Icosahedron

Initial vertex: ${{ v} _1} = {\left[\begin{array}{c} 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}\end{array}\right]}$

Transforms for vertex generation:

$ { \tilde{T}} _i \in \left\{ \left[\begin{array}{ccc} 1& 0& 0\\ 0& 1& 0\\ 0& 0& 1\end{array}\right], \left[\begin{array}{ccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right], \left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\end{array}\right], \left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right] \right\}$

${{{{{ T} _2}} {{{ V} _4}}} = {\left[\begin{array}{c} \frac{1}{2}\\ 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{ V} _2}$
${{{{{ T} _2}} {{{ V} _1}}} = {\left[\begin{array}{c} -{\frac{1}{2}}\\ 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{ V} _3}$
${{{{{ T} _2}} {{{ V} _8}}} = {\left[\begin{array}{c} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}\\ 0\end{array}\right]}} = {{ V} _4}$
${{{{{ T} _2}} {{{ V} _9}}} = {\left[\begin{array}{c} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}\\ 0\end{array}\right]}} = {{ V} _5}$
${{{{{ T} _3}} {{{ V} _4}}} = {\left[\begin{array}{c} 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}\end{array}\right]}} = {{ V} _6}$
${{{{{ T} _3}} {{{{ V} _1} _0}}} = {\left[\begin{array}{c} 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}\end{array}\right]}} = {{ V} _7}$
${{{{{ T} _2}} {{{ V} _3}}} = {\left[\begin{array}{c} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}\\ 0\end{array}\right]}} = {{ V} _8}$
${{{{{ T} _2}} {{{ V} _2}}} = {\left[\begin{array}{c} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}\\ 0\end{array}\right]}} = {{ V} _9}$
${{{{{ T} _2}} {{{ V} _7}}} = {\left[\begin{array}{c} \frac{1}{2}\\ 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ V} _1} _0}$
${{{{{ T} _2}} {{{{ V} _1} _0}}} = {\left[\begin{array}{c} -{\frac{1}{2}}\\ 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ V} _1} _1}$
${{{{{ T} _4}} {{{ V} _4}}} = {\left[\begin{array}{c} 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}\end{array}\right]}} = {{{ V} _1} _2}$
${{{{{ T} _2}} {{{ T} _2}}} = {\left[\begin{array}{ccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\end{array}\right]}} = {{ T} _5}$
${{{{{ T} _3}} {{{ T} _2}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\end{array}\right]}} = {{ T} _6}$
${{{{{ T} _4}} {{{ T} _2}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{ T} _7}$
${{{{{ T} _2}} {{{ T} _5}}} = {\left[\begin{array}{ccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\end{array}\right]}} = {{ T} _8}$
${{{{{ T} _3}} {{{ T} _5}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{ T} _9}$
${{{{{ T} _4}} {{{ T} _5}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ T} _1} _0}$
${{{{{ T} _2}} {{{ T} _6}}} = {\left[\begin{array}{ccc} 0& 0& -{1}\\ 1& 0& 0\\ 0& -{1}& 0\end{array}\right]}} = {{{ T} _1} _1}$
${{{{{ T} _3}} {{{ T} _6}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{ T} _1} _2}$
${{{{{ T} _2}} {{{ T} _7}}} = {\left[\begin{array}{ccc} 0& -{1}& 0\\ 0& 0& -{1}\\ 1& 0& 0\end{array}\right]}} = {{{ T} _1} _3}$
${{{{{ T} _3}} {{{ T} _7}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _1} _4}$
${{{{{ T} _4}} {{{ T} _7}}} = {\left[\begin{array}{ccc} 0& 0& -{1}\\ -{1}& 0& 0\\ 0& 1& 0\end{array}\right]}} = {{{ T} _1} _5}$
${{{{{ T} _2}} {{{ T} _8}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _1} _6}$
${{{{{ T} _3}} {{{ T} _8}}} = {\left[\begin{array}{ccc} -{1}& 0& 0\\ 0& -{1}& 0\\ 0& 0& 1\end{array}\right]}} = {{{ T} _1} _7}$
${{{{{ T} _4}} {{{ T} _8}}} = {\left[\begin{array}{ccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{ T} _1} _8}$
${{{{{ T} _2}} {{{ T} _9}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _1} _9}$
${{{{{ T} _3}} {{{ T} _9}}} = {\left[\begin{array}{ccc} 0& -{1}& 0\\ 0& 0& 1\\ -{1}& 0& 0\end{array}\right]}} = {{{ T} _2} _0}$
${{{{{ T} _2}} {{{{ T} _1} _0}}} = {\left[\begin{array}{ccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{ T} _2} _1}$
${{{{{ T} _4}} {{{{ T} _1} _0}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ T} _2} _2}$
${{{{{ T} _3}} {{{{ T} _1} _1}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ T} _2} _3}$
${{{{{ T} _2}} {{{{ T} _1} _2}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{ T} _2} _4}$
${{{{{ T} _3}} {{{{ T} _1} _2}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{ T} _2} _5}$
${{{{{ T} _4}} {{{{ T} _1} _2}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _2} _6}$
${{{{{ T} _2}} {{{{ T} _1} _3}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _2} _7}$
${{{{{ T} _4}} {{{{ T} _1} _3}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{ T} _2} _8}$
${{{{{ T} _4}} {{{{ T} _1} _4}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _2} _9}$
${{{{{ T} _2}} {{{{ T} _1} _5}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{ T} _3} _0}$
${{{{{ T} _4}} {{{{ T} _1} _5}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _3} _1}$
${{{{{ T} _3}} {{{{ T} _1} _6}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _3} _2}$
${{{{{ T} _4}} {{{{ T} _1} _6}}} = {\left[\begin{array}{ccc} 0& 1& 0\\ 0& 0& -{1}\\ -{1}& 0& 0\end{array}\right]}} = {{{ T} _3} _3}$
${{{{{ T} _2}} {{{{ T} _1} _7}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _3} _4}$
${{{{{ T} _3}} {{{{ T} _1} _7}}} = {\left[\begin{array}{ccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{ T} _3} _5}$
${{{{{ T} _2}} {{{{ T} _1} _8}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ T} _3} _6}$
${{{{{ T} _4}} {{{{ T} _1} _8}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{ T} _3} _7}$
${{{{{ T} _3}} {{{{ T} _2} _0}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{ T} _3} _8}$
${{{{{ T} _4}} {{{{ T} _2} _0}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _3} _9}$
${{{{{ T} _2}} {{{{ T} _2} _1}}} = {\left[\begin{array}{ccc} 0& 0& 1\\ -{1}& 0& 0\\ 0& -{1}& 0\end{array}\right]}} = {{{ T} _4} _0}$
${{{{{ T} _4}} {{{{ T} _2} _1}}} = {\left[\begin{array}{ccc} -{1}& 0& 0\\ 0& 1& 0\\ 0& 0& -{1}\end{array}\right]}} = {{{ T} _4} _1}$
${{{{{ T} _4}} {{{{ T} _2} _2}}} = {\left[\begin{array}{ccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{ T} _4} _2}$
${{{{{ T} _2}} {{{{ T} _2} _3}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{ T} _4} _3}$
${{{{{ T} _3}} {{{{ T} _2} _3}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{ T} _4} _4}$
${{{{{ T} _3}} {{{{ T} _2} _4}}} = {\left[\begin{array}{ccc} 1& 0& 0\\ 0& -{1}& 0\\ 0& 0& -{1}\end{array}\right]}} = {{{ T} _4} _5}$
${{{{{ T} _2}} {{{{ T} _2} _5}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ T} _4} _6}$
${{{{{ T} _4}} {{{{ T} _2} _6}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _4} _7}$
${{{{{ T} _3}} {{{{ T} _2} _7}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _4} _8}$
${{{{{ T} _4}} {{{{ T} _2} _8}}} = {\left[\begin{array}{ccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{ T} _4} _9}$
${{{{{ T} _3}} {{{{ T} _2} _9}}} = {\left[\begin{array}{ccc} 0& 1& 0\\ 0& 0& 1\\ 1& 0& 0\end{array}\right]}} = {{{ T} _5} _0}$
${{{{{ T} _2}} {{{{ T} _3} _0}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ T} _5} _1}$
${{{{{ T} _2}} {{{{ T} _3} _1}}} = {\left[\begin{array}{ccc} \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ T} _5} _2}$
${{{{{ T} _3}} {{{{ T} _3} _2}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{ T} _5} _3}$
${{{{{ T} _3}} {{{{ T} _3} _5}}} = {\left[\begin{array}{ccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{ T} _5} _4}$
${{{{{ T} _4}} {{{{ T} _3} _6}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{ T} _5} _5}$
${{{{{ T} _4}} {{{{ T} _3} _9}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{ T} _5} _6}$
${{{{{ T} _4}} {{{{ T} _4} _1}}} = {\left[\begin{array}{ccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{ T} _5} _7}$
${{{{{ T} _2}} {{{{ T} _4} _5}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{ T} _5} _8}$
${{{{{ T} _4}} {{{{ T} _4} _7}}} = {\left[\begin{array}{ccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{ T} _5} _9}$
${{{{{ T} _3}} {{{{ T} _5} _3}}} = {\left[\begin{array}{ccc} 0& 0& 1\\ 1& 0& 0\\ 0& 1& 0\end{array}\right]}} = {{{ T} _6} _0}$
Vertexes as column vectors:

${V} = {\left[\begin{array}{cccccccccccc} 0& \frac{1}{2}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& 0& \frac{1}{2}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& -{\frac{1}{2}}& 0& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& 0& \frac{1}{2}& -{\frac{1}{2}}& 0& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\end{array}\right]}$

Vertex inner products:

${{{{{ V} ^T}} {{V}}} = {{{\left[\begin{array}{ccc} 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} {{\left[\begin{array}{cccccccccccc} 0& \frac{1}{2}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& 0& \frac{1}{2}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& -{\frac{1}{2}}& 0& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& 0& \frac{1}{2}& -{\frac{1}{2}}& 0& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\end{array}\right]}}}} = {\left[\begin{array}{cccccccccccc} {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}\\ {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{8}} {{{\sqrt{5}}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}\end{array}\right]}$

Table of $T_i \cdot v_j = v_k$:
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
T1 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
T2 V3 V1 V9 V5 V11 V6 V7 V2 V8 V4 V12 V10
T3 V4 V2 V5 V10 V7 V1 V12 V6 V3 V8 V11 V9
T4 V6 V8 V3 V2 V1 V9 V4 V12 V11 V10 V5 V7
T5 V9 V3 V8 V11 V12 V6 V7 V1 V2 V5 V10 V4
T6 V5 V4 V3 V7 V11 V1 V12 V2 V6 V10 V9 V8
T7 V3 V6 V11 V1 V5 V9 V4 V8 V12 V2 V7 V10
T8 V8 V9 V2 V12 V10 V6 V7 V3 V1 V11 V4 V5
T9 V3 V5 V6 V11 V9 V1 V12 V4 V2 V7 V8 V10
