out1;, 0, 1)
|
Integral{y, x, 0, 1}
|
Integral(
var("y"),
var("x"),
Constant(0),
Constant(1)
)
|
Integral |
⌠1
│ ╭ 2╮
⌡-1 √╰1 - x ╯ dx
|
∫(√(1 - x^2), x, -1, 1 )
|
$\int\limits_{{-1}}^{{1}}{{\sqrt{{1}{-{{x}^{2}}}}}}d x$
$\int\limits_{{-1}}^{{1}}{{\sqrt{{1}{-{{x}^{2}}}}}}d x$
|
integrate([](double* out, double x) {
double out1 = sqrt(1. + -x * x);
out[0] = out1;
}, -1., 1.)
|
integrate(function(x) {
const out1 = Math.sqrt(1 + -x * x);
return out1;
}, -1, 1)
|
integrate(function(x)
local out1 = math.sqrt(1 + -x * x)
return out1
end, -1, 1)
|
integrate((x) =
out1 = sqrt(1. + -x * x)
return out1, -1., 1.)
|
integrate([x_] :=
out1 = sqrt[1 + -x * x];
out1;, -1, 1)
|
Integral{sqrt[+[1, unm(^[x, 2])]], x, -1, 1}
|
Integral(
sqrt(
(
Constant(1) +
-(
(
var("x") ^
Constant(2)
)
)
)
),
var("x"),
Constant(-1),
Constant(1)
)
|
Integral |
⌠1
│ -x dx
⌡0
|
∫(-x, x, 0, 1 )
|
$\int\limits_{{0}}^{{1}}{{\left( -{x}\right)}}d x$
$\int\limits_{{0}}^{{1}}{{\left( -{x}\right)}}d x$
|
integrate([](double* out, double x) {
double out1 = -x;
out[0] = out1;
}, 0., 1.)
|
integrate(function(x) {
const out1 = -x;
return out1;
}, 0, 1)
|
integrate(function(x)
local out1 = -x
return out1
end, 0, 1)
|
integrate((x) =
out1 = -x
return out1, 0., 1.)
|
integrate([x_] :=
out1 = -x;
out1;, 0, 1)
|
Integral{unm(x), x, 0, 1}
|
Integral(
-(
var("x")
),
var("x"),
Constant(0),
Constant(1)
)
|
Integral |
⌠1
│ 1 + x dx
⌡0
|
∫(1 + x, x, 0, 1 )
|
$\int\limits_{{0}}^{{1}}{{\left({{1} + {x}}\right)}}d x$
$\int\limits_{{0}}^{{1}}{{\left({{1} + {x}}\right)}}d x$
|
integrate([](double* out, double x) {
double out1 = 1. + x;
out[0] = out1;
}, 0., 1.)
|
integrate(function(x) {
const out1 = 1 + x;
return out1;
}, 0, 1)
|
integrate(function(x)
local out1 = 1 + x
return out1
end, 0, 1)
|
integrate((x) =
out1 = 1. + x
return out1, 0., 1.)
|
integrate([x_] :=
out1 = 1 + x;
out1;, 0, 1)
|
Integral{+[1, x], x, 0, 1}
|
Integral(
(
Constant(1) +
var("x")
),
var("x"),
Constant(0),
Constant(1)
)
|
Array |
┌ ┐
│x│
│ │
│y│
└ ┘
|
[x, y]
|
$\left[\begin{matrix} x \\ y\end{matrix}\right]$
$\left[\begin{matrix} x \\ y\end{matrix}\right]$
|
{x, y}
|
[x, y]
|
{x, y}
|
{x, y}
|
{x, y}
|
Array{x, y}
|
Array(
var("x"),
var("y")
)
|
Matrix |
┌ ┐
│x│
│ │
│y│
└ ┘
|
[[x], [y]]
|
$\left[\begin{array}{c} x\\ y\end{array}\right]$
$\left[\begin{array}{c} x\\ y\end{array}\right]$
|
{{x}, {y}}
|
[[x], [y]]
|
{{x}, {y}}
|
{{x}, {y}}
|
{{x}, {y}}
|
Matrix{Matrix{x}, Matrix{y}}
|
Matrix(
Matrix(
var("x")
),
Matrix(
var("y")
)
)
|
Matrix |
┌ ┐
│x y│
└ ┘
|
[[x, y]]
|
