Icosahedron
Initial vertex: ${{ v} _1} = {\left[\begin{array}{c} 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}\end{array}\right]}$
Transforms for vertex generation:
$ { \tilde{T}} _i \in \left\{ \left[\begin{array}{ccc} 1& 0& 0\\ 0& 1& 0\\ 0& 0& 1\end{array}\right], \left[\begin{array}{ccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right], \left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\end{array}\right], \left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right] \right\}$
${{{{{ T} _2}} {{{ V} _4}}} = {\left[\begin{array}{c} \frac{1}{2}\\ 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{ V} _2}$
${{{{{ T} _2}} {{{ V} _1}}} = {\left[\begin{array}{c} -{\frac{1}{2}}\\ 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{ V} _3}$
${{{{{ T} _2}} {{{ V} _8}}} = {\left[\begin{array}{c} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}\\ 0\end{array}\right]}} = {{ V} _4}$
${{{{{ T} _2}} {{{ V} _9}}} = {\left[\begin{array}{c} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}\\ 0\end{array}\right]}} = {{ V} _5}$
${{{{{ T} _3}} {{{ V} _4}}} = {\left[\begin{array}{c} 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}\end{array}\right]}} = {{ V} _6}$
${{{{{ T} _3}} {{{{ V} _1} _0}}} = {\left[\begin{array}{c} 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}\end{array}\right]}} = {{ V} _7}$
${{{{{ T} _2}} {{{ V} _3}}} = {\left[\begin{array}{c} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}\\ 0\end{array}\right]}} = {{ V} _8}$
${{{{{ T} _2}} {{{ V} _2}}} = {\left[\begin{array}{c} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}\\ 0\end{array}\right]}} = {{ V} _9}$
${{{{{ T} _2}} {{{ V} _7}}} = {\left[\begin{array}{c} \frac{1}{2}\\ 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ V} _1} _0}$
${{{{{ T} _2}} {{{{ V} _1} _0}}} = {\left[\begin{array}{c} -{\frac{1}{2}}\\ 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ V} _1} _1}$
${{{{{ T} _4}} {{{ V} _4}}} = {\left[\begin{array}{c} 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}\end{array}\right]}} = {{{ V} _1} _2}$
${{{{{ T} _2}} {{{ T} _2}}} = {\left[\begin{array}{ccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\end{array}\right]}} = {{ T} _5}$
${{{{{ T} _3}} {{{ T} _2}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\end{array}\right]}} = {{ T} _6}$
${{{{{ T} _4}} {{{ T} _2}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{ T} _7}$
${{{{{ T} _2}} {{{ T} _5}}} = {\left[\begin{array}{ccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\end{array}\right]}} = {{ T} _8}$
${{{{{ T} _3}} {{{ T} _5}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{ T} _9}$
${{{{{ T} _4}} {{{ T} _5}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ T} _1} _0}$
${{{{{ T} _2}} {{{ T} _6}}} = {\left[\begin{array}{ccc} 0& 0& -{1}\\ 1& 0& 0\\ 0& -{1}& 0\end{array}\right]}} = {{{ T} _1} _1}$
${{{{{ T} _3}} {{{ T} _6}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{ T} _1} _2}$
${{{{{ T} _2}} {{{ T} _7}}} = {\left[\begin{array}{ccc} 0& -{1}& 0\\ 0& 0& -{1}\\ 1& 0& 0\end{array}\right]}} = {{{ T} _1} _3}$
${{{{{ T} _3}} {{{ T} _7}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _1} _4}$
${{{{{ T} _4}} {{{ T} _7}}} = {\left[\begin{array}{ccc} 0& 0& -{1}\\ -{1}& 0& 0\\ 0& 1& 0\end{array}\right]}} = {{{ T} _1} _5}$
${{{{{ T} _2}} {{{ T} _8}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _1} _6}$
${{{{{ T} _3}} {{{ T} _8}}} = {\left[\begin{array}{ccc} -{1}& 0& 0\\ 0& -{1}& 0\\ 0& 0& 1\end{array}\right]}} = {{{ T} _1} _7}$
${{{{{ T} _4}} {{{ T} _8}}} = {\left[\begin{array}{ccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{ T} _1} _8}$
${{{{{ T} _2}} {{{ T} _9}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _1} _9}$
${{{{{ T} _3}} {{{ T} _9}}} = {\left[\begin{array}{ccc} 0& -{1}& 0\\ 0& 0& 1\\ -{1}& 0& 0\end{array}\right]}} = {{{ T} _2} _0}$
${{{{{ T} _2}} {{{{ T} _1} _0}}} = {\left[\begin{array}{ccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{ T} _2} _1}$
${{{{{ T} _4}} {{{{ T} _1} _0}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ T} _2} _2}$
${{{{{ T} _3}} {{{{ T} _1} _1}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ T} _2} _3}$
${{{{{ T} _2}} {{{{ T} _1} _2}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{ T} _2} _4}$
${{{{{ T} _3}} {{{{ T} _1} _2}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{ T} _2} _5}$
${{{{{ T} _4}} {{{{ T} _1} _2}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _2} _6}$
${{{{{ T} _2}} {{{{ T} _1} _3}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _2} _7}$
${{{{{ T} _4}} {{{{ T} _1} _3}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{ T} _2} _8}$
${{{{{ T} _4}} {{{{ T} _1} _4}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _2} _9}$
${{{{{ T} _2}} {{{{ T} _1} _5}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{ T} _3} _0}$
${{{{{ T} _4}} {{{{ T} _1} _5}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _3} _1}$
${{{{{ T} _3}} {{{{ T} _1} _6}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _3} _2}$
${{{{{ T} _4}} {{{{ T} _1} _6}}} = {\left[\begin{array}{ccc} 0& 1& 0\\ 0& 0& -{1}\\ -{1}& 0& 0\end{array}\right]}} = {{{ T} _3} _3}$
${{{{{ T} _2}} {{{{ T} _1} _7}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _3} _4}$
${{{{{ T} _3}} {{{{ T} _1} _7}}} = {\left[\begin{array}{ccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{ T} _3} _5}$
${{{{{ T} _2}} {{{{ T} _1} _8}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ T} _3} _6}$
${{{{{ T} _4}} {{{{ T} _1} _8}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{ T} _3} _7}$
${{{{{ T} _3}} {{{{ T} _2} _0}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{ T} _3} _8}$
${{{{{ T} _4}} {{{{ T} _2} _0}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _3} _9}$
${{{{{ T} _2}} {{{{ T} _2} _1}}} = {\left[\begin{array}{ccc} 0& 0& 1\\ -{1}& 0& 0\\ 0& -{1}& 0\end{array}\right]}} = {{{ T} _4} _0}$
${{{{{ T} _4}} {{{{ T} _2} _1}}} = {\left[\begin{array}{ccc} -{1}& 0& 0\\ 0& 1& 0\\ 0& 0& -{1}\end{array}\right]}} = {{{ T} _4} _1}$
${{{{{ T} _4}} {{{{ T} _2} _2}}} = {\left[\begin{array}{ccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{ T} _4} _2}$
${{{{{ T} _2}} {{{{ T} _2} _3}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{ T} _4} _3}$
${{{{{ T} _3}} {{{{ T} _2} _3}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{ T} _4} _4}$
${{{{{ T} _3}} {{{{ T} _2} _4}}} = {\left[\begin{array}{ccc} 1& 0& 0\\ 0& -{1}& 0\\ 0& 0& -{1}\end{array}\right]}} = {{{ T} _4} _5}$
${{{{{ T} _2}} {{{{ T} _2} _5}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ T} _4} _6}$
${{{{{ T} _4}} {{{{ T} _2} _6}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _4} _7}$
${{{{{ T} _3}} {{{{ T} _2} _7}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _4} _8}$
${{{{{ T} _4}} {{{{ T} _2} _8}}} = {\left[\begin{array}{ccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{ T} _4} _9}$
${{{{{ T} _3}} {{{{ T} _2} _9}}} = {\left[\begin{array}{ccc} 0& 1& 0\\ 0& 0& 1\\ 1& 0& 0\end{array}\right]}} = {{{ T} _5} _0}$
${{{{{ T} _2}} {{{{ T} _3} _0}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ T} _5} _1}$
${{{{{ T} _2}} {{{{ T} _3} _1}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ T} _5} _2}$
${{{{{ T} _3}} {{{{ T} _3} _2}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _5} _3}$
${{{{{ T} _3}} {{{{ T} _3} _5}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ T} _5} _4}$
${{{{{ T} _4}} {{{{ T} _3} _6}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{ T} _5} _5}$
${{{{{ T} _4}} {{{{ T} _3} _9}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{ T} _5} _6}$
${{{{{ T} _4}} {{{{ T} _4} _1}}} = {\left[\begin{array}{ccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{ T} _5} _7}$
${{{{{ T} _2}} {{{{ T} _4} _5}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{ T} _5} _8}$
${{{{{ T} _4}} {{{{ T} _4} _7}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{ T} _5} _9}$
${{{{{ T} _3}} {{{{ T} _5} _3}}} = {\left[\begin{array}{ccc} 0& 0& 1\\ 1& 0& 0\\ 0& 1& 0\end{array}\right]}} = {{{ T} _6} _0}$
Vertexes as column vectors:
${V} = {\left[\begin{array}{cccccccccccc} 0& \frac{1}{2}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& 0& \frac{1}{2}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& -{\frac{1}{2}}& 0& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& 0& \frac{1}{2}& -{\frac{1}{2}}& 0& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\end{array}\right]}$
Vertex inner products:
${{{{{ V} ^T}} {{V}}} = {{{\left[\begin{array}{ccc} 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} {{\left[\begin{array}{cccccccccccc} 0& \frac{1}{2}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& 0& \frac{1}{2}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& -{\frac{1}{2}}& 0& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& 0& \frac{1}{2}& -{\frac{1}{2}}& 0& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\end{array}\right]}}}} = {\left[\begin{array}{cccccccccccc} {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}\\ {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}\end{array}\right]}$