T10 V11 V3 V12 V5 V7 V9 V4 V6 V8 V1 V10 V2
T11 V11 V5 V9 V7 V12 V3 V10 V1 V6 V4 V8 V2
T12 V7 V10 V5 V12 V11 V4 V9 V2 V1 V8 V3 V6
T13 V9 V6 V12 V3 V11 V8 V5 V2 V10 V1 V7 V4
T14 V5 V1 V11 V4 V7 V3 V10 V6 V9 V2 V12 V8
T15 V3 V9 V5 V6 V1 V11 V2 V12 V7 V8 V4 V10
T16 V2 V8 V1 V10 V4 V6 V7 V9 V3 V12 V5 V11
T17 V6 V3 V2 V9 V8 V1 V12 V5 V4 V11 V10 V7
T18 V12 V11 V8 V7 V10 V9 V4 V3 V6 V5 V2 V1
T19 V9 V11 V6 V12 V8 V3 V10 V5 V1 V7 V2 V4
T20 V5 V7 V1 V11 V3 V4 V9 V10 V2 V12 V6 V8
T21 V12 V9 V10 V11 V7 V8 V5 V6 V2 V3 V4 V1
T22 V5 V3 V7 V1 V4 V11 V2 V9 V12 V6 V10 V8
T23 V11 V7 V3 V12 V9 V5 V8 V4 V1 V10 V6 V2
T24 V7 V4 V11 V10 V12 V5 V8 V1 V3 V2 V9 V6
T25 V12 V8 V7 V9 V11 V10 V3 V2 V4 V6 V5 V1
T26 V4 V10 V1 V7 V5 V2 V11 V8 V6 V12 V3 V9
T27 V8 V6 V10 V9 V12 V2 V11 V1 V4 V3 V7 V5
T28 V11 V9 V7 V3 V5 V12 V1 V8 V10 V6 V4 V2
T29 V1 V6 V5 V2 V4 V3 V10 V9 V11 V8 V7 V12
T30 V9 V8 V11 V6 V3 V12 V1 V10 V7 V2 V5 V4
T31 V3 V11 V1 V9 V6 V5 V8 V7 V4 V12 V2 V10
T32 V2 V6 V4 V8 V10 V1 V12 V3 V5 V9 V7 V11
T33 V8 V12 V6 V10 V2 V9 V4 V11 V3 V7 V1 V5
T34 V6 V9 V1 V8 V2 V3 V10 V11 V5 V12 V4 V7
T35 V1 V5 V2 V3 V6 V4 V9 V7 V10 V11 V8 V12
T36 V10 V12 V2 V7 V4 V8 V5 V9 V6 V11 V1 V3
T37 V7 V5 V12 V4 V10 V11 V2 V3 V9 V1 V8 V6
T38 V7 V12 V4 V11 V5 V10 V3 V8 V2 V9 V1 V6
T39 V1 V4 V6 V5 V3 V2 V11 V10 V8 V7 V9 V12
T40 V10 V8 V4 V12 V7 V2 V11 V6 V1 V9 V5 V3
T41 V7 V11 V10 V5 V4 V12 V1 V9 V8 V3 V2 V6
T42 V1 V3 V4 V6 V2 V5 V8 V11 V7 V9 V10 V12
T43 V12 V7 V9 V10 V8 V11 V2 V5 V3 V4 V6 V1
T44 V11 V12 V5 V9 V3 V7 V6 V10 V4 V8 V1 V2
T45 V12 V10 V11 V8 V9 V7 V6 V4 V5 V2 V3 V1
T46 V10 V2 V7 V8 V12 V4 V9 V1 V5 V6 V11 V3
T47 V2 V10 V6 V4 V1 V8 V5 V12 V9 V7 V3 V11
T48 V6 V1 V8 V3 V9 V2 V11 V4 V10 V5 V12 V7
T49 V5 V11 V4 V3 V1 V7 V6 V12 V10 V9 V2 V8
T50 V4 V1 V7 V2 V10 V5 V8 V3 V11 V6 V12 V9
T51 V8 V2 V12 V6 V9 V10 V3 V4 V7 V1 V11 V5
T52 V9 V12 V3 V8 V6 V11 V2 V7 V5 V10 V1 V4
T53 V2 V1 V10 V6 V8 V4 V9 V5 V7 V3 V12 V11
T54 V4 V7 V2 V5 V1 V10 V3 V12 V8 V11 V6 V9
T55 V10 V7 V8 V4 V2 V12 V1 V11 V9 V5 V6 V3
T56 V6 V2 V9 V1 V3 V8 V5 V10 V12 V4 V11 V7
T57 V4 V5 V10 V1 V2 V7 V6 V11 V12 V3 V8 V9
T58 V10 V4 V12 V2 V8 V7 V6 V5 V11 V1 V9 V3
T59 V8 V10 V9 V2 V6 V12 V1 V7 V11 V4 V3 V5
T60 V2 V4 V8 V1 V6 V10 V3 V7 V12 V5 V9 V11


Table of $T_i \cdot T_j = T_k$:
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
T1 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
T2 T2 T5 T14 T56 T8 T11 T13 T16 T19 T21 T18 T24 T27 T10 T30 T1 T34 T36 T33 T23 T40 T28 T43 T37 T46 T6 T32 T25 T7 T51 T52 T29 T47 T4 T31 T26 T41 T12 T9 T3 T38 T15 T55 T45 T58 T50 T39 T17 T44 T22 T53 T59 T42 T20 T54 T48 T49 T57 T60 T35
T3 T3 T6 T46 T29 T9 T12 T14 T17 T20 T11 T23 T25 T2 T24 T22 T32 T35 T19 T31 T38 T5 T37 T44 T45 T13 T40 T48 T10 T50 T7 T49 T53 T34 T42 T54 T8 T43 T21 T26 T27 T18 T57 T52 T28 T30 T51 T16 T39 T41 T58 T56 T15 T60 T36 T33 T1 T55 T59 T4 T47
T4 T4 T7 T16 T52 T10 T1 T15 T18 T2 T22 T14 T26 T28 T29 T31 T33 T5 T37 T11 T39 T41 T42 T6 T3 T38 T47 T21 T49 T34 T44 T9 T8 T43 T19 T48 T55 T50 T54 T56 T36 T57 T17 T24 T20 T12 T40 T59 T13 T35 T32 T25 T23 T27 T60 T58 T30 T53 T46 T45 T51
T5 T5 T8 T10 T48 T16 T18 T27 T1 T33 T40 T36 T37 T32 T21 T51 T2 T4 T26 T47 T43 T3 T25 T55 T41 T50 T11 T29 T46 T13 T53 T59 T7 T39 T56 T52 T6 T38 T24 T19 T14 T12 T30 T54 T58 T57 T22 T9 T34 T45 T28 T42 T60 T15 T23 T20 T17 T44 T49 T35 T31
T6 T6 T9 T24 T1 T17 T23 T2 T32 T31 T5 T19 T45 T48 T11 T7 T3 T42 T8 T34 T44 T27 T10 T52 T43 T51 T12 T53 T13 T14 T56 T15 T50 T16 T29 T49 T40 T18 T25 T20 T46 T21 T22 T33 T30 T59 T58 T26 T35 T28 T37 T60 T4 T57 T38 T36 T39 T41 T55 T47 T54
T7 T7 T10 T29 T30 T18 T14 T28 T33 T11 T41 T37 T3 T21 T22 T44 T4 T19 T55 T43 T6 T36 T49 T24 T50 T40 T1 T8 T38 T15 T25 T23 T34 T59 T52 T9 T47 T57 T26 T2 T16 T54 T31 T58 T12 T46 T32 T56 T5 T20 T42 T27 T45 T17 T39 T60 T13 T35 T53 T51 T48
T8 T8 T16 T21 T17 T1 T36 T32 T2 T47 T3 T26 T41 T29 T40 T53 T5 T56 T6 T39 T55 T14 T46 T54 T38 T22 T18 T7 T50 T27 T42 T60 T13 T9 T48 T59 T11 T12 T37 T33 T10 T24 T51 T20 T57 T49 T28 T19 T4 T58 T25 T15 T35 T30 T43 T23 T34 T45 T44 T31 T52
T9 T9 T17 T11 T39 T32 T19 T48 T3 T34 T27 T8 T43 T53 T5 T56 T6 T29 T40 T16 T52 T46 T13 T33 T18 T58 T23 T50 T51 T2 T60 T4 T14 T26 T1 T15 T12 T21 T45 T31 T24 T25 T7 T36 T59 T55 T37 T20 T42 T30 T10 T57 T47 T22 T44 T38 T35 T28 T41 T54 T49
T10 T10 T18 T22 T13 T33 T37 T21 T4 T43 T36 T55 T50 T8 T41 T25 T7 T52 T47 T59 T24 T16 T38 T58 T57 T32 T14 T34 T40 T28 T27 T45 T15 T56 T30 T23 T1 T54 T3 T11 T29 T26 T44 T60 T46 T53 T42 T2 T19 T12 T49 T17 T51 T31 T6 T39 T5 T20 T35 T48 T9
T11 T11 T19 T37 T2 T34 T43 T5 T29 T52 T8 T33 T58 T17 T18 T13 T14 T15 T16 T4 T45 T32 T21 T59 T55 T53 T24 T42 T27 T10 T48 T30 T22 T1 T7 T44 T3 T36 T46 T23 T50 T40 T28 T47 T51 T60 T57 T6 T31 T25 T41 T35 T56 T49 T12 T26 T9 T38 T54 T39 T20
T12 T12 T20 T45 T3 T35 T44 T6 T53 T49 T9 T31 T30 T39 T23 T14 T46 T57 T17 T42 T28 T48 T11 T15 T52 T56 T25 T60 T2 T24 T1 T22 T58 T32 T50 T41 T27 T19 T13 T38 T51 T5 T37 T34 T7 T4 T59 T40 T54 T10 T43 T47 T29 T55 T21 T8 T26 T18 T33 T16 T36
T13 T13 T21 T7 T51 T36 T10 T25 T47 T18 T38 T41 T14 T40 T28 T45 T56 T33 T54 T55 T11 T26 T44 T37 T22 T3 T2 T16 T12 T30 T46 T43 T4 T60 T59 T19 T39 T49 T6 T5 T1 T20 T52 T57 T24 T50 T29 T48 T8 T23 T15 T32 T58 T34 T9 T35 T27 T31 T42 T53 T17
T14 T14 T11 T50 T7 T19 T24 T10 T34 T23 T18 T43 T46 T5 T37 T28 T29 T31 T33 T52 T12 T8 T41 T45 T58 T27 T3 T17 T21 T22 T13 T44 T42 T4 T15 T20 T16 T55 T40 T6 T32 T36 T49 T59 T25 T51 T53 T1 T9 T38 T57 T48 T30 T35 T26 T47 T2 T54 T60 T56 T39
T15 T15 T22 T34 T44 T37 T29 T49 T43 T14 T57 T50 T16 T41 T42 T20 T52 T11 T58 T24 T1 T55 T35 T3 T32 T36 T4 T18 T54 T31 T38 T6 T19 T45 T23 T2 T59 T53 T47 T7 T33 T60 T9 T46 T26 T40 T8 T30 T10 T39 T17 T21 T12 T5 T56 T51 T28 T48 T27 T25 T13
T16 T16 T1 T40 T34 T2 T26 T29 T5 T39 T14 T6 T38 T7 T3 T42 T8 T48 T11 T9 T54 T10 T50 T20 T12 T28 T36 T13 T22 T32 T15 T35 T27 T19 T17 T60 T18 T24 T41 T47 T21 T37 T53 T23 T49 T44 T25 T33 T56 T57 T46 T30 T31 T51 T55 T43 T4 T58 T45 T52 T59
T17 T17 T32 T5 T35 T3 T8 T53 T6 T16 T46 T40 T18 T50 T27 T60 T9 T1 T12 T26 T33 T24 T51 T36 T21 T37 T19 T14 T58 T48 T57 T47 T2 T20 T39 T4 T23 T25 T43 T34 T11 T45 T56 T38 T55 T41 T10 T31 T29 T59 T13 T22 T54 T7 T52 T44 T42 T30 T28 T49 T15
T18 T18 T33 T41 T5 T4 T55 T8 T7 T59 T16 T47 T57 T34 T36 T27 T10 T30 T1 T56 T58 T29 T40 T60 T54 T42 T37 T15 T32 T21 T17 T51 T28 T2 T13 T45 T14 T26 T50 T43 T22 T3 T25 T39 T53 T35 T49 T11 T52 T46 T38 T31 T48 T44 T24 T6 T19 T12 T20 T9 T23
T19 T19 T34 T18 T9 T29 T33 T17 T14 T4 T32 T16 T55 T42 T8 T48 T11 T7 T3 T1 T59 T50 T27 T47 T36 T57 T43 T22 T53 T5 T35 T56 T10 T6 T2 T30 T24 T40 T58 T52 T37 T46 T13 T26 T60 T54 T41 T23 T15 T51 T21 T49 T39 T28 T45 T12 T31 T25 T38 T20 T44
