paraboliod, coordinate

chart coordinates: xμ~={u,v}
chart coordinate basis: eμ~={eu~,ev~}
embedding coordinates: uI={x,y,z}
embedding basis eI={ex,ey,ez}
transform from basis to coordinate:
e~uu=1; e~vv=1

transform from coorinate to basis:
e~uu=1; e~vv=1

tensor index associated with coordinate u is index u with operator eu(ζ)=ζu
tensor index associated with coordinate v is index v with operator ev(ζ)=ζv

flat metric: ηxx=1; ηyy=1; ηzz=1

chart in embedded coordinates:
ux=u; uy=v; uz=12(u2+v2)

basis operators applied to chart:
euI=uI,u
eux=1; euz=u; evy=1; evz=v
eux=1; euz=1u; evy=1; evz=1v
euIevI=[21v(u)1u(v)2]uv
euIeuJ=[101u011vuv2]IJ
cabc=0
guv=euIevJηIJ
guu=1+u2; guv=uv; gvu=uv; gvv=1+v2
guv=euIevJηIJ
metric determinant: det(g)=1+v2+u2
Γabc=12(gab,c+gac,bgbc,a+cabc+cacbccba)
commutation coefficients: cabc=0
metric: guu=1+u2; guv=uv; gvu=uv; gvv=1+v2
metric inverse: guu=1+v21+v2+u2; guv=uv1+v2+u2; gvu=uv1+v2+u2; gvv=1+u21+v2+u2
metric derivative: guuu=2u; guvu=v; guvv=u; gvuu=v; gvuv=u; gvvv=2v
1st kind Christoffel: Γuuu=u; Γuvv=u; Γvuu=v; Γvvv=v
connection coefficients / 2nd kind Christoffel: Γuuu=u1+v2+u2; Γuvv=u1+v2+u2; Γvuu=v1+v2+u2; Γvvv=v1+v2+u2
connection coefficients derivative: Γuuuu=1+v2u2(1+v2+u2)2; Γuuuv=2uv(1+v2+u2)2; Γuvvu=1+v2u2(1+v2+u2)2; Γuvvv=2uv(1+v2+u2)2; Γvuuu=2uv(1+v2+u2)2; Γvuuv=1v2+u2(1+v2+u2)2; Γvvvu=2uv(1+v2+u2)2; Γvvvv=1v2+u2(1+v2+u2)2
connection coefficients squared: (Γ2)uuuu=u2(1+v2+u2)2; (Γ2)uuvu=uv(1+v2+u2)2; (Γ2)uvuv=u2(1+v2+u2)2; (Γ2)uvvv=uv(1+v2+u2)2; (Γ2)vuuu=uv(1+v2+u2)2; (Γ2)vuvu=v2(1+v2+u2)2; (Γ2)vvuv=uv(1+v2+u2)2; (Γ2)vvvv=v2(1+v2+u2)2
Riemann curvature, : Ruuuv=uv(1+v2+u2)2; Ruuvu=uv(1+v2+u2)2; Ruvuv=1+v2(1+v2+u2)2; Ruvvu=(1+v2)(1+v2+u2)2; Rvuuv=(1+u2)(1+v2+u2)2; Rvuvu=1+u2(1+v2+u2)2; Rvvuv=uv(1+v2+u2)2; Rvvvu=uv(1+v2+u2)2
Riemann curvature, : Ruvuv=1(1+u2+v2)2; Ruvvu=1(1+u2+v2)2; Rvuuv=1(1+u2+v2)2; Rvuvu=1(1+v2+u2)2
Ricci curvature, : Ruu=1(1+v2+u2)2; Rvv=1(1+u2+v2)2
Gaussian curvature: 2(1+v2+u2)2
Einstein / trace-reversed Ricci curvature: Guu=1(1+v2+u2)2; Gvv=1(1+u2+v2)2
divergence: Ai,i+ΓiijAj=Auu11+v2+u2+Avv11+v2+u2+v2Auu11+v2+u2+v2Avv11+v2+u2+u2Auu11+v2+u2+u2Avv11+v2+u2+Avv11+v2+u2+Auu11+v2+u2
geodesic:
[u¨v¨]a=[1uu˙211+v2+u2+1uv˙211+v2+u21vu˙211+v2+u2+1vv˙211+v2+u2]a

parallel propagators:

[Γu]=[u1+v2+u20v1+v2+u20]

uLuRdu([u1+v2+u20v1+v2+u20]) = [log(|1+v2+uR2||1+v2+uL2|)0log(|(1v2uL)1v2+uL|(v21v2)|(1v2uR)1v2+uR|(v21v2))0]

Pu = e((uLuRdu([u1+v2+u20v1+v2+u20]))) = [log(|1+v2+uR2|(|1+v2+uL2|log(|(1v2uL)1v2+uL|log(|1+v2+uR2|(v|1+v2+uR2|log(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))|1+v2+uL2|(v|1+v2+uR2|log(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v)))|(1v2uR)1v2+uR|log(|1+v2+uL2|(v|1+v2+uR2|log(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))|1+v2+uR2|(v|1+v2+uR2|log(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v)))))|1+v2+uL2|(|1+v2+uL2|log(|(1v2uL)1v2+uL|log(|1+v2+uR2|(v|1+v2+uR2|log(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))|1+v2+uL2|(v|1+v2+uR2|log(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v)))|(1v2uR)1v2+uR|log(|1+v2+uL2|(v|1+v2+uR2|log(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))|1+v2+uR2|(v|1+v2+uR2|log(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))))))0log(|1+v2+uR2|(|1+v2+uR2|log(|(1v2uR)1v2+uR|log(|1+v2+uL2|(vlog(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))|1+v2+uR2|(vlog(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v)))|(1v2uL)1v2+uL|log(|1+v2+uL2|(vlog(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))|1+v2+uR2|(vlog(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v)))))|1+v2+uL2|(|1+v2+uR2|log(|(1v2uR)1v2+uR|log(|1+v2+uL2|(vlog(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))|1+v2+uR2|(vlog(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v)))|(1v2uL)1v2+uL|log(|1+v2+uL2|(vlog(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))|1+v2+uR2|(vlog(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))))))+|1+v2+uL2|log(|1+v2+uR2|(|1+v2+uR2|log(|(1v2uR)1v2+uR|(v1v2)|(1v2uL)1v2+uL|(v1v2)))|1+v2+uL2|(|1+v2+uR2|log(|(1v2uR)1v2+uR|(v1v2)|(1v2uL)1v2+uL|(v1v2))))1]