Table of $T_i \cdot v_j = v_k$:
|
V1 |
V2 |
V3 |
V4 |
V5 |
V6 |
V7 |
V8 |
V9 |
V10 |
V11 |
V12 |
T1 |
V1
|
V2
|
V3
|
V4
|
V5
|
V6
|
V7
|
V8
|
V9
|
V10
|
V11
|
V12
|
T2 |
V3
|
V1
|
V9
|
V5
|
V11
|
V6
|
V7
|
V2
|
V8
|
V4
|
V12
|
V10
|
T3 |
V4
|
V2
|
V5
|
V10
|
V7
|
V1
|
V12
|
V6
|
V3
|
V8
|
V11
|
V9
|
T4 |
V6
|
V8
|
V3
|
V2
|
V1
|
V9
|
V4
|
V12
|
V11
|
V10
|
V5
|
V7
|
T5 |
V9
|
V3
|
V8
|
V11
|
V12
|
V6
|
V7
|
V1
|
V2
|
V5
|
V10
|
V4
|
T6 |
V5
|
V4
|
V3
|
V7
|
V11
|
V1
|
V12
|
V2
|
V6
|
V10
|
V9
|
V8
|
T7 |
V3
|
V6
|
V11
|
V1
|
V5
|
V9
|
V4
|
V8
|
V12
|
V2
|
V7
|
V10
|
T8 |
V8
|
V9
|
V2
|
V12
|
V10
|
V6
|
V7
|
V3
|
V1
|
V11
|
V4
|
V5
|
T9 |
V3
|
V5
|
V6
|
V11
|
V9
|
V1
|
V12
|
V4
|
V2
|
V7
|
V8
|
V10
|
T10 |
V11
|
V3
|
V12
|
V5
|
V7
|
V9
|
V4
|
V6
|
V8
|
V1
|
V10
|
V2
|
T11 |
V11
|
V5
|
V9
|
V7
|
V12
|
V3
|
V10
|
V1
|
V6
|
V4
|
V8
|
V2
|
T12 |
V7
|
V10
|
V5
|
V12
|
V11
|
V4
|
V9
|
V2
|
V1
|
V8
|
V3
|
V6
|
T13 |
V9
|
V6
|
V12
|
V3
|
V11
|
V8
|
V5
|
V2
|
V10
|
V1
|
V7
|
V4
|
T14 |
V5
|
V1
|
V11
|
V4
|
V7
|
V3
|
V10
|
V6
|
V9
|
V2
|
V12
|
V8
|
T15 |
V3
|
V9
|
V5
|
V6
|
V1
|
V11
|
V2
|
V12
|
V7
|
V8
|
V4
|
V10
|
T16 |
V2
|
V8
|
V1
|
V10
|
V4
|
V6
|
V7
|
V9
|
V3
|
V12
|
V5
|
V11
|
T17 |
V6
|
V3
|
V2
|
V9
|
V8
|
V1
|
V12
|
V5
|
V4
|
V11
|
V10
|
V7
|
T18 |
V12
|
V11
|
V8
|
V7
|
V10
|
V9
|
V4
|
V3
|
V6
|
V5
|
V2
|
V1
|
T19 |
V9
|
V11
|
V6
|
V12
|
V8
|
V3
|
V10
|
V5
|
V1
|
V7
|
V2
|
V4
|
T20 |
V5
|
V7
|
V1
|
V11
|
V3
|
V4
|
V9
|
V10
|
V2
|
V12
|
V6
|
V8
|
T21 |
V12
|
V9
|
V10
|
V11
|
V7
|
V8
|
V5
|
V6
|
V2
|
V3
|
V4
|
V1
|
T22 |
V5
|
V3
|
V7
|
V1
|
V4
|
V11
|
V2
|
V9
|
V12
|
V6
|
V10
|
V8
|
T23 |
V11
|
V7
|
V3
|
V12
|
V9
|
V5
|
V8
|
V4
|
V1
|
V10
|
V6
|
V2
|
T24 |
V7
|
V4
|
V11
|
V10
|
V12
|
V5
|
V8
|
V1
|
V3
|
V2
|
V9
|
V6
|
T25 |
V12
|
V8
|
V7
|
V9
|
V11
|
V10
|
V3
|
V2
|
V4
|
V6
|
V5
|
V1
|
T26 |
V4
|
V10
|
V1
|
V7
|
V5
|
V2
|
V11
|
V8
|
V6
|
V12
|
V3
|
V9
|
T27 |
V8
|
V6
|
V10
|
V9
|
V12
|
V2
|
V11
|
V1
|
V4
|
V3
|
V7
|
V5
|
T28 |
V11
|
V9
|
V7
|
V3
|
V5
|
V12
|
V1
|
V8
|
V10
|
V6
|
V4
|
V2
|
T29 |
V1
|
V6
|
V5
|
V2
|
V4
|
V3
|
V10
|
V9
|
V11
|
V8
|
V7
|
V12
|
T30 |
V9
|
V8
|
V11
|
V6
|
V3
|
V12
|
V1
|
V10
|
V7
|
V2
|
V5
|
V4
|
T31 |
V3
|
V11
|
V1
|
V9
|
V6
|
V5
|
V8
|
V7
|
V4
|
V12
|
V2
|
V10
|
T32 |
V2
|
V6
|
V4
|
V8
|
V10
|
V1
|
V12
|
V3
|
V5
|
V9
|
V7
|
V11
|
T33 |
V8
|
V12
|
V6
|
V10
|
V2
|
V9
|
V4
|
V11
|
V3
|
V7
|
V1
|
V5
|
T34 |
V6
|
V9
|
V1
|
V8
|
V2
|
V3
|
V10
|
V11
|
V5
|
V12
|
V4
|
V7
|
T35 |
V1
|
V5
|
V2
|
V3
|
V6
|
V4
|
V9
|
V7
|
V10
|
V11
|
V8
|
V12
|
T36 |
V10
|
V12
|
V2
|
V7
|
V4
|
V8
|
V5
|
V9
|
V6
|
V11
|
V1
|
V3
|
T37 |
V7
|
V5
|
V12
|
V4
|
V10
|
V11
|
V2
|
V3
|
V9
|
V1
|
V8
|
V6
|
T38 |
V7
|
V12
|
V4
|
V11
|
V5
|
V10
|
V3
|
V8
|
V2
|
V9
|
V1
|
V6
|
T39 |
V1
|
V4
|
V6
|
V5
|
V3
|
V2
|
V11
|
V10
|
V8
|
V7
|
V9
|
V12
|
T40 |
V10
|
V8
|
V4
|
V12
|
V7
|
V2
|
V11
|
V6
|
V1
|
V9
|
V5
|
V3
|
T41 |
V7
|
V11
|
V10
|
V5
|
V4
|
V12
|
V1
|
V9
|
V8
|
V3
|
V2
|
V6
|
T42 |
V1
|
V3
|
V4
|
V6
|
V2
|
V5
|
V8
|
V11
|
V7
|
V9
|
V10
|
V12
|
T43 |
V12
|
V7
|
V9
|
V10
|
V8
|
V11
|
V2
|
V5
|
V3
|
V4
|
V6
|
V1
|
T44 |
V11
|
V12
|
V5
|
V9
|
V3
|
V7
|
V6
|
V10
|
V4
|
V8
|
V1
|
V2
|
T45 |
V12
|
V10
|
V11
|
V8
|
V9
|
V7
|
V6
|
V4
|
V5
|
V2
|
V3
|
V1
|
T46 |
V10
|
V2
|
V7
|
V8
|
V12
|
V4
|
V9
|
V1
|
V5
|
V6
|
V11
|
V3
|
T47 |
V2
|
V10
|
V6
|
V4
|
V1
|
V8
|
V5
|
V12
|
V9
|
V7
|
V3
|
V11
|
T48 |
V6
|
V1
|
V8
|
V3
|
V9
|
V2
|
V11
|
V4
|
V10
|
V5
|
V12
|
V7
|
T49 |
V5
|
V11
|
V4
|
V3
|
V1
|
V7
|
V6
|
V12
|
V10
|
V9
|
V2
|
V8
|
T50 |
V4
|
V1
|
V7
|
V2
|
V10
|
V5
|
V8
|
V3
|
V11
|
V6
|
V12
|
V9
|
T51 |
V8
|
V2
|
V12
|
V6
|
V9
|
V10
|
V3
|
V4
|
V7
|
V1
|
V11
|
V5
|
T52 |
V9
|
V12
|
V3
|
V8
|
V6
|
V11
|
V2
|
V7
|
V5
|
V10
|
V1
|
V4
|
T53 |
V2
|
V1
|
V10
|
V6
|
V8
|
V4
|
V9
|
V5
|
V7
|
V3
|
V12
|
V11
|
T54 |
V4
|
V7
|
V2
|
V5
|
V1
|
V10
|
V3
|
V12
|
V8
|
V11
|
V6
|
V9
|
T55 |
V10
|
V7
|
V8
|
V4
|
V2
|
V12
|
V1
|
V11
|
V9
|
V5
|
V6
|
V3
|
T56 |
V6
|
V2
|
V9
|
V1
|
V3
|
V8
|
V5
|
V10
|
V12
|
V4
|
V11
|
V7
|
T57 |
V4
|
V5
|
V10
|
V1
|
V2
|
V7
|
V6
|
V11
|
V12
|
V3
|
V8
|
V9
|
T58 |
V10
|
V4
|
V12
|
V2
|
V8
|
V7
|
V6
|
V5
|
V11
|
V1
|
V9
|
V3
|
T59 |
V8
