polar, coordinate

chart coordinates: xμ~={r,ϕ}
chart coordinate basis: eμ~={er~,eϕ~}
embedding coordinates: uI={x,y}
embedding basis eI={ex,ey}
flat metric: ηIJ=[1001]IJ


transform from basis to coordinate:
e~Aa=[1001]Aa


transform from coorinate to basis:
e~aA=[1001]aA


tensor index associated with coordinate r has operator er(ζ)=ζr
tensor index associated with coordinate ϕ has operator eϕ(ζ)=ζϕ

chart in embedded coordinates:
u=[rcos(ϕ)rsin(ϕ)]I


basis operators applied to chart:
euI=uI,u
euI=[cos(ϕ)sin(ϕ)rsin(ϕ)rcos(ϕ)]uI

euI=[cos(ϕ)sin(ϕ)1rsin(ϕ)1rcos(ϕ)]uI

euIevI=[1001]uv
euIeuJ=[1001]IJ
basis determinant: det(e)=r
cabc=[[0000]bc[0000]bc]a[bc]

guv=euIevJηIJ
guv=[100r2]uv

guv=euIevJηIJ
metric determinant: det(g)=r2
Γabc=12(gab,c+gac,bgbc,a+cabc+cacbccba)
commutation coefficients: c=[[0000]bc[0000]bc]a[bc]

metric: g=[100r2]uv

metric inverse: g=[1001r2]ab

metric derivative: g=[[0000]bc[002r0]bc]a[bc]

1st kind Christoffel: Γ=[[000r]bc[0rr0]bc]a[bc]

connection coefficients / 2nd kind Christoffel: Γ=[[000r][01r1r0]]a[bc]

connection coefficients derivative: Γ=[[0000]cd[0010]cd[001r20]cd[1r2000]cd]ab[cd]

connection coefficients squared: (Γ2)=[[0001]cd[0010]cd[01r200]cd[1r2001]cd]ab[cd]

Riemann curvature, : R=[[0000]cd[0000]cd[0000]cd[0000]cd]ab[cd]

Riemann curvature, : R=[[0000][0000][0000][0000]]ab[cd]

Ricci curvature, : R=[0000]ab

Gaussian curvature: 0
trace-free Ricci, : (RTF)=[0000]ab

Einstein / trace-reversed Ricci curvature, : G=[0000]ab

Schouten, : P=[0000]ab

Weyl, : C=[[0000]cd[0000]cd[0000]cd[0000]cd]ab[cd]

Weyl, : C=[[0000][0000][0000][0000]]ab[cd]

Plebanski, : P=[[0000]cd[0000]cd[0000]cd[0000]cd]ab[cd]

divergence: Ai,i+ΓiijAj=Ar^1r+Aϕ^ϕ+Ar^r
geodesic:
[r^¨ϕ^¨]a=[rϕ^˙22ϕ^˙r^˙1r]a

parallel propagators:

[Γr]=[0001r]

rLrR[0001r]dr = [000log(1rLrR)]

Pr = exp(rLrR[0001r]dr) = [1001rRrL]

Pr1 = exp(rLrR[0001r]dr) = [1001rLrR]

[Γϕ]=[0r1r0]

ϕLϕR[0r1r0]dϕ = [0r(ϕLϕR)1r(ϕL+ϕR)0]

Pϕ = exp(ϕLϕR[0r1r0]dϕ) = [1exp(ϕL2ϕR2+2ϕLϕR)(ϕL2ϕL2exp(2ϕL2ϕR2+2ϕLϕR)ϕR2ϕR2exp(2ϕL2ϕR2+2ϕLϕR)+2ϕLϕR+2ϕLϕRexp(2ϕL2ϕR2+2ϕLϕR))2(ϕL2ϕR2+2ϕLϕR)r(ϕL2+ϕR2ϕL2exp(2ϕL2ϕR2+2ϕLϕR)ϕR2exp(2ϕL2ϕR2+2ϕLϕR)2ϕLϕR+2ϕLϕRexp(2ϕL2ϕR2+2ϕLϕR))2exp(ϕL2ϕR2+2ϕLϕR)ϕL2ϕR2+2ϕLϕR(ϕLϕR)ϕL+ϕR+ϕLexp(2ϕL2ϕR2+2ϕLϕR)ϕRexp(2ϕL2ϕR2+2ϕLϕR)2rexp(ϕL2ϕR2+2ϕLϕR)ϕL2ϕR2+2ϕLϕR1+exp(2ϕL2ϕR2+2ϕLϕR)2exp(ϕL2ϕR2+2ϕLϕR)]

