$ \def\MA{{\frac{1}{2}}} \def\MB{{\frac{1}{2 \sqrt{3}}}} \def\MC{{\frac{\sqrt{2}}{\sqrt{3}}}} \def\MD{{\frac{5}{6}}} \def\ME{{\frac{\sqrt{2}}{3}}} \def\MF{{\frac{1}{3}}} \def\MG{{\frac{\sqrt{3}}{2}}} \def\MH{{\frac{2\sqrt{2}}{3}}} \def\MI{{\frac{1}{\sqrt{3}}}} \def\MJ{{\frac{2}{3}}} \def\MK{{\frac{1}{6}}} $

Tetrahedron

Initial vertex: $V_1=\left[\begin{matrix}0\\0\\1\end{matrix}\right]$

Transforms for vertex generation:

$\tilde{T}_i \in \left\{ \left[\begin{matrix}1&0&0\\0&1&0\\0&0&1\end{matrix}\right], \left[\begin{matrix}-\MA&-\MB&-\MC\\ \MB&\MD&-\ME\\ \MC&-\ME&-\MF\end{matrix}\right], \left[\begin{matrix}-\MA&-\MG&0\\ \MG&-\MA&0\\0&0&1\end{matrix}\right] \right\}$

Vertexes:

$T_2 V_1=\left[\begin{matrix}-\MC\\-\ME\\-\MF\end{matrix}\right]=V_2$
$T_2 V_2=\left[\begin{matrix}\MC\\-\ME\\-\MF\end{matrix}\right]=V_3$
$T_3 V_3=\left[\begin{matrix}0\\ \MH\\-\MF\end{matrix}\right]=V_4$

All Transforms:

$T_2 T_2=\left[\begin{matrix}-\MA&\MB&\MC\\-\MB&\MD&-\ME\\-\MC&-\ME&-\MF\end{matrix}\right]=T_4$
$T_3 T_2=\left[\begin{matrix}0&-\MI&\MC\\-\MI&-\MJ&-\ME\\ \MC&-\ME&-\MF\end{matrix}\right]=T_5$
$T_3 T_4=\left[\begin{matrix}\MA&-\MG&0\\-\MB&-\MK&\MH\\-\MC&-\ME&-\MF\end{matrix}\right]=T_6$
$T_2 T_5=\left[\begin{matrix}-\MA&\MG&0\\-\MG&-\MA&0\\0&0&1\end{matrix}\right]=T_7$
$T_3 T_5=\left[\begin{matrix}\MA&\MG&0\\ \MB&-\MK&\MH\\ \MC&-\ME&-\MF\end{matrix}\right]=T_8$
$T_3 T_6=\left[\begin{matrix}0&\MI&-\MC\\ \MI&-\MJ&-\ME\\-\MC&-\ME&-\MF\end{matrix}\right]=T_9$
$T_2 T_7=\left[\begin{matrix}\MA&-\MB&-\MC\\-\MG&-\MK&-\ME\\0&\MH&-\MF\end{matrix}\right]=T_{10}$
$T_2 T_8=\left[\begin{matrix}-{1}&0&0\\0&\MF&\MH\\0&\MH&-\MF\end{matrix}\right]=T_{11}$
$T_2 T_9=\left[\begin{matrix}\MA&\MB&\MC\\ \MG&-\MK&-\ME\\0&\MH&-\MF\end{matrix}\right]=T_{12}$


relabeled vertexes as {1, 4, 3, 2}

Vertexes as column vectors:

$V=\left[\begin{matrix}0&0&\MC&-\MC\\0&\MH&-\ME&-\ME\\1&-\MF&-\MF&-\MF\end{matrix}\right]$

Vertex inner products:

$V^T V=\left[\begin{matrix}0&0&1\\0&\MH&-\MF\\ \MC&-\ME&-\MF\\-\MC&-\ME&-\MF\end{matrix}\right] \left[\begin{matrix}0&0&\MC&-\MC\\0&\MH&-\ME&-\ME\\1&-\MF&-\MF&-\MF\end{matrix}\right] = \left[\begin{matrix}1&-\MF&-\MF&-\MF\\-\MF&1&-\MF&-\MF\\-\MF&-\MF&1&-\MF\\-\MF&-\MF&-\MF&1\end{matrix}\right]$

Table of $T_i\cdot V_j=V_k$:
    V1 V2 V3 V4
T1  V1 V2 V3 V4
T2  V2 V3 V1 V4
T3  V1 V3 V4 V2
T4  V3 V1 V2 V4
T5  V3 V4 V1 V2
T6  V4 V1 V3 V2
T7  V1 V4 V2 V3
T8  V4 V2 V1 V3
T9  V2 V1 V4 V3
T10 V2 V4 V3 V1
T11 V4 V3 V2 V1
T12 V3 V2 V4 V1


Table of $T_i\cdot T_j=T_k$:
    T1  T2  T3  T4  T5  T6  T7   T8 T9  T10 T11 T12
T1  T1  T2  T3  T4  T5  T6  T7   T8 T9  T10 T11 T12
T2  T2  T4  T9  T1  T7  T8  T10 T11 T12 T5  T6  T3
T3  T3  T5  T7  T6  T8  T9  T1   T2 T4  T12 T10 T11
T4  T4  T1  T12 T2  T10 T11 T5   T6 T3  T7  T8  T9
T5  T5  T6  T4  T3  T1  T2  T12 T10 T11 T8  T9  T7
T6  T6  T3  T11 T5  T12 T10 T8   T9 T7  T1  T2  T4
T7  T7  T8  T1  T9  T2  T4  T3   T5 T6  T11 T12 T10
T8  T8  T9  T6  T7  T3  T5  T11 T12 T10 T2  T4  T1
T9  T9  T7  T10 T8  T11 T12 T2   T4 T1  T3  T5  T6
T10 T10 T11 T2  T12 T4  T1  T9   T7 T8  T6  T3  T5
T11 T11 T12 T8  T10 T9  T7  T6   T3 T5  T4  T1  T2
T12 T12 T10 T5  T11 T6  T3  T4   T1 T2  T9  T7  T8