T20 T20 T35 T23 T26 T53 T31 T39 T46 T42 T48 T17 T52 T60 T9 T1 T12 T50 T27 T32 T15 T51 T2 T34 T19 T59 T44 T58 T56 T6 T47 T29 T24 T40 T3 T22 T25 T5 T30 T49 T45 T13 T14 T8 T4 T33 T43 T38 T57 T7 T11 T55 T16 T37 T28 T21 T54 T10 T18 T36 T41
T21 T21 T36 T28 T27 T47 T41 T40 T56 T55 T26 T54 T22 T16 T38 T46 T13 T59 T39 T60 T37 T1 T12 T57 T49 T29 T10 T4 T3 T25 T32 T58 T30 T48 T51 T43 T2 T20 T14 T18 T7 T6 T45 T35 T50 T42 T15 T5 T33 T24 T44 T34 T53 T52 T11 T9 T8 T23 T31 T17 T19
T22 T22 T37 T42 T28 T43 T50 T41 T52 T24 T55 T58 T32 T18 T57 T38 T15 T23 T59 T45 T3 T33 T54 T46 T53 T8 T29 T19 T36 T49 T21 T12 T31 T30 T44 T6 T4 T60 T16 T14 T34 T47 T20 T51 T40 T27 T17 T7 T11 T26 T35 T5 T25 T9 T1 T56 T10 T39 T48 T13 T2
T23 T23 T31 T43 T6 T42 T52 T9 T50 T15 T17 T34 T59 T35 T19 T2 T24 T22 T32 T29 T30 T53 T5 T4 T33 T60 T45 T57 T48 T11 T39 T7 T37 T3 T14 T28 T46 T8 T51 T44 T58 T27 T10 T16 T56 T47 T55 T12 T49 T13 T18 T54 T1 T41 T25 T40 T20 T21 T36 T26 T38
T24 T24 T23 T58 T14 T31 T45 T11 T42 T44 T19 T52 T51 T9 T43 T10 T50 T49 T34 T15 T25 T17 T18 T30 T59 T48 T46 T35 T5 T37 T2 T28 T57 T29 T22 T38 T32 T33 T27 T12 T53 T8 T41 T4 T13 T56 T60 T3 T20 T21 T55 T39 T7 T54 T40 T16 T6 T36 T47 T1 T26
T25 T25 T38 T30 T46 T54 T28 T12 T60 T41 T20 T49 T7 T26 T44 T24 T51 T55 T35 T57 T10 T39 T23 T22 T15 T1 T13 T47 T6 T45 T3 T37 T59 T53 T58 T18 T48 T31 T2 T21 T56 T9 T43 T42 T14 T29 T4 T27 T36 T11 T52 T16 T50 T33 T5 T17 T40 T19 T34 T32 T8
T26 T26 T39 T12 T16 T48 T20 T1 T27 T35 T2 T9 T44 T56 T6 T29 T40 T53 T5 T17 T49 T13 T14 T31 T23 T30 T38 T51 T7 T3 T4 T42 T46 T8 T32 T57 T21 T11 T28 T54 T25 T10 T50 T19 T15 T52 T45 T36 T60 T22 T24 T59 T34 T58 T41 T18 T47 T37 T43 T33 T55
T27 T27 T40 T13 T53 T26 T21 T46 T39 T36 T12 T38 T10 T3 T25 T58 T48 T47 T20 T54 T18 T6 T45 T41 T28 T14 T5 T1 T24 T51 T50 T55 T56 T35 T60 T33 T9 T44 T11 T8 T2 T23 T59 T49 T37 T22 T7 T17 T16 T43 T30 T29 T57 T4 T19 T31 T32 T52 T15 T42 T34
T28 T28 T41 T15 T25 T55 T22 T38 T59 T37 T54 T57 T29 T36 T49 T12 T30 T43 T60 T58 T14 T47 T20 T50 T42 T16 T7 T33 T26 T44 T40 T24 T52 T51 T45 T11 T56 T35 T1 T10 T4 T39 T23 T53 T3 T32 T34 T13 T18 T6 T31 T8 T46 T19 T2 T48 T21 T9 T17 T27 T5
T29 T29 T14 T32 T15 T11 T3 T22 T19 T6 T37 T24 T40 T10 T50 T49 T34 T9 T43 T23 T26 T18 T57 T12 T46 T21 T16 T5 T41 T42 T28 T20 T17 T52 T31 T39 T33 T58 T36 T1 T8 T55 T35 T45 T38 T25 T27 T4 T2 T54 T53 T13 T44 T48 T47 T59 T7 T60 T51 T30 T56
T30 T30 T28 T4 T45 T41 T7 T44 T55 T10 T49 T22 T1 T38 T15 T23 T59 T18 T57 T37 T2 T54 T31 T14 T29 T26 T56 T36 T20 T52 T12 T11 T33 T58 T43 T5 T60 T42 T39 T13 T47 T35 T19 T50 T6 T3 T16 T51 T21 T9 T34 T40 T24 T8 T48 T53 T25 T17 T32 T46 T27
T31 T31 T42 T19 T20 T50 T34 T35 T24 T29 T53 T32 T33 T57 T17 T39 T23 T14 T46 T3 T4 T58 T48 T16 T8 T55 T52 T37 T60 T9 T54 T1 T11 T12 T6 T7 T45 T27 T59 T15 T43 T51 T2 T40 T47 T36 T18 T44 T22 T56 T5 T41 T26 T10 T30 T25 T49 T13 T21 T38 T28
T32 T32 T3 T27 T42 T6 T40 T50 T9 T26 T24 T12 T21 T14 T46 T57 T17 T39 T23 T20 T36 T11 T58 T38 T25 T10 T8 T2 T37 T53 T22 T54 T48 T31 T35 T47 T19 T45 T18 T16 T5 T43 T60 T44 T41 T28 T13 T34 T1 T55 T51 T7 T49 T56 T33 T52 T29 T59 T30 T15 T4