$\left[\begin{array}{cc} x& y\end{array}\right]$
$\left[\begin{array}{cc} x& y\end{array}\right]$
|
{{x, y}}
|
[[x, y]]
|
{{x, y}}
|
{{x, y}}
|
{{x, y}}
|
Matrix{Matrix{x, y}}
|
Matrix(
Matrix(
var("x"),
var("y")
)
)
|
Matrix |
┌ ┐
│a b│
│ │
│c d│
└ ┘
|
[[a, b], [c, d]]
|
$\left[\begin{array}{cc} a& b\\ c& d\end{array}\right]$
$\left[\begin{array}{cc} a& b\\ c& d\end{array}\right]$
|
{{a, b}, {c, d}}
|
[[a, b], [c, d]]
|
{{a, b}, {c, d}}
|
{{a, b}, {c, d}}
|
{{a, b}, {c, d}}
|
Matrix{Matrix{a, b}, Matrix{c, d}}
|
Matrix(
Matrix(
var("a"),
var("b")
),
Matrix(
var("c"),
var("d")
)
)
|
Tensor |
_i↓
┌ ┐
│a│
│ │
│b│
└ ┘
|
[a, b]
|
$\overset{i\downarrow}{\left[\begin{matrix} a \\ b\end{matrix}\right]}$
$\overset{i\downarrow}{\left[\begin{matrix} a \\ b\end{matrix}\right]}$
|
{a, b}
|
[a, b]
|
{a, b}
|
{a, b}
|
{a, b}
|
Tensor{a, b}_i
|
Tensor(
{
Tensor.Index{lower=true, symbol="i"}
},
var("a"),
var("b")
)
|
Tensor |
_i↓_j→
┌ ┐
│a b│
│ │
│c d│
└ ┘
|
[[a, b], [c, d]]
|
$\overset{i\downarrow j\rightarrow}{\left[\begin{array}{cc} a& b\\ c& d\end{array}\right]}$
$\overset{i\downarrow j\rightarrow}{\left[\begin{array}{cc} a& b\\ c& d\end{array}\right]}$
|
{{a, b}, {c, d}}
|
[[a, b], [c, d]]
|
{{a, b}, {c, d}}
|
{{a, b}, {c, d}}
|
{{a, b}, {c, d}}
|
Tensor{Tensor{a, b}_j, Tensor{c, d}_j}_i_j
|
Tensor(
{
Tensor.Index{lower=true, symbol="i"},
Tensor.Index{lower=true, symbol="j"}
},
Tensor(
{
Tensor.Index{lower=true, symbol="j"}
},
var("a"),
var("b")
),
Tensor(
{
Tensor.Index{lower=true, symbol="j"}
},
var("c"),
var("d")
)
)
|
Tensor |
_i↓[_j↓_k→]
┌ ┐
│_j↓_k→│
│┌ ┐│
││a b││
││ ││
││c d││
│└ ┘│
│ │
│_j↓_k→│
│┌ ┐│
││e f││
││ ││
││g h││
│└ ┘│
└ ┘
|
[[[a, b], [c, d]], [[e, f], [g, h]]]
|
$\overset{i\downarrow[{j\downarrow k\rightarrow}]}{\left[\begin{matrix} \overset{j\downarrow k\rightarrow}{\left[\begin{array}{cc} a& b\\ c& d\end{array}\right]} \\ \overset{j\downarrow k\rightarrow}{\left[\begin{array}{cc} e& f\\ g& h\end{array}\right]}\end{matrix}\right]}$
$\overset{i\downarrow[{j\downarrow k\rightarrow}]}{\left[\begin{matrix} \overset{j\downarrow k\rightarrow}{\left[\begin{array}{cc} a& b\\ c& d\end{array}\right]} \\ \overset{j\downarrow k\rightarrow}{\left[\begin{array}{cc} e& f\\ g& h\end{array}\right]}\end{matrix}\right]}$
|
{{{a, b}, {c, d}}, {{e, f}, {g, h}}}
|
[[[a, b], [c, d]], [[e, f], [g, h]]]
|
{{{a, b}, {c, d}}, {{e, f}, {g, h}}}
|
{{{a, b}, {c, d}}, {{e, f}, {g, h}}}
|
{{{a, b}, {c, d}}, {{e, f}, {g, h}}}
|
Tensor{Tensor{Tensor{a, b}_k, Tensor{c, d}_k}_j_k, Tensor{Tensor{e, f}_k, Tensor{g, h}_k}_j_k}_i_j_k
