${a} = {\frac{J}{{{M}} {{c}}}}$
${rho} = {\sqrt{{{r}^{2}} + {{{{a}^{2}}} {{{\cos\left( theta\right)}^{2}}}}}}$
${Delta} = {{{{r}^{2}} + {{a}^{2}} + {{{r_Q}}^{2}}} - {{{2}} {{{r_s}}} \cdot {{r}}}}$
${{r_s}} = {\frac{{{2}} {{G}} {{M}}}{{c}^{2}}}$
${{r_Q}} = {\frac{{{{Q}^{2}}} {{G}}}{{{4}} {{\pi}} \cdot {{{\epsilon_0}}} \cdot {{{c}^{4}}}}}$
${{{ g} _t} _t} = {\frac{{-{Delta}} + {{{a}^{2}} - {{{{a}^{2}}} {{{\cos\left( theta\right)}^{2}}}}}}{{rho}^{2}}}$;
${{{ g} _t} _{phi}} = {\frac{{{a}} {{\left({{{{Delta} - {{{Delta}} \cdot {{{\cos\left( theta\right)}^{2}}}}} - {{a}^{2}}} + {{{{r}^{2}}} {{{\cos\left( theta\right)}^{2}}}} + {{{{{a}^{2}}} {{{\cos\left( theta\right)}^{2}}}} - {{r}^{2}}}}\right)}}}{{rho}^{2}}}$;
${{{ g} _r} _r} = {{\frac{1}{Delta}} {{rho}^{2}}}$;
${{{ g} _{theta}} _{theta}} = {{rho}^{2}}$;
${{{ g} _{phi}} _t} = {\frac{{{a}} {{\left({{{{Delta} - {{{Delta}} \cdot {{{\cos\left( theta\right)}^{2}}}}} - {{a}^{2}}} + {{{{r}^{2}}} {{{\cos\left( theta\right)}^{2}}}} + {{{{{a}^{2}}} {{{\cos\left( theta\right)}^{2}}}} - {{r}^{2}}}}\right)}}}{{rho}^{2}}}$;
${{{ g} _{phi}} _{phi}} = {\frac{{-{{{Delta}} \cdot {{{a}^{2}}}}} + {{{2}} {{Delta}} \cdot {{{a}^{2}}} {{{\cos\left( theta\right)}^{2}}}} + {{{{{2}} {{{a}^{2}}} {{{r}^{2}}}} - {{{2}} {{{a}^{2}}} {{{r}^{2}}} {{{\cos\left( theta\right)}^{2}}}}} - {{{Delta}} \cdot {{{a}^{2}}} {{{\cos\left( theta\right)}^{4}}}}} + {{{a}^{4}} - {{{{a}^{4}}} {{{\cos\left( theta\right)}^{2}}}}} + {{{r}^{4}} - {{{{r}^{4}}} {{{\cos\left( theta\right)}^{2}}}}}}{{rho}^{2}}}$
${{{ g} ^t} ^t} = {\frac{{{{{{r}^{4}}} {{{rho}^{2}}}} - {{{{r}^{4}}} {{{rho}^{2}}} {{{\cos\left( theta\right)}^{2}}}}} + {{{{2}} {{{a}^{2}}} {{{r}^{2}}} {{{rho}^{2}}}} - {{{2}} {{{a}^{2}}} {{{r}^{2}}} {{{rho}^{2}}} {{{\cos\left( theta\right)}^{2}}}}} + {{{{{{a}^{4}}} {{{rho}^{2}}}} - {{{{a}^{4}}} {{{rho}^{2}}} {{{\cos\left( theta\right)}^{2}}}}} - {{{Delta}} \cdot {{{a}^{2}}} {{{rho}^{2}}} {{{\sin\left( theta\right)}^{2}}}}} + {{{Delta}} \cdot {{{a}^{2}}} {{{rho}^{2}}} {{{\cos\left( theta\right)}^{2}}} {{{\sin\left( theta\right)}^{2}}}}}{{{Delta}} \cdot {{\left({{-{{{2}} {{{a}^{2}}} {{{r}^{2}}}}} + {{{{2}} {{{a}^{2}}} {{{r}^{2}}} {{{\cos\left( theta\right)}^{2}}}} - {{{2}} {{{a}^{2}}} {{{r}^{2}}} {{{\cos\left( theta\right)}^{2}}} {{{\sin\left( theta\right)}^{2}}}}} + {{{{2}} {{{a}^{2}}} {{{r}^{2}}} {{{\sin\left( theta\right)}^{2}}}} - {{{{a}^{4}}} {{{\sin\left( theta\right)}^{4}}}}} + {{{{{{a}^{4}}} {{{\cos\left( theta\right)}^{2}}} {{{\sin\left( theta\right)}^{4}}}} - {{a}^{4}}} - {{{2}} {{{a}^{4}}} {{{\cos\left( theta\right)}^{2}}} {{{\sin\left( theta\right)}^{2}}}}} + {{{{a}^{4}}} {{{\cos\left( theta\right)}^{2}}}} + {{{{2}} {{{a}^{4}}} {{{\sin\left( theta\right)}^{2}}}} - {{r}^{4}}} + {{{{r}^{4}}} {{{\cos\left( theta\right)}^{2}}}}}\right)}}}}$;