Pu1 = e(uLuRdu([u1+v2+u20v1+v2+u20])) = [log(|1+v2+uR2|(|1+v2+uR2|log(|(1v2uL)1v2+uL|log(|1+v2+uR2|(v|1+v2+uL2|log(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))|1+v2+uL2|(v|1+v2+uL2|log(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v)))|(1v2uR)1v2+uR|log(|1+v2+uL2|(v|1+v2+uL2|log(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))|1+v2+uR2|(v|1+v2+uL2|log(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v)))))|1+v2+uL2|(|1+v2+uR2|log(|(1v2uL)1v2+uL|log(|1+v2+uR2|(v|1+v2+uL2|log(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))|1+v2+uL2|(v|1+v2+uL2|log(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v)))|(1v2uR)1v2+uR|log(|1+v2+uL2|(v|1+v2+uL2|log(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))|1+v2+uR2|(v|1+v2+uL2|log(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))))))0log(|1+v2+uR2|(|1+v2+uL2|log(|(1v2uR)1v2+uR|log(|1+v2+uL2|(vlog(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))|1+v2+uR2|(vlog(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v)))|(1v2uL)1v2+uL|log(|1+v2+uL2|(vlog(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))|1+v2+uR2|(vlog(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v)))))|1+v2+uL2|(|1+v2+uL2|log(|(1v2uR)1v2+uR|log(|1+v2+uL2|(vlog(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))|1+v2+uR2|(vlog(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v)))|(1v2uL)1v2+uL|log(|1+v2+uL2|(vlog(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))|1+v2+uR2|(vlog(|(1v2uL)1v2+uL|v1|(1v2uR)1v2+uR|v))))))+|1+v2+uR2|log(|1+v2+uR2|(|1+v2+uL2|log(|(1v2uR)1v2+uR|(v1v2)|(1v2uL)1v2+uL|(v1v2)))|1+v2+uL2|(|1+v2+uL2|log(|(1v2uR)1v2+uR|(v1v2)|(1v2uL)1v2+uL|(v1v2))))1]

[Γv]=[0u1+v2+u20v1+v2+u2]

vLvRdv([0u1+v2+u20v1+v2+u2]) = [0log(|(1u2vL)1u2+vL|(u21u2)|(1u2vR)1u2+vR|(u21u2))0log(|1+vR2+u2||1+vL2+u2|)]

Pv = e((vLvRdv([0u1+v2+u20v1+v2+u2]))) = [1log(|(1u2vL)1u2+vL|(log(|1+vR2+u2|(u|1+vR2+u2|1u2log(|1+vR2+u2|1u21|1+vL2+u2|1u2))|1+vL2+u2|(u1u2|1+vR2+u2|log(|1+vR2+u2|1u21|1+vL2+u2|1u2)))u|1+vL2+u2|log(1|1+vL2+u2|(1u2|1+vR2+u2|)|1+vR2+u2|(|1+vR2+u2|1u2)))|(1u2vR)1u2+vR|(log(|1+vR2+u2|(u|1+vL2+u2|1u2log(|1+vR2+u2|(1u2|1+vR2+u2|)1|1+vL2+u2|(1u2|1+vR2+u2|)))|1+vL2+u2|(u1u2|1+vL2+u2|log(|1+vR2+u2|(1u2|1+vR2+u2|)1|1+vL2+u2|(1u2|1+vR2+u2|))))ulog(|1+vR2+u2|1u21|1+vL2+u2|1u2)))0|1+vL2+u2||1+vR2+u2|]

Pv1 = e(vLvRdv([0u1+v2+u20v1+v2+u2])) = [1log(|(1u2vL)1u2+vL|(log(|1+vR2+u2|(u|1+vL2+u2|1u2log(|1+vR2+u2|1u21|1+vL2+u2|1u2))|1+vL2+u2|(u1u2|1+vL2+u2|log(|1+vR2+u2|1u21|1+vL2+u2|1u2)))u|1+vR2+u2|log(1|1+vL2+u2|(1u2|1+vL2+u2|)|1+vR2+u2|(|1+vL2+u2|1u2)))|(1u2vR)1u2+vR|(log(|1+vR2+u2|(u|1+vR2+u2|1u2log(|1+vR2+u2|(1u2|1+vL2+u2|)1|1+vL2+u2|(1u2|1+vL2+u2|)))|1+vL2+u2|(u1u2|1+vR2+u2|log(|1+vR2+u2|(1u2|1+vL2+u2|)1|1+vL2+u2|(1u2|1+vL2+u2|))))ulog(|1+vR2+u2|1u21|1+vL2+u2|1u2)))0|1+vR2+u2||1+vL2+u2|]

propagator commutation: