Octahedron
Initial vertex: ${{ v} _1} = {\left[\begin{array}{c} 1\\ 0\\ 0\end{array}\right]}$
Transforms for vertex generation:
$ { \tilde{T}} _i \in \left\{ \left[\begin{array}{ccc} 1& 0& 0\\ 0& 1& 0\\ 0& 0& 1\end{array}\right], \left[\begin{array}{ccc} 1& 0& 0\\ 0& 0& -{1}\\ 0& 1& 0\end{array}\right], \left[\begin{array}{ccc} 0& 0& 1\\ 0& 1& 0\\ -{1}& 0& 0\end{array}\right] \right\}$
${{{{{ T} _2}} {{{ V} _3}}} = {\left[\begin{array}{c} 0\\ 0\\ 1\end{array}\right]}} = {{ V} _2}$
${{{{{ T} _2}} {{{ V} _2}}} = {\left[\begin{array}{c} 0\\ 1\\ 0\end{array}\right]}} = {{ V} _3}$
${{{{{ T} _2}} {{{ V} _4}}} = {\left[\begin{array}{c} 0\\ -{1}\\ 0\end{array}\right]}} = {{ V} _4}$
${{{{{ T} _3}} {{{ V} _1}}} = {\left[\begin{array}{c} 0\\ 0\\ -{1}\end{array}\right]}} = {{ V} _5}$
${{{{{ T} _3}} {{{ V} _2}}} = {\left[\begin{array}{c} -{1}\\ 0\\ 0\end{array}\right]}} = {{ V} _6}$
${{{{{ T} _2}} {{{ T} _2}}} = {\left[\begin{array}{ccc} 1& 0& 0\\ 0& -{1}& 0\\ 0& 0& -{1}\end{array}\right]}} = {{ T} _4}$
${{{{{ T} _3}} {{{ T} _2}}} = {\left[\begin{array}{ccc} 0& 1& 0\\ 0& 0& -{1}\\ -{1}& 0& 0\end{array}\right]}} = {{ T} _5}$
${{{{{ T} _2}} {{{ T} _4}}} = {\left[\begin{array}{ccc} 1& 0& 0\\ 0& 0& 1\\ 0& -{1}& 0\end{array}\right]}} = {{ T} _6}$
${{{{{ T} _3}} {{{ T} _4}}} = {\left[\begin{array}{ccc} 0& 0& -{1}\\ 0& -{1}& 0\\ -{1}& 0& 0\end{array}\right]}} = {{ T} _7}$
${{{{{ T} _2}} {{{ T} _5}}} = {\left[\begin{array}{ccc} 0& 1& 0\\ 1& 0& 0\\ 0& 0& -{1}\end{array}\right]}} = {{ T} _8}$
${{{{{ T} _3}} {{{ T} _5}}} = {\left[\begin{array}{ccc} -{1}& 0& 0\\ 0& 0& -{1}\\ 0& -{1}& 0\end{array}\right]}} = {{ T} _9}$
${{{{{ T} _3}} {{{ T} _6}}} = {\left[\begin{array}{ccc} 0& -{1}& 0\\ 0& 0& 1\\ -{1}& 0& 0\end{array}\right]}} = {{{ T} _1} _0}$
${{{{{ T} _2}} {{{ T} _7}}} = {\left[\begin{array}{ccc} 0& 0& -{1}\\ 1& 0& 0\\ 0& -{1}& 0\end{array}\right]}} = {{{ T} _1} _1}$
${{{{{ T} _3}} {{{ T} _7}}} = {\left[\begin{array}{ccc} -{1}& 0& 0\\ 0& -{1}& 0\\ 0& 0& 1\end{array}\right]}} = {{{ T} _1} _2}$
${{{{{ T} _2}} {{{ T} _8}}} = {\left[\begin{array}{ccc} 0& 1& 0\\ 0& 0& 1\\ 1& 0& 0\end{array}\right]}} = {{{ T} _1} _3}$
${{{{{ T} _2}} {{{ T} _9}}} = {\left[\begin{array}{ccc} -{1}& 0& 0\\ 0& 1& 0\\ 0& 0& -{1}\end{array}\right]}} = {{{ T} _1} _4}$
${{{{{ T} _3}} {{{ T} _9}}} = {\left[\begin{array}{ccc} 0& -{1}& 0\\ 0& 0& -{1}\\ 1& 0& 0\end{array}\right]}} = {{{ T} _1} _5}$
${{{{{ T} _2}} {{{{ T} _1} _0}}} = {\left[\begin{array}{ccc} 0& -{1}& 0\\ 1& 0& 0\\ 0& 0& 1\end{array}\right]}} = {{{ T} _1} _6}$
${{{{{ T} _3}} {{{{ T} _1} _0}}} = {\left[\begin{array}{ccc} -{1}& 0& 0\\ 0& 0& 1\\ 0& 1& 0\end{array}\right]}} = {{{ T} _1} _7}$
${{{{{ T} _2}} {{{{ T} _1} _1}}} = {\left[\begin{array}{ccc} 0& 0& -{1}\\ 0& 1& 0\\ 1& 0& 0\end{array}\right]}} = {{{ T} _1} _8}$
${{{{{ T} _3}} {{{{ T} _1} _2}}} = {\left[\begin{array}{ccc} 0& 0& 1\\ 0& -{1}& 0\\ 1& 0& 0\end{array}\right]}} = {{{ T} _1} _9}$
${{{{{ T} _2}} {{{{ T} _1} _3}}} = {\left[\begin{array}{ccc} 0& 1& 0\\ -{1}& 0& 0\\ 0& 0& 1\end{array}\right]}} = {{{ T} _2} _0}$
${{{{{ T} _2}} {{{{ T} _1} _5}}} = {\left[\begin{array}{ccc} 0& -{1}& 0\\ -{1}& 0& 0\\ 0& 0& -{1}\end{array}\right]}} = {{{ T} _2} _1}$
${{{{{ T} _3}} {{{{ T} _1} _6}}} = {\left[\begin{array}{ccc} 0& 0& 1\\ 1& 0& 0\\ 0& 1& 0\end{array}\right]}} = {{{ T} _2} _2}$
${{{{{ T} _2}} {{{{ T} _1} _8}}} = {\left[\begin{array}{ccc} 0& 0& -{1}\\ -{1}& 0& 0\\ 0& 1& 0\end{array}\right]}} = {{{ T} _2} _3}$
${{{{{ T} _2}} {{{{ T} _1} _9}}} = {\left[\begin{array}{ccc} 0& 0& 1\\ -{1}& 0& 0\\ 0& -{1}& 0\end{array}\right]}} = {{{ T} _2} _4}$
Vertexes as column vectors:
${V} = {\left[\begin{array}{cccccc} 1& 0& 0& 0& 0& -{1}\\ 0& 0& 1& -{1}& 0& 0\\ 0& 1& 0& 0& -{1}& 0\end{array}\right]}$
Vertex inner products:
${{{{{ V} ^T}} {{V}}} = {{{\left[\begin{array}{ccc} 1& 0& 0\\ 0& 0& 1\\ 0& 1& 0\\ 0& -{1}& 0\\ 0& 0& -{1}\\ -{1}& 0& 0\end{array}\right]}} {{\left[\begin{array}{cccccc} 1& 0& 0& 0& 0& -{1}\\ 0& 0& 1& -{1}& 0& 0\\ 0& 1& 0& 0& -{1}& 0\end{array}\right]}}}} = {\left[\begin{array}{cccccc} 1& 0& 0& 0& 0& -{1}\\ 0& 1& 0& 0& -{1}& 0\\ 0& 0& 1& -{1}& 0& 0\\ 0& 0& -{1}& 1& 0& 0\\ 0& -{1}& 0& 0& 1& 0\\ -{1}& 0& 0& 0& 0& 1\end{array}\right]}$
Table of $T_i \cdot v_j = v_k$:
|
V1 |
V2 |
V3 |
V4 |
V5 |
V6 |
T1 |
V1
|
V2
|
V3
|
V4
|
V5
|
V6
|
T2 |
V1
|
V4
|
V2
|
V5
|
V3
|
V6
|
T3 |
V5
|
V1
|
V3
|
V4
|
V6
|
V2
|
T4 |
V1
|
V5
|
V4
|
V3
|
V2
|
V6
|
T5 |
V5
|
V4
|
V1
|
V6
|
V3
|
V2
|
T6 |
V1
|
V3
|
V5
|
V2
|
V4
|
V6
|
T7 |
V5
|
V6
|
V4
|
V3
|
V1
|
V2
|
T8 |
V3
|
V5
|
V1
|
V6
|
V2
|
V4
|
T9 |
V6
|
V4
|
V5
|
V2
|
V3
|
V1
|
T10 |
V5
|
V3
|
V6
|
V1
|
V4
|
V2
|
T11 |
V3
|
V6
|
V5
|
V2
|
V1
|
V4
|
T12 |
V6
|
V2
|
V4
|
V3
|
V5
|
V1
|
T13 |
V2
|
V3
|
V1
|
V6
|
V4
|
V5
|
T14 |
V6
|
V5
|
V3
|
V4
|
V2
|
V1
|
T15 |
V2
|
V4
|
V6
|
V1
|
V3
|
V5
|
T16 |
V3
|
V2
|
V6
|
V1
|
V5
|
V4
|
T17 |
V6
|
V3
|
V2
|
V5
|
V4
|
V1
|
T18 |
V2
|
V6
|
V3
|
V4
|
V1
|
V5
|
T19 |
V2
|
V1
|
V4
|
V3
|
V6
|
V5
|
T20 |
V4
|
V2
|
V1
|
V6
|
V5
|
V3
|
T21 |
V4
|
V5
|
V6
|
V1
|
V2
|
V3
|
T22 |
V3
|
V1
|
V2
|
V5
|
V6
|
V4
|
T23 |
V4
|
V6
|
V2
|
V5
|
V1
|
V3
|
T24 |
V4
|
V1
|
V5
|
V2
|
V6
|
V3
|
Table of $T_i \cdot T_j = T_k$:
|
T1 |
T2 |
T3 |
T4 |
T5 |
T6 |
T7 |
T8 |
T9 |
T10 |
T11 |
T12 |
T13 |
T14 |
T15 |
T16 |
T17 |
T18 |
T19 |
T20 |
T21 |
T22 |
T23 |
T24 |
T1 |
T1
|
T2
|
T3
|
T4
|
T5
|
T6
|
T7
|
T8
|
T9
|
T10
|
T11
|
T12
|
T13
|
T14
|
T15
|
T16
|
T17
|
T18
|
T19
|
T20
|
T21
|
T22
|
T23
|
T24
|
T2 |
T2
|
T4
|
T22
|
T6
|
T8
|
T1
|
T11
|
T13
|
T14
|
T16
|
T18
|
T9
|
T20
|
T17
|
T21
|
T15
|
T12
|
T23
|
T24
|
T5
|
T10
|
T19
|
T7
|
T3
|
T3 |
T3
|
T5
|
T14
|
T7
|
T9
|
T10
|
T12
|
T11
|
T15
|
T17
|
T16
|
T19
|
T6
|
T18
|
T2
|
T22
|
T13
|
T1
|
T4
|
T24
|
T23
|
T8
|
T20
|
T21
|
T4 |
T4
|
T6
|
T19
|
T1
|
T13
|
T2
|
T18
|
T20
|
T17
|
T15
|
T23
|
T14
|
T5
|
T12
|
T10
|
T21
|
T9
|
T7
|
T3
|
T8
|
T16
|
T24
|
T11
|
T22
|
T5 |
T5
|
T7
|
T8
|
T10
|
T11
|
T3
|
T16
|
T6
|
T18
|
T22
|
T1
|
T15
|
T24
|
T13
|
T23
|
T2
|
T19
|
T20
|
T21
|
T9
|
T17
|
T4
|
T12
|
T14
|
T6 |
T6
|
T1
|
T24
|
T2
|
T20
|
T4
|
T23
|
T5
|
T12
|
T21
|
T7
|
T17
|
T8
|
T9
|
T16
|
T10
|
T14
|
T11
|
T22
|
T13
|
T15
|
T3
|
T18
|
T19
|
T7 |
T7
|
T10
|
T4
|
T3
|
T6
|
T5
|
T1
|
T24
|
T13
|
T2
|
T20
|
T18
|
T9
|
T19
|
T17
|
T23
|
T15
|
T12
|
T14
|
T11
|
T22
|
T21
|
T16
|
T8
|
T8 |
T8
|
T11
|
T13
|
T16
|
T18
|
T22
|
T15
|
T1
|
T23
|
T19
|
T2
|
T21
|
T3
|
T20
|
T7
|
T4
|
T24
|
T5
|
T10
|
T14
|
T12
|
T6
|
T9
|
T17
|
T9 |
T9
|
T12
|
T11
|
T17
|
T16
|
T14
|
T22
|
T10
|
T1
|
T8
|
T3
|
T2
|
T21
|
T6
|
T20
|
T5
|
T4
|
T24
|
T23
|
T15
|
T13
|
T7
|
T19
|
T18
|
T10 |
T10
|
T3
|
T21
|
T5
|
T24
|
T7
|
T20
|
T9
|
T19
|
T23
|
T12
|
T13
|
T11
|
T15
|
T22
|
T17
|
T18
|
T16
|
T8
|
T6
|
T2
|
T14
|
T1
|
T4
|
T11 |
T11
|
T16
|
T6
|
T22
|
T1
|
T8
|
T2
|
T3
|
T20
|
T4
|
T5
|
T23
|
T14
|
T24
|
T12
|
T7
|
T21
|
T9
|
T17
|
T18
|
T19
|
T10
|
T15
|
T13
|
T12 |
T12
|
T17
|
T7
|
T14
|
T10
|
T9
|
T3
|
T21
|
T6
|
T5
|
T24
|
T1
|
T15
|
T4
|
T13
|
T20
|
T2
|
T19
|
T18
|
T16
|
T8
|
T23
|
T22
|
T11
|
T13 |
T13
|
T18
|
T20
|
T15
|
T23
|
T19
|
T21
|
T2
|
T7
|
T24
|
T4
|
T10
|
T22
|
T5
|
T11
|
T6
|
T3
|
T8
|
T16
|
T17
|
T9
|
T1
|
T14
|
T12
|
T14 |
T14
|
T9
|
T18
|
T12
|
T15
|
T17
|
T19
|
T16
|
T2
|
T13
|
T22
|
T4
|
T10
|
T1
|
T5
|
T8
|
T6
|
T3
|
T7
|
T21
|
T20
|
T11
|
T24
|
T23
|
T15 |
T15
|
T19
|
T16
|
T13
|
T22
|
T18
|
T8
|
T17
|
T3
|
T11
|
T14
|
T5
|
T23
|
T10
|
T24
|
T9
|
T7
|
T21
|
T20
|
T2
|
T6
|
T12
|
T4
|
T1
|
T16 |
T16
|
T22
|
T10
|
T8
|
T3
|
T11
|
T5
|
T14
|
T24
|
T7
|
T9
|
T20
|
T18
|
T21
|
T19
|
T12
|
T23
|
T15
|
T13
|
T1
|
T4
|
T17
|
T2
|
T6
|
T17 |
T17
|
T14
|
T23
|
T9
|
T21
|
T12
|
T24
|
T15
|
T4
|
T20
|
T19
|
T6
|
T16
|
T2
|
T8
|
T13
|
T1
|
T22
|
T11
|
T10
|
T5
|
T18
|
T3
|
T7
|
T18 |
T18
|
T15
|
T1
|
T19
|
T2
|
T13
|
T4
|
T22
|
T5
|
T6
|
T8
|
T7
|
T17
|
T3
|
T9
|
T11
|
T10
|
T14
|
T12
|
T23
|
T24
|
T16
|
T21
|
T20
|
T19 |
T19
|
T13
|
T12
|
T18
|
T17
|
T15
|
T14
|
T23
|
T10
|
T9
|
T21
|
T3
|
T2
|
T7
|
T6
|
T24
|
T5
|
T4
|
T1
|
T22
|
T11
|
T20
|
T8
|
T16
|
T20 |
T20
|
T23
|
T5
|
T21
|
T7
|
T24
|
T10
|
T4
|
T11
|
T3
|
T6
|
T16
|
T19
|
T8
|
T18
|
T1
|
T22
|
T13
|
T15
|
T12
|
T14
|
T2
|
T17
|
T9
|
T21 |
T21
|
T24
|
T15
|
T20
|
T19
|
T23
|
T13
|
T12
|
T22
|
T18
|
T17
|
T8
|
T7
|
T16
|
T3
|
T14
|
T11
|
T10
|
T5
|
T4
|
T1
|
T9
|
T6
|
T2
|
T22 |
T22
|
T8
|
T17
|
T11
|
T14
|
T16
|
T9
|
T18
|
T21
|
T12
|
T15
|
T24
|
T1
|
T23
|
T4
|
T19
|
T20
|
T2
|
T6
|
T3
|
T7
|
T13
|
T5
|
T10
|
T23 |
T23
|
T21
|
T2
|
T24
|
T4
|
T20
|
T6
|
T19
|
T8
|
T1
|
T13
|
T11
|
T12
|
T22
|
T14
|
T18
|
T16
|
T17
|
T9
|
T7
|
T3
|
T15
|
T10
|
T5
|
T24 |
T24
|
T20
|
T9
|
T23
|
T12
|
T21
|
T17
|
T7
|
T16
|
T14
|
T10
|
T22
|
T4
|
T11
|
T1
|
T3
|
T8
|
T6
|
T2
|
T19
|
T18
|
T5
|
T13
|
T15
|