|
V10
|
V9
|
V2
|
V6
|
V12
|
V1
|
V7
|
V11
|
V4
|
V3
|
V5
|
T60 |
V2
|
V4
|
V8
|
V1
|
V6
|
V10
|
V3
|
V7
|
V12
|
V5
|
V9
|
V11
|
Table of $T_i \cdot T_j = T_k$:
|
T1 |
T2 |
T3 |
T4 |
T5 |
T6 |
T7 |
T8 |
T9 |
T10 |
T11 |
T12 |
T13 |
T14 |
T15 |
T16 |
T17 |
T18 |
T19 |
T20 |
T21 |
T22 |
T23 |
T24 |
T25 |
T26 |
T27 |
T28 |
T29 |
T30 |
T31 |
T32 |
T33 |
T34 |
T35 |
T36 |
T37 |
T38 |
T39 |
T40 |
T41 |
T42 |
T43 |
T44 |
T45 |
T46 |
T47 |
T48 |
T49 |
T50 |
T51 |
T52 |
T53 |
T54 |
T55 |
T56 |
T57 |
T58 |
T59 |
T60 |
T1 |
T1
|
T2
|
T3
|
T4
|
T5
|
T6
|
T7
|
T8
|
T9
|
T10
|
T11
|
T12
|
T13
|
T14
|
T15
|
T16
|
T17
|
T18
|
T19
|
T20
|
T21
|
T22
|
T23
|
T24
|
T25
|
T26
|
T27
|
T28
|
T29
|
T30
|
T31
|
T32
|
T33
|
T34
|
T35
|
T36
|
T37
|
T38
|
T39
|
T40
|
T41
|
T42
|
T43
|
T44
|
T45
|
T46
|
T47
|
T48
|
T49
|
T50
|
T51
|
T52
|
T53
|
T54
|
T55
|
T56
|
T57
|
T58
|
T59
|
T60
|
T2 |
T2
|
T5
|
T14
|
T56
|
T8
|
T11
|
T13
|
T16
|
T19
|
T21
|
T18
|
T24
|
T27
|
T10
|
T30
|
T1
|
T34
|
T36
|
T33
|
T23
|
T40
|
T28
|
T43
|
T37
|
T46
|
T6
|
T32
|
T25
|
T7
|
T51
|
T52
|
T29
|
T47
|
T4
|
T31
|
T26
|
T41
|
T12
|
T9
|
T3
|
T38
|
T15
|
T55
|
T45
|
T58
|
T50
|
T39
|
T17
|
T44
|
T22
|
T53
|
T59
|
T42
|
T20
|
T54
|
T48
|
T49
|
T57
|
T60
|
T35
|
T3 |
T3
|
T6
|
T46
|
T29
|
T9
|
T12
|
T14
|
T17
|
T20
|
T11
|
T23
|
T25
|
T2
|
T24
|
T22
|
T32
|
T35
|
T19
|
T31
|
T38
|
T5
|
T37
|
T44
|
T45
|
T13
|
T40
|
T48
|
T10
|
T50
|
T7
|
T49
|
T53
|
T34
|
T42
|
T54
|
T8
|
T43
|
T21
|
T26
|
T27
|
T18
|
T57
|
T52
|
T28
|
T30
|
T51
|
T16
|
T39
|
T41
|
T58
|
T56
|
T15
|
T60
|
T36
|
T33
|
T1
|
T55
|
T59
|
T4
|
T47
|
T4 |
T4
|
T7
|
T16
|
T52
|
T10
|
T1
|
T15
|
T18
|
T2
|
T22
|
T14
|
T26
|
T28
|
T29
|
T31
|
T33
|
T5
|
T37
|
T11
|
T39
|
T41
|
T42
|
T6
|
T3
|
T38
|
T47
|
T21
|
T49
|
T34
|
T44
|
T9
|
T8
|
T43
|
T19
|
T48
|
T55
|
T50
|
T54
|
T56
|
T36
|
T57
|
T17
|
T24
|
T20
|
T12
|
T40
|
T59
|
T13
|
T35
|
T32
|
T25
|
T23
|
T27
|
T60
|
T58
|
T30
|
T53
|
T46
|
T45
|
T51
|
T5 |
T5
|
T8
|
T10
|
T48
|
T16
|
T18
|
T27
|
T1
|
T33
|
T40
|
T36
|
T37
|
T32
|
T21
|
T51
|
T2
|
T4
|
T26
|
T47
|
T43
|
T3
|
T25
|
T55
|
T41
|
T50
|
T11
|
T29
|
T46
|
T13
|
T53
|
T59
|
T7
|
T39
|
T56
|
T52
|
T6
|
T38
|
T24
|
T19
|
T14
|
T12
|
T30
|
T54
|
T58
|
T57
|
T22
|
T9
|
T34
|
T45
|
T28
|
T42
|
T60
|
T15
|
T23
|
T20
|
T17
|
T44
|
T49
|
T35
|
T31
|
T6 |
T6
|
T9
|
T24
|
T1
|
T17
|
T23
|
T2
|
T32
|
T31
|
T5
|
T19
|
T45
|
T48
|
T11
|
T7
|
T3
|
T42
|
T8
|
T34
|
T44
|
T27
|
T10
|
T52
|
T43
|
T51
|
T12
|
T53
|
T13
|
T14
|
T56
|
T15
|
T50
|
T16
|
T29
|
T49
|
T40
|
T18
|
T25
|
T20
|
T46
|
T21
|
T22
|
T33
|
T30
|
T59
|
T58
|
T26
|
T35
|
T28
|
T37
|
T60
|
T4
|
T57
|
T38
|
T36
|
T39
|
T41
|
T55
|
T47
|
T54
|
T7 |
T7
|
T10
|
T29
|
T30
|
T18
|
T14
|
T28
|
T33
|
T11
|
T41
|
T37
|
T3
|
T21
|
T22
|
T44
|
T4
|
T19
|
T55
|
T43
|
T6
|
T36
|
T49
|
T24
|
T50
|
T40
|
T1
|
T8
|
T38
|
T15
|
T25
|
T23
|
T34
|
T59
|
T52
|
T9
|
T47
|
T57
|
T26
|
T2
|
T16
|
T54
|
T31
|
T58
|
T12
|
T46
|
T32
|
T56
|
T5
|
T20
|
T42
|
T27
|
T45
|
T17
|
T39
|
T60
|
T13
|
T35
|
T53
|
T51
|
T48
|
T8 |
T8
|
T16
|
T21
|
T17
|
T1
|
T36
|
T32
|
T2
|
T47
|
T3
|
T26
|
T41
|
T29
|
T40
|
T53
|
T5
|
T56
|
T6
|
T39
|
T55
|
T14
|
T46
|
T54
|
T38
|
T22
|
T18
|
T7
|
T50
|
T27
|
T42
|
T60
|
T13
|
T9
|
T48
|
T59
|
T11
|
T12
|
T37
|
T33
|
T10
|
T24
|
T51
|
T20
|
T57
|
T49
|
T28
|
T19
|
T4
|
T58
|
T25
|
T15
|
T35
|
T30
|
T43
|
T23
|
T34
|
T45
|
T44
|
T31
|
T52
|
T9 |
T9
|
T17
|
T11
|
T39
|
T32
|
T19
|
T48
|
T3
|
T34
|
T27
|
T8
|
T43
|
T53
|
T5
|
T56
|
T6
|
T29
|
T40
|
T16
|
T52
|
T46
|
T13
|
T33
|
T18
|
T58
|
T23
|
T50
|
T51
|
T2
|
T60
|
T4
|
T14
|
T26
|
T1
|
T15
|
T12
|
T21
|
T45
|
T31
|
T24
|
T25
|
T7
|
T36
|
T59
|
T55
|
T37
|
T20
|
T42
|
T30
|
T10
|
T57
|
T47
|
T22
|
T44
|
T38
|
T35
|
T28
|
T41
|
T54
|
T49
|
T10 |
T10
|
T18
|
T22
|
T13
|
T33
|
T37
|
T21
|
T4
|
T43
|
T36
|
T55
|
T50
|
T8
|
T41
|
T25
|
T7
|
T52
|
T47
|
T59
|
T24
|
T16
|
T38
|
T58
|
T57
|
T32
|
T14
|
T34
|
T40
|
T28
|
T27
|
T45
|
T15
|
T56
|
T30
|
T23
|
T1
|
T54
|
T3
|
T11
|
T29
|
T26
|
T44
|
T60
|
T46
|
T53
|
T42
|
T2
|
T19
|
T12
|
T49
|
T17
|
T51
|
T31
|
T6
|
T39
|
T5
|
T20
|
T35
|
T48
|
T9
|
T11 |
T11
|
T19
|
T37
|
T2
|
T34
|
T43
|
T5
|
T29
|
T52
|
T8
|
T33
|
T58
|
T17
|
T18
|
T13
|
T14
|
T15
|
T16
|
T4
|
T45
|
T32
|
T21
|
T59
|
T55
|
T53
|
T24
|
T42
|
T27
|
T10
|
T48
|
T30
|
T22
|
T1
|
T7
|
T44
|
T3
|
T36
|
T46
|
T23
|
T50
|
T40
|
T28
|
T47
|
T51
|
T60
|
T57
|
T6
|
T31
|
T25
|
T41
|
T35
|
T56
|