|
Tensor(
{
Tensor.Index{lower=true, symbol="i"},
Tensor.Index{lower=true, symbol="j"},
Tensor.Index{lower=true, symbol="k"}
},
Tensor(
{
Tensor.Index{lower=true, symbol="j"},
Tensor.Index{lower=true, symbol="k"}
},
Tensor(
{
Tensor.Index{lower=true, symbol="k"}
},
var("a"),
var("b")
),
Tensor(
{
Tensor.Index{lower=true, symbol="k"}
},
var("c"),
var("d")
)
),
Tensor(
{
Tensor.Index{lower=true, symbol="j"},
Tensor.Index{lower=true, symbol="k"}
},
Tensor(
{
Tensor.Index{lower=true, symbol="k"}
},
var("e"),
var("f")
),
Tensor(
{
Tensor.Index{lower=true, symbol="k"}
},
var("g"),
var("h")
)
)
)
|
Tensor.Ref |
x_a
|
x_a
|
${ x} _a$
${ x} _a$
|
x_Da
|
x_Da
|
x_Da
|
x_Da
|
x_Da
|
Tensor.Ref{x, Tensor.Index{_a}}
|
Tensor.Ref(
var("x"),
Tensor.Index{lower=true, symbol="a"}
)
|
Tensor.Ref |
x^a
|
x^a
|
${ x} ^a$
${ x} ^a$
|
x_Ua
|
x_Ua
|
x_Ua
|
x_Ua
|
x_Ua
|
Tensor.Ref{x, Tensor.Index{^a}}
|
Tensor.Ref(
var("x"),
Tensor.Index{lower=false, symbol="a"}
)
|
Tensor.Ref |
x_\mu
|
x_\mu
|
${ x} _{\mu}$
${ x} _{\mu}$
|
x_D\mu
|
x_D\mu
|
x_D\mu
|
x_D\mu
|
x_D\mu
|
Tensor.Ref{x, Tensor.Index{_\mu}}
|
Tensor.Ref(
var("x"),
Tensor.Index{lower=true, symbol="\\mu"}
)
|
Tensor.Ref |
x^\mu
|
x^\mu
|
${ x} ^{\mu}$
${ x} ^{\mu}$
|
x_U\mu
|
x_U\mu
|
x_U\mu
|
x_U\mu
|
x_U\mu
|
Tensor.Ref{x, Tensor.Index{^\mu}}
|
Tensor.Ref(
var("x"),
Tensor.Index{lower=false, symbol="\\mu"}
)
|
Tensor.Ref |
x_ab
|
x_ab
|
${{ x} _a} _b$
${{ x} _a} _b$
|
x_Da_Db
|
x_Da_Db
|
x_Da_Db
|
x_Da_Db
|
x_Da_Db
|
Tensor.Ref{x, Tensor.Index{_a}, Tensor.Index{_b}}
|
Tensor.Ref(
var("x"),
Tensor.Index{lower=true, symbol="a"},
Tensor.Index{lower=true, symbol="b"}
)
|
Tensor.Ref |
x^ab
|
x^ab
|
${{ x} ^a} ^b$
${{ x} ^a} ^b$
|
x_Ua_Ub
|
x_Ua_Ub
|
x_Ua_Ub
|
x_Ua_Ub
|
x_Ua_Ub
|
Tensor.Ref{x, Tensor.Index{^a}, Tensor.Index{^b}}
|
Tensor.Ref(
var("x"),
Tensor.Index{lower=false, symbol="a"},
Tensor.Index{lower=false, symbol="b"}
)
|
Tensor.Ref |
x_\mu_\nu
|
x_\mu_\nu
|
${{ x} _{\mu}} _{\nu}$
${{ x} _{\mu}} _{\nu}$
|
x_D\mu_D\nu
|
x_D\mu_D\nu
|
x_D\mu_D\nu
|
x_D\mu_D\nu
|
x_D\mu_D\nu
|
Tensor.Ref{x, Tensor.Index{_\mu}, Tensor.Index{_\nu}}
|
Tensor.Ref(
var("x"),
Tensor.Index{lower=true, symbol="\\mu"},
Tensor.Index{lower=true, symbol="\\nu"}
)
|
Tensor.Ref |
x^\mu^\nu
|
x^\mu^\nu
|
${{ x} ^{\mu}} ^{\nu}$
${{ x} ^{\mu}} ^{\nu}$
|
x_U\mu_U\nu
|
x_U\mu_U\nu
|
x_U\mu_U\nu
|
x_U\mu_U\nu
|
x_U\mu_U\nu
|
Tensor.Ref{x, Tensor.Index{^\mu}, Tensor.Index{^\nu}}
|
Tensor.Ref(
var("x"),
Tensor.Index{lower=false, symbol="\\mu"},
Tensor.Index{lower=false, symbol="\\nu"}
)
|