Pϕ1 = exp(ϕLϕR[0r1r0]dϕ) = [(ϕL2ϕR2+2ϕLϕR)(1+exp(2ϕL2ϕR2+2ϕLϕR))2exp(ϕL2ϕR2+2ϕLϕR)(ϕL2ϕR2+2ϕLϕR)r(ϕL2ϕR2+ϕL2exp(2ϕL2ϕR2+2ϕLϕR)+ϕR2exp(2ϕL2ϕR2+2ϕLϕR)+2ϕLϕR2ϕLϕRexp(2ϕL2ϕR2+2ϕLϕR))2exp(ϕL2ϕR2+2ϕLϕR)ϕL2ϕR2+2ϕLϕR(ϕLϕR)ϕLϕRϕLexp(2ϕL2ϕR2+2ϕLϕR)+ϕRexp(2ϕL2ϕR2+2ϕLϕR)2rexp(ϕL2ϕR2+2ϕLϕR)ϕL2ϕR2+2ϕLϕR1+exp(2ϕL2ϕR2+2ϕLϕR)2exp(ϕL2ϕR2+2ϕLϕR)]

propagator commutation:

[ Pr , Pϕ ] = [1001rRrL][1exp(ϕL2ϕR2+2ϕLϕR)(ϕL2ϕL2exp(2ϕL2ϕR2+2ϕLϕR)ϕR2ϕR2exp(2ϕL2ϕR2+2ϕLϕR)+2ϕLϕR+2ϕLϕRexp(2ϕL2ϕR2+2ϕLϕR))2(ϕL2ϕR2+2ϕLϕR)(ϕL2+ϕR2ϕL2exp(2ϕL2ϕR2+2ϕLϕR)ϕR2exp(2ϕL2ϕR2+2ϕLϕR)2ϕLϕR+2ϕLϕRexp(2ϕL2ϕR2+2ϕLϕR))rL2exp(ϕL2ϕR2+2ϕLϕR)ϕL2ϕR2+2ϕLϕR(ϕLϕR)ϕL+ϕR+ϕLexp(2ϕL2ϕR2+2ϕLϕR)ϕRexp(2ϕL2ϕR2+2ϕLϕR)2exp(ϕL2ϕR2+2ϕLϕR)ϕL2ϕR2+2ϕLϕRrL1+exp(2ϕL2ϕR2+2ϕLϕR)2exp(ϕL2ϕR2+2ϕLϕR)][1exp(ϕL2ϕR2+2ϕLϕR)(ϕL2ϕL2exp(2ϕL2ϕR2+2ϕLϕR)ϕR2ϕR2exp(2ϕL2ϕR2+2ϕLϕR)+2ϕLϕR+2ϕLϕRexp(2ϕL2ϕR2+2ϕLϕR))2(ϕL2ϕR2+2ϕLϕR)(ϕL2+ϕR2ϕL2exp(2ϕL2ϕR2+2ϕLϕR)ϕR2exp(2ϕL2ϕR2+2ϕLϕR)2ϕLϕR+2ϕLϕRexp(2ϕL2ϕR2+2ϕLϕR))rR2exp(ϕL2ϕR2+2ϕLϕR)ϕL2ϕR2+2ϕLϕR(ϕLϕR)ϕL+ϕR+ϕLexp(2ϕL2ϕR2+2ϕLϕR)ϕRexp(2ϕL2ϕR2+2ϕLϕR)2exp(ϕL2ϕR2+2ϕLϕR)ϕL2ϕR2+2ϕLϕRrR1+exp(2ϕL2ϕR2+2ϕLϕR)2exp(ϕL2ϕR2+2ϕLϕR)][1001rRrL] = [0000]