T49
|
T12
|
T26
|
T9
|
T38
|
T54
|
T39
|
T20
|
T12 |
T12
|
T20
|
T45
|
T3
|
T35
|
T44
|
T6
|
T53
|
T49
|
T9
|
T31
|
T30
|
T39
|
T23
|
T14
|
T46
|
T57
|
T17
|
T42
|
T28
|
T48
|
T11
|
T15
|
T52
|
T56
|
T25
|
T60
|
T2
|
T24
|
T1
|
T22
|
T58
|
T32
|
T50
|
T41
|
T27
|
T19
|
T13
|
T38
|
T51
|
T5
|
T37
|
T34
|
T7
|
T4
|
T59
|
T40
|
T54
|
T10
|
T43
|
T47
|
T29
|
T55
|
T21
|
T8
|
T26
|
T18
|
T33
|
T16
|
T36
|
T13 |
T13
|
T21
|
T7
|
T51
|
T36
|
T10
|
T25
|
T47
|
T18
|
T38
|
T41
|
T14
|
T40
|
T28
|
T45
|
T56
|
T33
|
T54
|
T55
|
T11
|
T26
|
T44
|
T37
|
T22
|
T3
|
T2
|
T16
|
T12
|
T30
|
T46
|
T43
|
T4
|
T60
|
T59
|
T19
|
T39
|
T49
|
T6
|
T5
|
T1
|
T20
|
T52
|
T57
|
T24
|
T50
|
T29
|
T48
|
T8
|
T23
|
T15
|
T32
|
T58
|
T34
|
T9
|
T35
|
T27
|
T31
|
T42
|
T53
|
T17
|
T14 |
T14
|
T11
|
T50
|
T7
|
T19
|
T24
|
T10
|
T34
|
T23
|
T18
|
T43
|
T46
|
T5
|
T37
|
T28
|
T29
|
T31
|
T33
|
T52
|
T12
|
T8
|
T41
|
T45
|
T58
|
T27
|
T3
|
T17
|
T21
|
T22
|
T13
|
T44
|
T42
|
T4
|
T15
|
T20
|
T16
|
T55
|
T40
|
T6
|
T32
|
T36
|
T49
|
T59
|
T25
|
T51
|
T53
|
T1
|
T9
|
T38
|
T57
|
T48
|
T30
|
T35
|
T26
|
T47
|
T2
|
T54
|
T60
|
T56
|
T39
|
T15 |
T15
|
T22
|
T34
|
T44
|
T37
|
T29
|
T49
|
T43
|
T14
|
T57
|
T50
|
T16
|
T41
|
T42
|
T20
|
T52
|
T11
|
T58
|
T24
|
T1
|
T55
|
T35
|
T3
|
T32
|
T36
|
T4
|
T18
|
T54
|
T31
|
T38
|
T6
|
T19
|
T45
|
T23
|
T2
|
T59
|
T53
|
T47
|
T7
|
T33
|
T60
|
T9
|
T46
|
T26
|
T40
|
T8
|
T30
|
T10
|
T39
|
T17
|
T21
|
T12
|
T5
|
T56
|
T51
|
T28
|
T48
|
T27
|
T25
|
T13
|
T16 |
T16
|
T1
|
T40
|
T34
|
T2
|
T26
|
T29
|
T5
|
T39
|
T14
|
T6
|
T38
|
T7
|
T3
|
T42
|
T8
|
T48
|
T11
|
T9
|
T54
|
T10
|
T50
|
T20
|
T12
|
T28
|
T36
|
T13
|
T22
|
T32
|
T15
|
T35
|
T27
|
T19
|
T17
|
T60
|
T18
|
T24
|
T41
|
T47
|
T21
|
T37
|
T53
|
T23
|
T49
|
T44
|
T25
|
T33
|
T56
|
T57
|
T46
|
T30
|
T31
|
T51
|
T55
|
T43
|
T4
|
T58
|
T45
|
T52
|
T59
|
T17 |
T17
|
T32
|
T5
|
T35
|
T3
|
T8
|
T53
|
T6
|
T16
|
T46
|
T40
|
T18
|
T50
|
T27
|
T60
|
T9
|
T1
|
T12
|
T26
|
T33
|
T24
|
T51
|
T36
|
T21
|
T37
|
T19
|
T14
|
T58
|
T48
|
T57
|
T47
|
T2
|
T20
|
T39
|
T4
|
T23
|
T25
|
T43
|
T34
|
T11
|
T45
|
T56
|
T38
|
T55
|
T41
|
T10
|
T31
|
T29
|
T59
|
T13
|
T22
|
T54
|
T7
|
T52
|
T44
|
T42
|
T30
|
T28
|
T49
|
T15
|
T18 |
T18
|
T33
|
T41
|
T5
|
T4
|
T55
|
T8
|
T7
|
T59
|
T16
|
T47
|
T57
|
T34
|
T36
|
T27
|
T10
|
T30
|
T1
|
T56
|
T58
|
T29
|
T40
|
T60
|
T54
|
T42
|
T37
|
T15
|
T32
|
T21
|
T17
|
T51
|
T28
|
T2
|
T13
|
T45
|
T14
|
T26
|
T50
|
T43
|
T22
|
T3
|
T25
|
T39
|
T53
|
T35
|
T49
|
T11
|
T52
|
T46
|
T38
|
T31
|
T48
|
T44
|
T24
|
T6
|
T19
|
T12
|
T20
|
T9
|
T23
|
T19 |
T19
|
T34
|
T18
|
T9
|
T29
|
T33
|
T17
|
T14
|
T4
|
T32
|
T16
|
T55
|
T42
|
T8
|
T48
|
T11
|
T7
|
T3
|
T1
|
T59
|
T50
|
T27
|
T47
|
T36
|
T57
|
T43
|
T22
|
T53
|
T5
|
T35
|
T56
|
T10
|
T6
|
T2
|
T30
|
T24
|
T40
|
T58
|
T52
|
T37
|
T46
|
T13
|
T26
|
T60
|
T54
|
T41
|
T23
|
T15
|
T51
|
T21
|
T49
|
T39
|
T28
|
T45
|
T12
|
T31
|
T25
|
T38
|
T20
|
T44
|
T20 |
T20
|
T35
|
T23
|
T26
|
T53
|
T31
|
T39
|
T46
|
T42
|
T48
|
T17
|
T52
|
T60
|
T9
|
T1
|
T12
|
T50
|
T27
|
T32
|
T15
|
T51
|
T2
|
T34
|
T19
|
T59
|
T44
|
T58
|
T56
|
T6
|
T47
|
T29
|
T24
|
T40
|
T3
|
T22
|
T25
|
T5
|
T30
|
T49
|
T45
|
T13
|
T14
|
T8
|
T4
|
T33
|
T43
|
T38
|
T57
|
T7
|
T11
|
T55
|
T16
|
T37
|
T28
|
T21
|
T54
|
T10
|
T18
|
T36
|
T41
|
T21 |
T21
|
T36
|
T28
|
T27
|
T47
|
T41
|
T40
|
T56
|
T55
|
T26
|
T54
|
T22
|
T16
|
T38
|
T46
|
T13
|
T59
|
T39
|
T60
|
T37
|
T1
|
T12
|
T57
|
T49
|
T29
|
T10
|
T4
|
T3
|
T25
|
T32
|
T58
|
T30
|
T48
|
T51
|
T43
|
T2
|
T20
|
T14
|
T18
|
T7
|
T6
|
T45
|
T35
|
T50
|
T42
|
T15
|
T5
|
T33
|
T24
|
T44
|
T34
|
T53
|
T52
|
T11
|
T9
|
T8
|
T23
|
T31
|
T17
|
T19
|
T22 |
T22
|
T37
|
T42
|
T28
|
T43
|
T50
|
T41
|
T52
|
T24
|
T55
|
T58
|
T32
|
T18
|
T57
|
T38
|
T15
|
T23
|
T59
|
T45
|
T3
|
T33
|
T54
|
T46
|
T53
|
T8
|
T29
|
T19
|
T36
|
T49
|
T21
|
T12
|
T31
|
T30
|
T44
|
T6
|
T4
|
T60
|
T16
|
T14
|
T34
|
T47
|
T20
|
T51
|
T40
|
T27
|
T17
|
T7
|
T11
|
T26
|
T35
|
T5
|
T25
|
T9
|
T1
|
T56
|
T10
|
T39
|
T48
|
T13
|
T2
|
T23 |
T23
|
T31
|
T43
|
T6
|
T42
|
T52
|
T9
|
T50
|
T15
|
T17
|
T34
|
T59
|
T35
|
T19
|
T2
|
T24
|
T22
|
T32
|
T29
|
T30
|
T53
|
T5
|
T4
|
T33
|
T60
|
T45
|
T57
|
T48
|
T11
|
T39
|
T7
|
T37
|
T3
|
T14
|
T28
|
T46
|
T8
|
T51
|
T44
|
T58
|
T27
|
T10
|
T16
|
T56
|
T47
|
T55
|
T12
|
T49
|
T13
|
T18
|
T54
|
T1
|
T41
|
T25
|
T40
|
T20
|
T21
|
T36
|
T26
|
T38
|
T24 |
T24
|
T23
|
T58
|
T14
|
T31
|
T45
|
T11
|
T42
|