${{{ g} ^t} ^{phi}} = {\frac{{{a}} {{\left({{{{{Delta}} \cdot {{{rho}^{2}}} {{{\cos\left( theta\right)}^{2}}}} - {{{Delta}} \cdot {{{rho}^{2}}}}} + {{{{{{r}^{2}}} {{{rho}^{2}}}} - {{{{r}^{2}}} {{{rho}^{2}}} {{{\cos\left( theta\right)}^{2}}}}} - {{{{a}^{2}}} {{{rho}^{2}}} {{{\cos\left( theta\right)}^{2}}}}} + {{{{a}^{2}}} {{{rho}^{2}}}}}\right)}}}{{{Delta}} \cdot {{\left({{-{{{2}} {{{a}^{2}}} {{{r}^{2}}}}} + {{{{2}} {{{a}^{2}}} {{{r}^{2}}} {{{\cos\left( theta\right)}^{2}}}} - {{{2}} {{{a}^{2}}} {{{r}^{2}}} {{{\cos\left( theta\right)}^{2}}} {{{\sin\left( theta\right)}^{2}}}}} + {{{{2}} {{{a}^{2}}} {{{r}^{2}}} {{{\sin\left( theta\right)}^{2}}}} - {{{{a}^{4}}} {{{\sin\left( theta\right)}^{4}}}}} + {{{{{{a}^{4}}} {{{\cos\left( theta\right)}^{2}}} {{{\sin\left( theta\right)}^{4}}}} - {{a}^{4}}} - {{{2}} {{{a}^{4}}} {{{\cos\left( theta\right)}^{2}}} {{{\sin\left( theta\right)}^{2}}}}} + {{{{a}^{4}}} {{{\cos\left( theta\right)}^{2}}}} + {{{{2}} {{{a}^{4}}} {{{\sin\left( theta\right)}^{2}}}} - {{r}^{4}}} + {{{{r}^{4}}} {{{\cos\left( theta\right)}^{2}}}}}\right)}}}}$;
${{{ g} ^r} ^r} = {\frac{Delta}{{rho}^{2}}}$;
${{{ g} ^{theta}} ^{theta}} = {\frac{1}{{rho}^{2}}}$;
${{{ g} ^{phi}} ^t} = {\frac{{{a}} {{\left({{{{{Delta}} \cdot {{{rho}^{2}}} {{{\cos\left( theta\right)}^{2}}}} - {{{Delta}} \cdot {{{rho}^{2}}}}} + {{{{{{r}^{2}}} {{{rho}^{2}}}} - {{{{r}^{2}}} {{{rho}^{2}}} {{{\cos\left( theta\right)}^{2}}}}} - {{{{a}^{2}}} {{{rho}^{2}}} {{{\cos\left( theta\right)}^{2}}}}} + {{{{a}^{2}}} {{{rho}^{2}}}}}\right)}}}{{{Delta}} \cdot {{\left({{-{{{2}} {{{a}^{2}}} {{{r}^{2}}}}} + {{{{2}} {{{a}^{2}}} {{{r}^{2}}} {{{\cos\left( theta\right)}^{2}}}} - {{{2}} {{{a}^{2}}} {{{r}^{2}}} {{{\cos\left( theta\right)}^{2}}} {{{\sin\left( theta\right)}^{2}}}}} + {{{{2}} {{{a}^{2}}} {{{r}^{2}}} {{{\sin\left( theta\right)}^{2}}}} - {{{{a}^{4}}} {{{\sin\left( theta\right)}^{4}}}}} + {{{{{{a}^{4}}} {{{\cos\left( theta\right)}^{2}}} {{{\sin\left( theta\right)}^{4}}}} - {{a}^{4}}} - {{{2}} {{{a}^{4}}} {{{\cos\left( theta\right)}^{2}}} {{{\sin\left( theta\right)}^{2}}}}} + {{{{a}^{4}}} {{{\cos\left( theta\right)}^{2}}}} + {{{{2}} {{{a}^{4}}} {{{\sin\left( theta\right)}^{2}}}} - {{r}^{4}}} + {{{{r}^{4}}} {{{\cos\left( theta\right)}^{2}}}}}\right)}}}}$;
${{{ g} ^{phi}} ^{phi}} = {\frac{{-{{{Delta}} \cdot {{{rho}^{2}}}}} + {{{{{a}^{2}}} {{{rho}^{2}}}} - {{{{a}^{2}}} {{{rho}^{2}}} {{{\cos\left( theta\right)}^{2}}}}}}{{{Delta}} \cdot {{\left({{-{{{2}} {{{a}^{2}}} {{{r}^{2}}}}} + {{{{2}} {{{a}^{2}}} {{{r}^{2}}} {{{\cos\left( theta\right)}^{2}}}} - {{{2}} {{{a}^{2}}} {{{r}^{2}}} {{{\cos\left( theta\right)}^{2}}} {{{\sin\left( theta\right)}^{2}}}}} + {{{{2}} {{{a}^{2}}} {{{r}^{2}}} {{{\sin\left( theta\right)}^{2}}}} - {{{{a}^{4}}} {{{\sin\left( theta\right)}^{4}}}}} + {{{{{{a}^{4}}} {{{\cos\left( theta\right)}^{2}}} {{{\sin\left( theta\right)}^{4}}}} - {{a}^{4}}} - {{{2}} {{{a}^{4}}} {{{\cos\left( theta\right)}^{2}}} {{{\sin\left( theta\right)}^{2}}}}} + {{{{a}^{4}}} {{{\cos\left( theta\right)}^{2}}}} + {{{{2}} {{{a}^{4}}} {{{\sin\left( theta\right)}^{2}}}} - {{r}^{4}}} + {{{{r}^{4}}} {{{\cos\left( theta\right)}^{2}}}}}\right)}}}}$