${{{ g} _a} _b} = {\overset{a\downarrow b\rightarrow}{\left[ \begin{matrix}  -{a} &  0 &  0 &  0 \\  0 &  b &  0 &  0 \\  0 &  0 &  c &  0 \\  0 &  0 &  0 &  c\end{matrix} \right]}}$
${{{ g} ^a} ^b} = {\overset{a\downarrow b\rightarrow}{\left[ \begin{matrix}  -{\frac{1}{a}} &  0 &  0 &  0 \\  0 &  \frac{1}{b} &  0 &  0 \\  0 &  0 &  \frac{1}{c} &  0 \\  0 &  0 &  0 &  \frac{1}{c}\end{matrix} \right]}}$
conn from manual metric:
${{{{ \Gamma} ^a} _b} _c} = {\overset{a\downarrow[{b\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{b\downarrow c\rightarrow}{\left[ \begin{matrix}  0 &  \frac{\partial_ {{x}}\left( a\right)}{{{2}} {{a}}} &  0 &  0 \\  \frac{\partial_ {{x}}\left( a\right)}{{{2}} {{a}}} &  0 &  0 &  0 \\  0 &  0 &  0 &  0 \\  0 &  0 &  0 &  0\end{matrix} \right]} \\ \overset{b\downarrow c\rightarrow}{\left[ \begin{matrix}  \frac{\partial_ {{x}}\left( a\right)}{{{2}} {{b}}} &  0 &  0 &  0 \\  0 &  0 &  0 &  0 \\  0 &  0 &  -{\frac{\partial_ {{x}}\left( c\right)}{{{2}} {{b}}}} &  0 \\  0 &  0 &  0 &  -{\frac{\partial_ {{x}}\left( c\right)}{{{2}} {{b}}}}\end{matrix} \right]} \\ \overset{b\downarrow c\rightarrow}{\left[ \begin{matrix}  0 &  0 &  0 &  0 \\  0 &  0 &  \frac{\partial_ {{x}}\left( c\right)}{{{2}} {{c}}} &  0 \\  0 &  \frac{\partial_ {{x}}\left( c\right)}{{{2}} {{c}}} &  0 &  0 \\  0 &  0 &  0 &  0\end{matrix} \right]} \\ \overset{b\downarrow c\rightarrow}{\left[ \begin{matrix}  0 &  0 &  0 &  0 \\  0 &  0 &  0 &  \frac{\partial_ {{x}}\left( c\right)}{{{2}} {{c}}} \\  0 &  0 &  0 &  0 \\  0 &  \frac{\partial_ {{x}}\left( c\right)}{{{2}} {{c}}} &  0 &  0\end{matrix} \right]}\end{matrix} \right]}}$
vs
manual conn:
${{{{ \Gamma} ^a} _b} _c} = {\overset{a\downarrow[{b\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{b\downarrow c\rightarrow}{\left[ \begin{matrix}  0 &  E &  0 &  0 \\  E &  0 &  0 &  0 \\  0 &  0 &  0 &  0 \\  0 &  0 &  0 &  0\end{matrix} \right]} \\ \overset{b\downarrow c\rightarrow}{\left[ \begin{matrix}  -{E} &  0 &  0 &  0 \\  0 &  0 &  0 &  0 \\  0 &  0 &  E &  0 \\  0 &  0 &  0 &  E\end{matrix} \right]} \\ \overset{b\downarrow c\rightarrow}{\left[ \begin{matrix}  0 &  0 &  0 &  0 \\  0 &  0 &  0 &  0 \\  0 &  0 &  0 &  0 \\  0 &  0 &  0 &  0\end{matrix} \right]} \\ \overset{b\downarrow c\rightarrow}{\left[ \begin{matrix}  0 &  0 &  0 &  0 \\  0 &  0 &  0 &  0 \\  0 &  0 &  0 &  0 \\  0 &  0 &  0 &  0\end{matrix} \right]}\end{matrix} \right]}}$
Ricci from manual metric
${{{ R} _a} _b} = {\overset{a\downarrow b\rightarrow}{\left[ \begin{matrix}  \frac{{{{{2}} {{a}} {{c}} {{\partial_{{{x}}{{x}}}\left( a\right)}}} - {{{c}} {{{\partial_ {{x}}\left( a\right)}^{2}}}}} + {{{2}} {{a}} {{\partial_ {{x}}\left( a\right)}} {{\partial_ {{x}}\left( c\right)}}}}{{{4}} {{a}} {{b}} {{c}}} &  0 &  0 &  0 \\  0 &  \frac{{{{{{c}^{2}}} {{{\partial_ {{x}}\left( a\right)}^{2}}}} - {{{2}} {{a}} {{{c}^{2}}} {{\partial_{{{x}}{{x}}}\left( a\right)}}}} + {{{{2}} {{{a}^{2}}} {{{\partial_ {{x}}\left( c\right)}^{2}}}} - {{{4}} {{c}} {{{a}^{2}}} {{\partial_{{{x}}{{x}}}\left( c\right)}}}}}{{{4}} {{{a}^{2}}} {{{c}^{2}}}} &  0 &  0 \\  0 &  0 &  -{\frac{{{{\partial_ {{x}}\left( c\right)}} {{\partial_ {{x}}\left( a\right)}}} + {{{2}} {{a}} {{\partial_{{{x}}{{x}}}\left( c\right)}}}}{{{4}} {{a}} {{b}}}} &  0 \\  0 &  0 &  0 &  -{\frac{{{{\partial_ {{x}}\left( c\right)}} {{\partial_ {{x}}\left( a\right)}}} + {{{2}} {{a}} {{\partial_{{{x}}{{x}}}\left( c\right)}}}}{{{4}} {{a}} {{b}}}}\end{matrix} \right]}}$
vs
Ricci from manual conn
${{{ R} _a} _b} = {\overset{a\downarrow b\rightarrow}{\left[ \begin{matrix}  {E}^{2} &  0 &  0 &  0 \\  0 &  -{{E}^{2}} &  0 &  0 \\  0 &  0 &  {E}^{2} &  0 \\  0 &  0 &  0 &  {E}^{2}\end{matrix} \right]}}$
vs desired Ricci
${{{ R} _a} _b} = {\overset{a\downarrow b\rightarrow}{\left[ \begin{matrix}  {E}^{2} &  0 &  0 &  0 \\  0 &  -{{E}^{2}} &  0 &  0 \\  0 &  0 &  {E}^{2} &  0 \\  0 &  0 &  0 &  {E}^{2}\end{matrix} \right]}}$
manual metric Gaussian -- equal to zero according to EM stress-energy trace:
${{G} = {\frac{{{{{a}^{2}}} {{{\partial_ {{x}}\left( c\right)}^{2}}}} + {{{{{{{c}^{2}}} {{{\partial_ {{x}}\left( a\right)}^{2}}}} - {{{2}} {{a}} {{{c}^{2}}} {{\partial_{{{x}}{{x}}}\left( a\right)}}}} - {{{2}} {{a}} {{c}} {{\partial_ {{x}}\left( a\right)}} {{\partial_ {{x}}\left( c\right)}}}} - {{{4}} {{c}} {{{a}^{2}}} {{\partial_{{{x}}{{x}}}\left( c\right)}}}}}{{{2}} {{b}} {{{a}^{2}}} {{{c}^{2}}}}}} = {0}$
${{{{{a}^{2}}} {{{\partial_ {{x}}\left( c\right)}^{2}}}} + {{{{{{{c}^{2}}} {{{\partial_ {{x}}\left( a\right)}^{2}}}} - {{{2}} {{a}} {{{c}^{2}}} {{\partial_{{{x}}{{x}}}\left( a\right)}}}} - {{{2}} {{a}} {{c}} {{\partial_ {{x}}\left( a\right)}} {{\partial_ {{x}}\left( c\right)}}}} - {{{4}} {{c}} {{{a}^{2}}} {{\partial_{{{x}}{{x}}}\left( c\right)}}}}} = {0}$
${{{{{ R} ^a} _b} _c} _d} = {{{{{{{{{ \Gamma} ^a} _b} _d} _{,c}} - {{{{{ \Gamma} ^a} _b} _c} _{,d}}} + {{{{{{ \Gamma} ^a} _e} _c}} {{{{{ \Gamma} ^e} _b} _d}}}} - {{{{{{ \Gamma} ^a} _e} _d}} {{{{{ \Gamma} ^e} _b} _c}}}} - {{{{{{ \Gamma} ^a} _b} _e}} {{\left({{{{{ \Gamma} ^e} _d} _c} - {{{{ \Gamma} ^e} _c} _d}}\right)}}}}$
${{{ R} _a} _b} = {{{{{{{{{ \Gamma} ^c} _a} _b} _{,c}} - {{{{{ \Gamma} ^c} _a} _c} _{,b}}} + {{{{{{ \Gamma} ^c} _d} _c}} {{{{{ \Gamma} ^d} _a} _b}}}} - {{{{{{ \Gamma} ^c} _d} _b}} {{{{{ \Gamma} ^d} _a} _c}}}} - {{{{{{ \Gamma} ^c} _a} _d}} {{\left({{{{{ \Gamma} ^d} _b} _c} - {{{{ \Gamma} ^d} _c} _b}}\right)}}}}$
 
Gravitation acting on an object at rest is given as ${\Gamma^j}_{tt}$.
For a uniform field in the x direction,
for the connections that give rise to this stress-energy,
gravitation is ${\Gamma^x}_{tt} = -E$.
Applying	${{\frac{3}{2}}} {{V}}$	between conductors	${{0.01}} {{m}}$	apart produces a uniform electric field of	${E} = {{{7.677747990993\cdot{10^{17}}}} \cdot {{\frac{1}{5.118498660662\cdot{10^{15}}}}} {{V}} {{\frac{1}{m}}}}$	.
converting to meters gives	${{E} = {¿}} = {¿}$