T44
|
T19
|
T52
|
T51
|
T9
|
T43
|
T10
|
T50
|
T49
|
T34
|
T15
|
T25
|
T17
|
T18
|
T30
|
T59
|
T48
|
T46
|
T35
|
T5
|
T37
|
T2
|
T28
|
T57
|
T29
|
T22
|
T38
|
T32
|
T33
|
T27
|
T12
|
T53
|
T8
|
T41
|
T4
|
T13
|
T56
|
T60
|
T3
|
T20
|
T21
|
T55
|
T39
|
T7
|
T54
|
T40
|
T16
|
T6
|
T36
|
T47
|
T1
|
T26
|
T25 |
T25
|
T38
|
T30
|
T46
|
T54
|
T28
|
T12
|
T60
|
T41
|
T20
|
T49
|
T7
|
T26
|
T44
|
T24
|
T51
|
T55
|
T35
|
T57
|
T10
|
T39
|
T23
|
T22
|
T15
|
T1
|
T13
|
T47
|
T6
|
T45
|
T3
|
T37
|
T59
|
T53
|
T58
|
T18
|
T48
|
T31
|
T2
|
T21
|
T56
|
T9
|
T43
|
T42
|
T14
|
T29
|
T4
|
T27
|
T36
|
T11
|
T52
|
T16
|
T50
|
T33
|
T5
|
T17
|
T40
|
T19
|
T34
|
T32
|
T8
|
T26 |
T26
|
T39
|
T12
|
T16
|
T48
|
T20
|
T1
|
T27
|
T35
|
T2
|
T9
|
T44
|
T56
|
T6
|
T29
|
T40
|
T53
|
T5
|
T17
|
T49
|
T13
|
T14
|
T31
|
T23
|
T30
|
T38
|
T51
|
T7
|
T3
|
T4
|
T42
|
T46
|
T8
|
T32
|
T57
|
T21
|
T11
|
T28
|
T54
|
T25
|
T10
|
T50
|
T19
|
T15
|
T52
|
T45
|
T36
|
T60
|
T22
|
T24
|
T59
|
T34
|
T58
|
T41
|
T18
|
T47
|
T37
|
T43
|
T33
|
T55
|
T27 |
T27
|
T40
|
T13
|
T53
|
T26
|
T21
|
T46
|
T39
|
T36
|
T12
|
T38
|
T10
|
T3
|
T25
|
T58
|
T48
|
T47
|
T20
|
T54
|
T18
|
T6
|
T45
|
T41
|
T28
|
T14
|
T5
|
T1
|
T24
|
T51
|
T50
|
T55
|
T56
|
T35
|
T60
|
T33
|
T9
|
T44
|
T11
|
T8
|
T2
|
T23
|
T59
|
T49
|
T37
|
T22
|
T7
|
T17
|
T16
|
T43
|
T30
|
T29
|
T57
|
T4
|
T19
|
T31
|
T32
|
T52
|
T15
|
T42
|
T34
|
T28 |
T28
|
T41
|
T15
|
T25
|
T55
|
T22
|
T38
|
T59
|
T37
|
T54
|
T57
|
T29
|
T36
|
T49
|
T12
|
T30
|
T43
|
T60
|
T58
|
T14
|
T47
|
T20
|
T50
|
T42
|
T16
|
T7
|
T33
|
T26
|
T44
|
T40
|
T24
|
T52
|
T51
|
T45
|
T11
|
T56
|
T35
|
T1
|
T10
|
T4
|
T39
|
T23
|
T53
|
T3
|
T32
|
T34
|
T13
|
T18
|
T6
|
T31
|
T8
|
T46
|
T19
|
T2
|
T48
|
T21
|
T9
|
T17
|
T27
|
T5
|
T29 |
T29
|
T14
|
T32
|
T15
|
T11
|
T3
|
T22
|
T19
|
T6
|
T37
|
T24
|
T40
|
T10
|
T50
|
T49
|
T34
|
T9
|
T43
|
T23
|
T26
|
T18
|
T57
|
T12
|
T46
|
T21
|
T16
|
T5
|
T41
|
T42
|
T28
|
T20
|
T17
|
T52
|
T31
|
T39
|
T33
|
T58
|
T36
|
T1
|
T8
|
T55
|
T35
|
T45
|
T38
|
T25
|
T27
|
T4
|
T2
|
T54
|
T53
|
T13
|
T44
|
T48
|
T47
|
T59
|
T7
|
T60
|
T51
|
T30
|
T56
|
T30 |
T30
|
T28
|
T4
|
T45
|
T41
|
T7
|
T44
|
T55
|
T10
|
T49
|
T22
|
T1
|
T38
|
T15
|
T23
|
T59
|
T18
|
T57
|
T37
|
T2
|
T54
|
T31
|
T14
|
T29
|
T26
|
T56
|
T36
|
T20
|
T52
|
T12
|
T11
|
T33
|
T58
|
T43
|
T5
|
T60
|
T42
|
T39
|
T13
|
T47
|
T35
|
T19
|
T50
|
T6
|
T3
|
T16
|
T51
|
T21
|
T9
|
T34
|
T40
|
T24
|
T8
|
T48
|
T53
|
T25
|
T17
|
T32
|
T46
|
T27
|
T31 |
T31
|
T42
|
T19
|
T20
|
T50
|
T34
|
T35
|
T24
|
T29
|
T53
|
T32
|
T33
|
T57
|
T17
|
T39
|
T23
|
T14
|
T46
|
T3
|
T4
|
T58
|
T48
|
T16
|
T8
|
T55
|
T52
|
T37
|
T60
|
T9
|
T54
|
T1
|
T11
|
T12
|
T6
|
T7
|
T45
|
T27
|
T59
|
T15
|
T43
|
T51
|
T2
|
T40
|
T47
|
T36
|
T18
|
T44
|
T22
|
T56
|
T5
|
T41
|
T26
|
T10
|
T30
|
T25
|
T49
|
T13
|
T21
|
T38
|
T28
|
T32 |
T32
|
T3
|
T27
|
T42
|
T6
|
T40
|
T50
|
T9
|
T26
|
T24
|
T12
|
T21
|
T14
|
T46
|
T57
|
T17
|
T39
|
T23
|
T20
|
T36
|
T11
|
T58
|
T38
|
T25
|
T10
|
T8
|
T2
|
T37
|
T53
|
T22
|
T54
|
T48
|
T31
|
T35
|
T47
|
T19
|
T45
|
T18
|
T16
|
T5
|
T43
|
T60
|
T44
|
T41
|
T28
|
T13
|
T34
|
T1
|
T55
|
T51
|
T7
|
T49
|
T56
|
T33
|
T52
|
T29
|
T59
|
T30
|
T15
|
T4
|
T33 |
T33
|
T4
|
T36
|
T19
|
T7
|
T47
|
T34
|
T10
|
T56
|
T29
|
T1
|
T54
|
T15
|
T16
|
T17
|
T18
|
T13
|
T14
|
T2
|
T60
|
T22
|
T32
|
T39
|
T26
|
T49
|
T55
|
T28
|
T42
|
T8
|
T31
|
T48
|
T21
|
T11
|
T5
|
T51
|
T37
|
T3
|
T57
|
T59
|
T41
|
T50
|
T27
|
T6
|
T35
|
T20
|
T38
|
T43
|
T30
|
T53
|
T40
|
T44
|
T9
|
T25
|
T58
|
T24
|
T52
|
T46
|
T12
|
T23
|
T45
|
T34 |
T34
|
T29
|
T8
|
T31
|
T14
|
T16
|
T42
|
T11
|
T1
|
T50
|
T3
|
T36
|
T22
|
T32
|
T35
|
T19
|
T2
|
T24
|
T6
|
T47
|
T37
|
T53
|
T26
|
T40
|
T41
|
T33
|
T10
|
T57
|
T17
|
T49
|
T39
|
T5
|
T23
|
T9
|
T56
|
T43
|
T46
|
T55
|
T4
|
T18
|
T58
|
T48
|
T12
|
T54
|
T38
|
T21
|
T52
|
T7
|
T60
|
T27
|
T28
|
T20
|
T13
|
T59
|
T45
|
T15
|
T51
|
T25
|
T44
|
T30
|
T35 |
T35
|
T53
|
T9
|
T54
|
T46
|
T17
|
T60
|
T12
|
T32
|
T51
|
T27
|
T19
|
T58
|
T48
|
T47
|
T20
|
T3
|
T25
|
T40
|
T34
|
T45
|
T56
|
T8
|
T5
|
T43
|
T31
|
T24
|
T59
|
T39
|
T55
|
T16
|
T6
|
T38
|
T26
|
T29
|
T44
|
T13
|
T52
|
T42
|
T23
|
T30
|
T1
|
T21
|
T33
|
T18
|
T11
|
T49
|
T50
|
T4
|
T2
|
T37
|
T36
|
T14
|
T15
|
T28
|
T57
|
T7
|
T10
|
T41
|
T22
|
T36 |
T36
|
T47
|
T38
|
T8
|
T56
|
T54
|
T16
|
T13
|
T60
|
T1
|
T39
|
T49
|
T4
|
T26
|
T32
|
T21
|
T51
|
T2
|
T48
|
T57
|
T7
|
T3
|
T35
|
T20
|
T15
|
T41