T33 T33 T4 T36 T19 T7 T47 T34 T10 T56 T29 T1 T54 T15 T16 T17 T18 T13 T14 T2 T60 T22 T32 T39 T26 T49 T55 T28 T42 T8 T31 T48 T21 T11 T5 T51 T37 T3 T57 T59 T41 T50 T27 T6 T35 T20 T38 T43 T30 T53 T40 T44 T9 T25 T58 T24 T52 T46 T12 T23 T45
T34 T34 T29 T8 T31 T14 T16 T42 T11 T1 T50 T3 T36 T22 T32 T35 T19 T2 T24 T6 T47 T37 T53 T26 T40 T41 T33 T10 T57 T17 T49 T39 T5 T23 T9 T56 T43 T46 T55 T4 T18 T58 T48 T12 T54 T38 T21 T52 T7 T60 T27 T28 T20 T13 T59 T45 T15 T51 T25 T44 T30
T35 T35 T53 T9 T54 T46 T17 T60 T12 T32 T51 T27 T19 T58 T48 T47 T20 T3 T25 T40 T34 T45 T56 T8 T5 T43 T31 T24 T59 T39 T55 T16 T6 T38 T26 T29 T44 T13 T52 T42 T23 T30 T1 T21 T33 T18 T11 T49 T50 T4 T2 T37 T36 T14 T15 T28 T57 T7 T10 T41 T22
T36 T36 T47 T38 T8 T56 T54 T16 T13 T60 T1 T39 T49 T4 T26 T32 T21 T51 T2 T48 T57 T7 T3 T35 T20 T15 T41 T30 T29 T40 T34 T53 T25 T5 T27 T58 T10 T6 T22 T55 T28 T14 T46 T9 T42 T31 T44 T18 T59 T50 T12 T52 T17 T45 T37 T11 T33 T24 T23 T19 T43
T37 T37 T43 T57 T10 T52 T58 T18 T15 T45 T33 T59 T53 T19 T55 T21 T22 T44 T4 T30 T46 T34 T36 T51 T60 T17 T50 T31 T8 T41 T5 T25 T49 T7 T28 T12 T29 T47 T32 T24 T42 T16 T38 T56 T27 T48 T35 T14 T23 T40 T54 T9 T13 T20 T3 T1 T11 T26 T39 T2 T6
T38 T38 T54 T44 T40 T60 T49 T26 T51 T57 T39 T35 T15 T47 T20 T3 T25 T58 T48 T53 T22 T56 T6 T42 T31 T4 T28 T59 T1 T12 T16 T50 T45 T27 T46 T37 T13 T9 T7 T41 T30 T2 T24 T17 T29 T34 T52 T21 T55 T14 T23 T33 T32 T43 T10 T5 T36 T11 T19 T8 T18
T39 T39 T48 T6 T47 T27 T9 T56 T40 T17 T13 T5 T23 T51 T2 T4 T26 T32 T21 T8 T31 T25 T7 T19 T11 T45 T20 T46 T30 T1 T59 T34 T3 T36 T16 T42 T38 T10 T44 T35 T12 T28 T29 T18 T52 T43 T24 T54 T53 T15 T14 T58 T33 T50 T49 T41 T60 T22 T37 T55 T57
T40 T40 T26 T25 T32 T39 T38 T3 T48 T54 T6 T20 T28 T1 T12 T50 T27 T60 T9 T35 T41 T2 T24 T49 T44 T7 T21 T56 T14 T46 T29 T57 T51 T17 T53 T55 T5 T23 T10 T36 T13 T11 T58 T31 T22 T15 T30 T8 T47 T37 T45 T4 T42 T59 T18 T19 T16 T43 T52 T34 T33
T41 T41 T55 T49 T21 T59 T57 T36 T30 T58 T47 T60 T42 T33 T54 T40 T28 T45 T56 T51 T50 T4 T26 T53 T35 T34 T22 T52 T16 T38 T8 T46 T44 T13 T25 T24 T7 T39 T29 T37 T15 T1 T12 T48 T32 T17 T31 T10 T43 T3 T20 T19 T27 T23 T14 T2 T18 T6 T9 T5 T11
T42 T42 T50 T17 T49 T24 T32 T57 T23 T3 T58 T46 T8 T37 T53 T54 T31 T6 T45 T12 T16 T43 T60 T40 T27 T18 T34 T11 T55 T35 T41 T26 T9 T44 T20 T1 T52 T51 T33 T29 T19 T59 T39 T25 T36 T21 T5 T15 T14 T47 T48 T10 T38 T2 T4 T30 T22 T56 T13 T28 T7
T43 T43 T52 T55 T11 T15 T59 T19 T22 T30 T34 T4 T60 T31 T33 T5 T37 T28 T29 T7 T51 T42 T8 T56 T47 T35 T58 T49 T17 T18 T9 T13 T41 T14 T10 T25 T50 T16 T53 T45 T57 T32 T21 T1 T48 T39 T54 T24 T44 T27 T36 T20 T2 T38 T46 T3 T23 T40 T26 T6 T12
T44 T44 T49 T52 T12 T57 T15 T20 T58 T22 T35 T42 T4 T54 T31 T6 T45 T37 T53 T50 T7 T60 T9 T29 T34 T47 T30 T55 T39 T23 T26 T14 T43 T46 T24 T10 T51 T17 T56 T28 T59 T48 T11 T32 T1 T16 T33 T25 T41 T2 T19 T36 T3 T18 T13 T27 T38 T5 T8 T40 T21
T45 T45 T44 T59 T24 T49 T30 T23 T57 T28 T31 T15 T56 T20 T52 T11 T58 T41 T42 T22 T13 T35 T19 T7 T4 T39 T51 T54 T9 T43 T6 T10 T55 T50 T37 T21 T53 T34 T48 T25 T60 T17 T18 T29 T2 T1 T47 T46 T38 T5 T33 T26 T14 T36 T27 T32 T12 T8 T16 T3 T40
T46 T46 T12 T51 T50 T20 T25 T24 T35 T38 T23 T44 T13 T6 T45 T37 T53 T54 T31 T49 T21 T9 T43 T28 T30 T2 T27 T39 T11 T58 T14 T41 T60 T42 T57 T36 T17 T52 T5 T40 T48 T19 T55 T15 T10 T7 T56 T32 T26 T18 T59 T1 T22 T47 T8 T34 T3 T33 T4 T29 T16