propagator partials
r([1001rRrL])=[0000]
ϕ([1001rRrL])=[0000]
r([1exp(ϕL2ϕR2+2ϕLϕR)(ϕL2ϕL2exp(2ϕL2ϕR2+2ϕLϕR)ϕR2ϕR2exp(2ϕL2ϕR2+2ϕLϕR)+2ϕLϕR+2ϕLϕRexp(2ϕL2ϕR2+2ϕLϕR))2(ϕL2ϕR2+2ϕLϕR)r(ϕL2+ϕR2ϕL2exp(2ϕL2ϕR2+2ϕLϕR)ϕR2exp(2ϕL2ϕR2+2ϕLϕR)2ϕLϕR+2ϕLϕRexp(2ϕL2ϕR2+2ϕLϕR))2exp(ϕL2ϕR2+2ϕLϕR)ϕL2ϕR2+2ϕLϕR(ϕLϕR)ϕL+ϕR+ϕLexp(2ϕL2ϕR2+2ϕLϕR)ϕRexp(2ϕL2ϕR2+2ϕLϕR)2rexp(ϕL2ϕR2+2ϕLϕR)ϕL2ϕR2+2ϕLϕR1+exp(2ϕL2ϕR2+2ϕLϕR)2exp(ϕL2ϕR2+2ϕLϕR)])=[01exp(ϕL2ϕR2+2ϕLϕR)(ϕL2ϕL2exp(2ϕL2ϕR2+2ϕLϕR)+ϕR2ϕR2exp(2ϕL2ϕR2+2ϕLϕR)2ϕLϕR+2ϕLϕRexp(2ϕL2ϕR2+2ϕLϕR))2ϕL2ϕR2+2ϕLϕR(ϕLϕR)ϕLϕRϕLexp(2ϕL2ϕR2+2ϕLϕR)+ϕRexp(2ϕL2ϕR2+2ϕLϕR)2exp(ϕL2ϕR2+2ϕLϕR)r2ϕL2ϕR2+2ϕLϕR0]
ϕ([1exp(ϕL2ϕR2+2ϕLϕR)(ϕL2ϕL2exp(2ϕL2ϕR2+2ϕLϕR)ϕR2ϕR2exp(2ϕL2ϕR2+2ϕLϕR)+2ϕLϕR+2ϕLϕRexp(2ϕL2ϕR2+2ϕLϕR))2(ϕL2ϕR2+2ϕLϕR)r(ϕL2+ϕR2ϕL2exp(2ϕL2ϕR2+2ϕLϕR)ϕR2exp(2ϕL2ϕR2+2ϕLϕR)2ϕLϕR+2ϕLϕRexp(2ϕL2ϕR2+2ϕLϕR))2exp(ϕL2ϕR2+2ϕLϕR)ϕL2ϕR2+2ϕLϕR(ϕLϕR)ϕL+ϕR+ϕLexp(2ϕL2ϕR2+2ϕLϕR)ϕRexp(2ϕL2ϕR2+2ϕLϕR)2rexp(ϕL2ϕR2+2ϕLϕR)ϕL2ϕR2+2ϕLϕR1+exp(2ϕL2ϕR2+2ϕLϕR)2exp(ϕL2ϕR2+2ϕLϕR)])=[0000]
volume element: r
volume integral: 12Δ(r2)Δϕ
finite volume (0,0)-form:
u(xC,tR)=u(xC,tL)+Δt(1V(xC)0+S(xC))

u(xC,tR)=u(xC,tL)+Δt(112Δ(r2)Δϕ0+S(xC))

u(xC,tR)=u(xC,tL)+Δt(112Δ(r2)Δϕ0+S(xC))

u(xC,tR)=u(xC,tL)+S(xC)Δt