|
T30
|
T29
|
T40
|
T34
|
T53
|
T25
|
T5
|
T27
|
T58
|
T10
|
T6
|
T22
|
T55
|
T28
|
T14
|
T46
|
T9
|
T42
|
T31
|
T44
|
T18
|
T59
|
T50
|
T12
|
T52
|
T17
|
T45
|
T37
|
T11
|
T33
|
T24
|
T23
|
T19
|
T43
|
T37 |
T37
|
T43
|
T57
|
T10
|
T52
|
T58
|
T18
|
T15
|
T45
|
T33
|
T59
|
T53
|
T19
|
T55
|
T21
|
T22
|
T44
|
T4
|
T30
|
T46
|
T34
|
T36
|
T51
|
T60
|
T17
|
T50
|
T31
|
T8
|
T41
|
T5
|
T25
|
T49
|
T7
|
T28
|
T12
|
T29
|
T47
|
T32
|
T24
|
T42
|
T16
|
T38
|
T56
|
T27
|
T48
|
T35
|
T14
|
T23
|
T40
|
T54
|
T9
|
T13
|
T20
|
T3
|
T1
|
T11
|
T26
|
T39
|
T2
|
T6
|
T38 |
T38
|
T54
|
T44
|
T40
|
T60
|
T49
|
T26
|
T51
|
T57
|
T39
|
T35
|
T15
|
T47
|
T20
|
T3
|
T25
|
T58
|
T48
|
T53
|
T22
|
T56
|
T6
|
T42
|
T31
|
T4
|
T28
|
T59
|
T1
|
T12
|
T16
|
T50
|
T45
|
T27
|
T46
|
T37
|
T13
|
T9
|
T7
|
T41
|
T30
|
T2
|
T24
|
T17
|
T29
|
T34
|
T52
|
T21
|
T55
|
T14
|
T23
|
T33
|
T32
|
T43
|
T10
|
T5
|
T36
|
T11
|
T19
|
T8
|
T18
|
T39 |
T39
|
T48
|
T6
|
T47
|
T27
|
T9
|
T56
|
T40
|
T17
|
T13
|
T5
|
T23
|
T51
|
T2
|
T4
|
T26
|
T32
|
T21
|
T8
|
T31
|
T25
|
T7
|
T19
|
T11
|
T45
|
T20
|
T46
|
T30
|
T1
|
T59
|
T34
|
T3
|
T36
|
T16
|
T42
|
T38
|
T10
|
T44
|
T35
|
T12
|
T28
|
T29
|
T18
|
T52
|
T43
|
T24
|
T54
|
T53
|
T15
|
T14
|
T58
|
T33
|
T50
|
T49
|
T41
|
T60
|
T22
|
T37
|
T55
|
T57
|
T40 |
T40
|
T26
|
T25
|
T32
|
T39
|
T38
|
T3
|
T48
|
T54
|
T6
|
T20
|
T28
|
T1
|
T12
|
T50
|
T27
|
T60
|
T9
|
T35
|
T41
|
T2
|
T24
|
T49
|
T44
|
T7
|
T21
|
T56
|
T14
|
T46
|
T29
|
T57
|
T51
|
T17
|
T53
|
T55
|
T5
|
T23
|
T10
|
T36
|
T13
|
T11
|
T58
|
T31
|
T22
|
T15
|
T30
|
T8
|
T47
|
T37
|
T45
|
T4
|
T42
|
T59
|
T18
|
T19
|
T16
|
T43
|
T52
|
T34
|
T33
|
T41 |
T41
|
T55
|
T49
|
T21
|
T59
|
T57
|
T36
|
T30
|
T58
|
T47
|
T60
|
T42
|
T33
|
T54
|
T40
|
T28
|
T45
|
T56
|
T51
|
T50
|
T4
|
T26
|
T53
|
T35
|
T34
|
T22
|
T52
|
T16
|
T38
|
T8
|
T46
|
T44
|
T13
|
T25
|
T24
|
T7
|
T39
|
T29
|
T37
|
T15
|
T1
|
T12
|
T48
|
T32
|
T17
|
T31
|
T10
|
T43
|
T3
|
T20
|
T19
|
T27
|
T23
|
T14
|
T2
|
T18
|
T6
|
T9
|
T5
|
T11
|
T42 |
T42
|
T50
|
T17
|
T49
|
T24
|
T32
|
T57
|
T23
|
T3
|
T58
|
T46
|
T8
|
T37
|
T53
|
T54
|
T31
|
T6
|
T45
|
T12
|
T16
|
T43
|
T60
|
T40
|
T27
|
T18
|
T34
|
T11
|
T55
|
T35
|
T41
|
T26
|
T9
|
T44
|
T20
|
T1
|
T52
|
T51
|
T33
|
T29
|
T19
|
T59
|
T39
|
T25
|
T36
|
T21
|
T5
|
T15
|
T14
|
T47
|
T48
|
T10
|
T38
|
T2
|
T4
|
T30
|
T22
|
T56
|
T13
|
T28
|
T7
|
T43 |
T43
|
T52
|
T55
|
T11
|
T15
|
T59
|
T19
|
T22
|
T30
|
T34
|
T4
|
T60
|
T31
|
T33
|
T5
|
T37
|
T28
|
T29
|
T7
|
T51
|
T42
|
T8
|
T56
|
T47
|
T35
|
T58
|
T49
|
T17
|
T18
|
T9
|
T13
|
T41
|
T14
|
T10
|
T25
|
T50
|
T16
|
T53
|
T45
|
T57
|
T32
|
T21
|
T1
|
T48
|
T39
|
T54
|
T24
|
T44
|
T27
|
T36
|
T20
|
T2
|
T38
|
T46
|
T3
|
T23
|
T40
|
T26
|
T6
|
T12
|
T44 |
T44
|
T49
|
T52
|
T12
|
T57
|
T15
|
T20
|
T58
|
T22
|
T35
|
T42
|
T4
|
T54
|
T31
|
T6
|
T45
|
T37
|
T53
|
T50
|
T7
|
T60
|
T9
|
T29
|
T34
|
T47
|
T30
|
T55
|
T39
|
T23
|
T26
|
T14
|
T43
|
T46
|
T24
|
T10
|
T51
|
T17
|
T56
|
T28
|
T59
|
T48
|
T11
|
T32
|
T1
|
T16
|
T33
|
T25
|
T41
|
T2
|
T19
|
T36
|
T3
|
T18
|
T13
|
T27
|
T38
|
T5
|
T8
|
T40
|
T21
|
T45 |
T45
|
T44
|
T59
|
T24
|
T49
|
T30
|
T23
|
T57
|
T28
|
T31
|
T15
|
T56
|
T20
|
T52
|
T11
|
T58
|
T41
|
T42
|
T22
|
T13
|
T35
|
T19
|
T7
|
T4
|
T39
|
T51
|
T54
|
T9
|
T43
|
T6
|
T10
|
T55
|
T50
|
T37
|
T21
|
T53
|
T34
|
T48
|
T25
|
T60
|
T17
|
T18
|
T29
|
T2
|
T1
|
T47
|
T46
|
T38
|
T5
|
T33
|
T26
|
T14
|
T36
|
T27
|
T32
|
T12
|
T8
|
T16
|
T3
|
T40
|
T46 |
T46
|
T12
|
T51
|
T50
|
T20
|
T25
|
T24
|
T35
|
T38
|
T23
|
T44
|
T13
|
T6
|
T45
|
T37
|
T53
|
T54
|
T31
|
T49
|
T21
|
T9
|
T43
|
T28
|
T30
|
T2
|
T27
|
T39
|
T11
|
T58
|
T14
|
T41
|
T60
|
T42
|
T57
|
T36
|
T17
|
T52
|
T5
|
T40
|
T48
|
T19
|
T55
|
T15
|
T10
|
T7
|
T56
|
T32
|
T26
|
T18
|
T59
|
T1
|
T22
|
T47
|
T8
|
T34
|
T3
|
T33
|
T4
|
T29
|
T16
|
T47 |
T47
|
T56
|
T26
|
T33
|
T13
|
T39
|
T4
|
T21
|
T48
|
T7
|
T2
|
T20
|
T30
|
T1
|
T34
|
T36
|
T27
|
T10
|
T5
|
T35
|
T28
|
T29
|
T9
|
T6
|
T44
|
T54
|
T25
|
T15
|
T16
|
T52
|
T17
|
T40
|
T18
|
T8
|
T53
|
T41
|
T14
|
T49
|
T60
|
T38
|
T22
|
T32
|
T11
|
T31
|
T23
|
T12
|
T55
|
T51
|
T42
|
T3
|
T45
|
T19
|
T46
|
T57
|
T37
|
T59
|
T50
|
T24
|
T43
|
T58
|
T48 |
T48
|
T27
|
T2
|
T60
|
T40
|
T5
|
T51
|
T26
|
T8
|
T25
|
T21
|
T11
|
T46
|
T13
|
T59
|
T39
|
T16
|
T38
|
T36
|
T19
|
T12
|
T30
|
T18
|
T10
|
T24
|
T9
|
T3
|
T45
|
T56
|
T58
|
T33
|
T1
|
T54
|
T47
|
T34
|
T20
|
T28
|
T23
|
T17
|
T6
|
T44
|
T4
|
T41
|
