Tetrahedron
Initial vertex: ${{ v} _1} = {\left[\begin{array}{c} 0\\ 0\\ 1\end{array}\right]}$
Transforms for vertex generation:
$ { \tilde{T}} _i \in \left\{ \left[\begin{array}{ccc} 1& 0& 0\\ 0& 1& 0\\ 0& 0& 1\end{array}\right], \left[\begin{array}{ccc} -{\frac{1}{2}}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{\sqrt{2}}{\sqrt{3}}}\\ \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{5}{6}& -{{\frac{1}{3}} {\sqrt{2}}}\\ \frac{\sqrt{2}}{\sqrt{3}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{1}{3}}\end{array}\right], \left[\begin{array}{ccc} -{\frac{1}{2}}& -{{\frac{1}{2}} {\sqrt{3}}}& 0\\ {\frac{1}{2}} {\sqrt{3}}& -{\frac{1}{2}}& 0\\ 0& 0& 1\end{array}\right] \right\}$
${{{{{ T} _3}} {{{ V} _3}}} = {\left[\begin{array}{c} 0\\ {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}\\ -{\frac{1}{3}}\end{array}\right]}} = {{ V} _2}$
${{{{{ T} _2}} {{{ V} _2}}} = {\left[\begin{array}{c} \frac{\sqrt{2}}{\sqrt{3}}\\ -{{\frac{1}{3}} {\sqrt{2}}}\\ -{\frac{1}{3}}\end{array}\right]}} = {{ V} _3}$
${{{{{ T} _2}} {{{ V} _1}}} = {\left[\begin{array}{c} -{\frac{\sqrt{2}}{\sqrt{3}}}\\ -{{\frac{1}{3}} {\sqrt{2}}}\\ -{\frac{1}{3}}\end{array}\right]}} = {{ V} _4}$
${{{{{ T} _2}} {{{ T} _2}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{\sqrt{2}}{\sqrt{3}}\\ -{\frac{1}{{{2}} {{\sqrt{3}}}}}& \frac{5}{6}& -{{\frac{1}{3}} {\sqrt{2}}}\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{1}{3}}\end{array}\right]}} = {{ T} _4}$
${{{{{ T} _3}} {{{ T} _2}}} = {\left[\begin{array}{ccc} 0& -{\frac{1}{\sqrt{3}}}& \frac{\sqrt{2}}{\sqrt{3}}\\ -{\frac{1}{\sqrt{3}}}& -{\frac{2}{3}}& -{{\frac{1}{3}} {\sqrt{2}}}\\ \frac{\sqrt{2}}{\sqrt{3}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{1}{3}}\end{array}\right]}} = {{ T} _5}$
${{{{{ T} _3}} {{{ T} _4}}} = {\left[\begin{array}{ccc} \frac{1}{2}& -{{\frac{1}{2}} {\sqrt{3}}}& 0\\ -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{1}{6}}& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{1}{3}}\end{array}\right]}} = {{ T} _6}$
${{{{{ T} _2}} {{{ T} _5}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{2}} {\sqrt{3}}& 0\\ -{{\frac{1}{2}} {\sqrt{3}}}& -{\frac{1}{2}}& 0\\ 0& 0& 1\end{array}\right]}} = {{ T} _7}$
${{{{{ T} _3}} {{{ T} _5}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{2}} {\sqrt{3}}& 0\\ \frac{1}{{{2}} {{\sqrt{3}}}}& -{\frac{1}{6}}& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}\\ \frac{\sqrt{2}}{\sqrt{3}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{1}{3}}\end{array}\right]}} = {{ T} _8}$
${{{{{ T} _3}} {{{ T} _6}}} = {\left[\begin{array}{ccc} 0& \frac{1}{\sqrt{3}}& -{\frac{\sqrt{2}}{\sqrt{3}}}\\ \frac{1}{\sqrt{3}}& -{\frac{2}{3}}& -{{\frac{1}{3}} {\sqrt{2}}}\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{1}{3}}\end{array}\right]}} = {{ T} _9}$
${{{{{ T} _2}} {{{ T} _7}}} = {\left[\begin{array}{ccc} \frac{1}{2}& -{\frac{1}{{{2}} {{\sqrt{3}}}}}& -{\frac{\sqrt{2}}{\sqrt{3}}}\\ -{{\frac{1}{2}} {\sqrt{3}}}& -{\frac{1}{6}}& -{{\frac{1}{3}} {\sqrt{2}}}\\ 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& -{\frac{1}{3}}\end{array}\right]}} = {{{ T} _1} _0}$