T47 T47 T56 T26 T33 T13 T39 T4 T21 T48 T7 T2 T20 T30 T1 T34 T36 T27 T10 T5 T35 T28 T29 T9 T6 T44 T54 T25 T15 T16 T52 T17 T40 T18 T8 T53 T41 T14 T49 T60 T38 T22 T32 T11 T31 T23 T12 T55 T51 T42 T3 T45 T19 T46 T57 T37 T59 T50 T24 T43 T58
T48 T48 T27 T2 T60 T40 T5 T51 T26 T8 T25 T21 T11 T46 T13 T59 T39 T16 T38 T36 T19 T12 T30 T18 T10 T24 T9 T3 T45 T56 T58 T33 T1 T54 T47 T34 T20 T28 T23 T17 T6 T44 T4 T41 T43 T37 T14 T35 T32 T52 T7 T50 T55 T29 T31 T49 T53 T15 T22 T57 T42
T49 T49 T57 T31 T38 T58 T42 T54 T45 T50 T60 T53 T34 T55 T35 T26 T44 T24 T51 T46 T29 T59 T39 T32 T17 T33 T15 T43 T47 T20 T36 T3 T23 T25 T12 T14 T30 T48 T4 T22 T52 T56 T6 T27 T16 T8 T19 T28 T37 T1 T9 T18 T40 T11 T7 T13 T41 T2 T5 T21 T10
T50 T50 T24 T53 T22 T23 T46 T37 T31 T12 T43 T45 T27 T11 T58 T41 T42 T20 T52 T44 T40 T19 T55 T25 T51 T5 T32 T9 T18 T57 T10 T38 T35 T15 T49 T26 T34 T59 T8 T3 T17 T33 T54 T30 T21 T13 T48 T29 T6 T36 T60 T2 T28 T39 T16 T4 T14 T47 T56 T7 T1
T51 T51 T25 T56 T58 T38 T13 T45 T54 T21 T44 T28 T2 T12 T30 T43 T60 T36 T49 T41 T5 T20 T52 T10 T7 T6 T48 T26 T23 T59 T24 T18 T47 T57 T55 T8 T35 T15 T9 T27 T39 T31 T33 T22 T11 T14 T1 T53 T40 T19 T4 T3 T37 T16 T17 T42 T46 T34 T29 T50 T32
T52 T52 T15 T33 T23 T22 T4 T31 T37 T7 T42 T29 T47 T49 T34 T9 T43 T10 T50 T14 T56 T57 T17 T1 T16 T54 T59 T41 T35 T19 T20 T2 T18 T24 T11 T13 T58 T32 T60 T30 T55 T53 T5 T3 T39 T26 T36 T45 T28 T48 T8 T38 T6 T21 T51 T46 T44 T27 T40 T12 T25
T53 T53 T46 T48 T57 T12 T27 T58 T20 T40 T45 T25 T5 T24 T51 T55 T35 T26 T44 T38 T8 T23 T59 T21 T13 T11 T17 T6 T43 T60 T37 T36 T39 T49 T54 T16 T31 T30 T19 T32 T9 T52 T47 T28 T18 T10 T2 T42 T3 T33 T56 T14 T41 T1 T34 T15 T50 T4 T7 T22 T29
T54 T54 T60 T20 T36 T51 T35 T47 T25 T53 T56 T48 T31 T59 T39 T16 T38 T46 T13 T27 T42 T30 T1 T17 T9 T52 T49 T45 T4 T26 T33 T32 T12 T21 T40 T50 T28 T2 T15 T57 T44 T7 T3 T5 T34 T19 T23 T41 T58 T29 T6 T43 T8 T24 T22 T10 T55 T14 T11 T18 T37
T55 T55 T59 T54 T18 T30 T60 T33 T28 T51 T4 T56 T35 T52 T47 T8 T41 T25 T7 T13 T53 T15 T16 T48 T39 T31 T57 T44 T34 T36 T19 T27 T38 T10 T21 T46 T22 T1 T42 T58 T49 T29 T40 T2 T17 T9 T20 T37 T45 T32 T26 T23 T5 T12 T50 T14 T43 T3 T6 T11 T24
T56 T56 T13 T1 T59 T21 T2 T30 T36 T5 T28 T10 T6 T25 T7 T52 T47 T8 T41 T18 T9 T38 T15 T11 T14 T12 T39 T40 T44 T4 T45 T19 T16 T55 T33 T17 T54 T22 T20 T48 T26 T49 T34 T37 T23 T24 T3 T60 T27 T31 T29 T46 T43 T32 T35 T57 T51 T42 T50 T58 T53
T57 T57 T58 T35 T41 T45 T53 T55 T44 T46 T59 T51 T17 T43 T60 T36 T49 T12 T30 T25 T32 T52 T47 T27 T48 T19 T42 T23 T33 T54 T18 T40 T20 T28 T38 T3 T15 T56 T34 T50 T31 T4 T26 T13 T8 T5 T9 T22 T24 T16 T39 T11 T21 T6 T29 T7 T37 T1 T2 T10 T14
T58 T58 T45 T60 T37 T44 T51 T43 T49 T25 T52 T30 T48 T23 T59 T18 T57 T38 T15 T28 T27 T31 T33 T13 T56 T9 T53 T20 T19 T55 T11 T21 T54 T22 T41 T40 T42 T4 T17 T46 T35 T34 T36 T7 T5 T2 T39 T50 T12 T8 T47 T6 T10 T26 T32 T29 T24 T16 T1 T14 T3
T59 T59 T30 T47 T43 T28 T56 T52 T41 T13 T15 T7 T39 T44 T4 T19 T55 T21 T22 T10 T48 T49 T34 T2 T1 T20 T60 T38 T31 T33 T23 T5 T36 T37 T18 T27 T57 T29 T35 T51 T54 T42 T8 T14 T9 T6 T26 T58 T25 T17 T16 T12 T11 T40 T53 T50 T45 T32 T3 T24 T46
T60 T60 T51 T39 T55 T25 T48 T59 T38 T27 T30 T13 T9 T45 T56 T33 T54 T40 T28 T21 T17 T44 T4 T5 T2 T23 T35 T12 T52 T47 T43 T8 T26 T41 T36 T32 T49 T7 T31 T53 T20 T15 T16 T10 T19 T11 T6 T57 T46 T34 T1 T24 T18 T3 T42 T22 T58 T29 T14 T37 T50