${W} = {\frac{1}{\sqrt{{1}{-{{v^2}}}}}}$
${{1}{-{{v^2}}}} = {\frac{1}{{W}^{2}}}$
${0} = {0}$
${P} = {{{\left({{\gamma}{-{1}}}\right)}} {{\rho}} \cdot {{{e_{int}}}}}$
${\frac{\partial P}{\partial \rho}} = {{{{e_{int}}}} \cdot {{\left({{-{1}} + {\gamma}}\right)}}}$
${\frac{\partial P}{\partial {e_{int}}}} = {{{\rho}} \cdot {{\left({{-{1}} + {\gamma}}\right)}}}$
${h} = {{1} + {{e_{int}}} + {{\frac{1}{\rho}} {P}}}$
${h} = {{1} + {{{\gamma}} \cdot {{{e_{int}}}}}}$
${\frac{\partial h}{\partial {e_{int}}}} = {\gamma}$
${D} = {{{\rho}} \cdot {{W}}}$
${D} = {{{\rho}} \cdot {{\frac{1}{\sqrt{{1}{-{{v^2}}}}}}}}$
${{ S} _i} = {{{\rho}} \cdot {{h}} {{{W}^{2}}} {{{ v} _i}}}$
${\tau} = {{E}{-{D}}}$
${\tau} = {{{{{\rho}} \cdot {{h}} {{{W}^{2}}}}{-{P}}}{-{D}}}$
${U} = {\left[\begin{array}{c} D\\ { S} _i\\ \tau\end{array}\right]}$
${{{ F} _i} _j} = {\left[\begin{array}{c} {{D}} {{{ v} _j}}\\ {{{{ S} _i}} {{{ v} _j}}}{-{{{{{ \delta} _i} _j}} {{P}}}}\\ {{ S} _j}{-{{{D}} {{{ v} _j}}}}\end{array}\right]}$
${\frac{\partial D}{\partial \rho}} = {W}$