${{{{{ T} _2}} {{{ T} _8}}} = {\left[\begin{array}{ccc} -{1}& 0& 0\\ 0& \frac{1}{3}& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}\\ 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& -{\frac{1}{3}}\end{array}\right]}} = {{{ T} _1} _1}$
${{{{{ T} _2}} {{{ T} _9}}} = {\left[\begin{array}{ccc} \frac{1}{2}& \frac{1}{{{2}} {{\sqrt{3}}}}& \frac{\sqrt{2}}{\sqrt{3}}\\ {\frac{1}{2}} {\sqrt{3}}& -{\frac{1}{6}}& -{{\frac{1}{3}} {\sqrt{2}}}\\ 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& -{\frac{1}{3}}\end{array}\right]}} = {{{ T} _1} _2}$
Vertexes as column vectors:
${V} = {\left[\begin{array}{cccc} 0& 0& \frac{\sqrt{2}}{\sqrt{3}}& -{\frac{\sqrt{2}}{\sqrt{3}}}\\ 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{{\frac{1}{3}} {\sqrt{2}}}\\ 1& -{\frac{1}{3}}& -{\frac{1}{3}}& -{\frac{1}{3}}\end{array}\right]}$
Vertex inner products:
${{{{{ V} ^T}} {{V}}} = {{{\left[\begin{array}{ccc} 0& 0& 1\\ 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& -{\frac{1}{3}}\\ \frac{\sqrt{2}}{\sqrt{3}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{1}{3}}\\ -{\frac{\sqrt{2}}{\sqrt{3}}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{\frac{1}{3}}\end{array}\right]}} {{\left[\begin{array}{cccc} 0& 0& \frac{\sqrt{2}}{\sqrt{3}}& -{\frac{\sqrt{2}}{\sqrt{3}}}\\ 0& {\frac{1}{3}} {{{2}} {{\sqrt{2}}}}& -{{\frac{1}{3}} {\sqrt{2}}}& -{{\frac{1}{3}} {\sqrt{2}}}\\ 1& -{\frac{1}{3}}& -{\frac{1}{3}}& -{\frac{1}{3}}\end{array}\right]}}}} = {\left[\begin{array}{cccc} 1& -{\frac{1}{3}}& -{\frac{1}{3}}& -{\frac{1}{3}}\\ -{\frac{1}{3}}& 1& -{\frac{1}{3}}& -{\frac{1}{3}}\\ -{\frac{1}{3}}& -{\frac{1}{3}}& 1& -{\frac{1}{3}}\\ -{\frac{1}{3}}& -{\frac{1}{3}}& -{\frac{1}{3}}& 1\end{array}\right]}$
Table of $T_i \cdot v_j = v_k$:
|
V1 |
V2 |
V3 |
V4 |
T1 |
V1
|
V2
|
V3
|
V4
|
T2 |
V4
|
V2
|
V1
|
V3
|
T3 |
V1
|
V4
|
V2
|
V3
|
T4 |
V3
|
V2
|
V4
|
V1
|
T5 |
V3
|
V4
|
V1
|
V2
|
T6 |
V2
|
V4
|
V3
|
V1
|
T7 |
V1
|
V3
|
V4
|
V2
|
T8 |
V2
|
V3
|
V1
|
V4
|
T9 |
V4
|
V3
|
V2
|
V1
|
T10 |
V4
|
V1
|
V3
|
V2
|
T11 |
V2
|
V1
|
V4
|
V3
|
T12 |
V3
|
V1
|
V2
|
V4
|
Table of $T_i \cdot T_j = T_k$:
|
T1 |
T2 |
T3 |
T4 |
T5 |
T6 |
T7 |
T8 |
T9 |
T10 |
T11 |
T12 |
T1 |
T1
|
T2
|
T3
|
T4
|
T5
|
T6
|
T7
|
T8
|
T9
|
T10
|
T11
|
T12
|
T2 |
T2
|
T4
|
T9
|
T1
|
T7
|
T8
|
T10
|
T11
|
T12
|
T5
|
T6
|
T3
|
T3 |
T3
|
T5
|
T7
|
T6
|
T8
|
T9
|
T1
|
T2
|
T4
|
T12
|
T10
|
T11
|
T4 |
T4
|
T1
|
T12
|
T2
|
T10
|
T11
|
T5
|
T6
|
T3
|
T7
|
T8
|
T9
|
T5 |
T5
|
T6
|
T4
|
T3
|
T1
|
T2
|
T12
|
T10
|
T11
|
T8
|
T9
|
T7
|
T6 |
T6
|
T3
|
T11
|
T5
|
T12
|
T10
|
T8
|
T9
|
T7
|
T1
|
T2
|
T4
|
T7 |
T7
|
T8
|
T1
|
T9
|
T2
|
T4
|
T3
|
T5
|
T6
|
T11
|
T12
|
T10
|
T8 |
T8
|
T9
|
T6
|
T7
|
T3
|
T5
|
T11
|
T12
|
T10
|
T2
|
T4
|
T1
|
T9 |
T9
|
T7
|
T10
|
T8
|
T11
|
T12
|
T2
|
T4
|
T1
|
T3
|
T5
|
T6
|
T10 |
T10
|
T11
|
T2
|
T12
|
T4
|
T1
|
T9
|
T7
|
T8
|
T6
|
T3
|
T5
|
T11 |
T11
|
T12
|
T8
|
T10
|
T9
|
T7
|
T6
|
T3
|
T5
|
T4
|
T1
|
T2
|
T12 |
T12
|
T10
|
T5
|
T11
|
T6
|
T3
|
T4
|
T1
|
T2
|
T9
|
T7
|
T8
|