T43
|
T37
|
T14
|
T35
|
T32
|
T52
|
T7
|
T50
|
T55
|
T29
|
T31
|
T49
|
T53
|
T15
|
T22
|
T57
|
T42
|
T49 |
T49
|
T57
|
T31
|
T38
|
T58
|
T42
|
T54
|
T45
|
T50
|
T60
|
T53
|
T34
|
T55
|
T35
|
T26
|
T44
|
T24
|
T51
|
T46
|
T29
|
T59
|
T39
|
T32
|
T17
|
T33
|
T15
|
T43
|
T47
|
T20
|
T36
|
T3
|
T23
|
T25
|
T12
|
T14
|
T30
|
T48
|
T4
|
T22
|
T52
|
T56
|
T6
|
T27
|
T16
|
T8
|
T19
|
T28
|
T37
|
T1
|
T9
|
T18
|
T40
|
T11
|
T7
|
T13
|
T41
|
T2
|
T5
|
T21
|
T10
|
T50 |
T50
|
T24
|
T53
|
T22
|
T23
|
T46
|
T37
|
T31
|
T12
|
T43
|
T45
|
T27
|
T11
|
T58
|
T41
|
T42
|
T20
|
T52
|
T44
|
T40
|
T19
|
T55
|
T25
|
T51
|
T5
|
T32
|
T9
|
T18
|
T57
|
T10
|
T38
|
T35
|
T15
|
T49
|
T26
|
T34
|
T59
|
T8
|
T3
|
T17
|
T33
|
T54
|
T30
|
T21
|
T13
|
T48
|
T29
|
T6
|
T36
|
T60
|
T2
|
T28
|
T39
|
T16
|
T4
|
T14
|
T47
|
T56
|
T7
|
T1
|
T51 |
T51
|
T25
|
T56
|
T58
|
T38
|
T13
|
T45
|
T54
|
T21
|
T44
|
T28
|
T2
|
T12
|
T30
|
T43
|
T60
|
T36
|
T49
|
T41
|
T5
|
T20
|
T52
|
T10
|
T7
|
T6
|
T48
|
T26
|
T23
|
T59
|
T24
|
T18
|
T47
|
T57
|
T55
|
T8
|
T35
|
T15
|
T9
|
T27
|
T39
|
T31
|
T33
|
T22
|
T11
|
T14
|
T1
|
T53
|
T40
|
T19
|
T4
|
T3
|
T37
|
T16
|
T17
|
T42
|
T46
|
T34
|
T29
|
T50
|
T32
|
T52 |
T52
|
T15
|
T33
|
T23
|
T22
|
T4
|
T31
|
T37
|
T7
|
T42
|
T29
|
T47
|
T49
|
T34
|
T9
|
T43
|
T10
|
T50
|
T14
|
T56
|
T57
|
T17
|
T1
|
T16
|
T54
|
T59
|
T41
|
T35
|
T19
|
T20
|
T2
|
T18
|
T24
|
T11
|
T13
|
T58
|
T32
|
T60
|
T30
|
T55
|
T53
|
T5
|
T3
|
T39
|
T26
|
T36
|
T45
|
T28
|
T48
|
T8
|
T38
|
T6
|
T21
|
T51
|
T46
|
T44
|
T27
|
T40
|
T12
|
T25
|
T53 |
T53
|
T46
|
T48
|
T57
|
T12
|
T27
|
T58
|
T20
|
T40
|
T45
|
T25
|
T5
|
T24
|
T51
|
T55
|
T35
|
T26
|
T44
|
T38
|
T8
|
T23
|
T59
|
T21
|
T13
|
T11
|
T17
|
T6
|
T43
|
T60
|
T37
|
T36
|
T39
|
T49
|
T54
|
T16
|
T31
|
T30
|
T19
|
T32
|
T9
|
T52
|
T47
|
T28
|
T18
|
T10
|
T2
|
T42
|
T3
|
T33
|
T56
|
T14
|
T41
|
T1
|
T34
|
T15
|
T50
|
T4
|
T7
|
T22
|
T29
|
T54 |
T54
|
T60
|
T20
|
T36
|
T51
|
T35
|
T47
|
T25
|
T53
|
T56
|
T48
|
T31
|
T59
|
T39
|
T16
|
T38
|
T46
|
T13
|
T27
|
T42
|
T30
|
T1
|
T17
|
T9
|
T52
|
T49
|
T45
|
T4
|
T26
|
T33
|
T32
|
T12
|
T21
|
T40
|
T50
|
T28
|
T2
|
T15
|
T57
|
T44
|
T7
|
T3
|
T5
|
T34
|
T19
|
T23
|
T41
|
T58
|
T29
|
T6
|
T43
|
T8
|
T24
|
T22
|
T10
|
T55
|
T14
|
T11
|
T18
|
T37
|
T55 |
T55
|
T59
|
T54
|
T18
|
T30
|
T60
|
T33
|
T28
|
T51
|
T4
|
T56
|
T35
|
T52
|
T47
|
T8
|
T41
|
T25
|
T7
|
T13
|
T53
|
T15
|
T16
|
T48
|
T39
|
T31
|
T57
|
T44
|
T34
|
T36
|
T19
|
T27
|
T38
|
T10
|
T21
|
T46
|
T22
|
T1
|
T42
|
T58
|
T49
|
T29
|
T40
|
T2
|
T17
|
T9
|
T20
|
T37
|
T45
|
T32
|
T26
|
T23
|
T5
|
T12
|
T50
|
T14
|
T43
|
T3
|
T6
|
T11
|
T24
|
T56 |
T56
|
T13
|
T1
|
T59
|
T21
|
T2
|
T30
|
T36
|
T5
|
T28
|
T10
|
T6
|
T25
|
T7
|
T52
|
T47
|
T8
|
T41
|
T18
|
T9
|
T38
|
T15
|
T11
|
T14
|
T12
|
T39
|
T40
|
T44
|
T4
|
T45
|
T19
|
T16
|
T55
|
T33
|
T17
|
T54
|
T22
|
T20
|
T48
|
T26
|
T49
|
T34
|
T37
|
T23
|
T24
|
T3
|
T60
|
T27
|
T31
|
T29
|
T46
|
T43
|
T32
|
T35
|
T57
|
T51
|
T42
|
T50
|
T58
|
T53
|
T57 |
T57
|
T58
|
T35
|
T41
|
T45
|
T53
|
T55
|
T44
|
T46
|
T59
|
T51
|
T17
|
T43
|
T60
|
T36
|
T49
|
T12
|
T30
|
T25
|
T32
|
T52
|
T47
|
T27
|
T48
|
T19
|
T42
|
T23
|
T33
|
T54
|
T18
|
T40
|
T20
|
T28
|
T38
|
T3
|
T15
|
T56
|
T34
|
T50
|
T31
|
T4
|
T26
|
T13
|
T8
|
T5
|
T9
|
T22
|
T24
|
T16
|
T39
|
T11
|
T21
|
T6
|
T29
|
T7
|
T37
|
T1
|
T2
|
T10
|
T14
|
T58 |
T58
|
T45
|
T60
|
T37
|
T44
|
T51
|
T43
|
T49
|
T25
|
T52
|
T30
|
T48
|
T23
|
T59
|
T18
|
T57
|
T38
|
T15
|
T28
|
T27
|
T31
|
T33
|
T13
|
T56
|
T9
|
T53
|
T20
|
T19
|
T55
|
T11
|
T21
|
T54
|
T22
|
T41
|
T40
|
T42
|
T4
|
T17
|
T46
|
T35
|
T34
|
T36
|
T7
|
T5
|
T2
|
T39
|
T50
|
T12
|
T8
|
T47
|
T6
|
T10
|
T26
|
T32
|
T29
|
T24
|
T16
|
T1
|
T14
|
T3
|
T59 |
T59
|
T30
|
T47
|
T43
|
T28
|
T56
|
T52
|
T41
|
T13
|
T15
|
T7
|
T39
|
T44
|
T4
|
T19
|
T55
|
T21
|
T22
|
T10
|
T48
|
T49
|
T34
|
T2
|
T1
|
T20
|
T60
|
T38
|
T31
|
T33
|
T23
|
T5
|
T36
|
T37
|
T18
|
T27
|
T57
|
T29
|
T35
|
T51
|
T54
|
T42
|
T8
|
T14
|
T9
|
T6
|
T26
|
T58
|
T25
|
T17
|
T16
|
T12
|
T11
|
T40
|
T53
|
T50
|
T45
|
T32
|
T3
|
T24
|
T46
|
T60 |
T60
|
T51
|
T39
|
T55
|
T25
|
T48
|
T59
|
T38
|
T27
|
T30
|
T13
|
T9
|
T45
|
T56
|
T33
|
T54
|
T40
|
T28
|
T21
|
T17
|
T44
|
T4
|
T5
|
T2
|
T23
|
T35
|
T12
|
T52
|
T47
|
T43
|
T8
|
T26
|
T41
|
T36
|
T32
|
T49
|
T7
|
T31
|
T53
|
T20
|
T15
|
T16
|
T10
|
T19
|
T11
|
T6
|
T57
|
T46
|
T34
|
T1
|
T24
|
T18
|
T3
|
T42
|
T22
|
T58
|
T29
|
T14
|
T37
|
T50
|