$ \def\MA{{\frac{3+\sqrt{5}}{2}}} \def\MB{{\frac{-1+\sqrt{5}}{4}}} \def\MC{{\frac{1+\sqrt{5}}{4}}} \def\MD{{\frac{1-\sqrt{5}}{4}}} \def\ME{{\frac{1}{2}}} \def\MF{{\frac{1+\sqrt{5}}{2}}} \def\MG{{\frac{3(3+\sqrt{5})}{2}}} \def\MH{{\frac{\sqrt{5}(3+\sqrt{5})}{2}}} $

Dodecahedron

Initial vertex: $V_1=\left[\begin{matrix}\MA\\-1\\0\end{matrix}\right]$

Transforms for vertex generation:

$\tilde{T}_i\in\left\{ \left[\begin{matrix}1&0&0\\0&1&0\\0&0&1\end{matrix}\right], \left[\begin{matrix}\MB&-\MC&-\ME\\ \MC&\ME&\MD\\ \ME&\MD&\MC\end{matrix}\right], \left[\begin{matrix}\MC&\ME&\MD\\-\ME&\MB&-\MC\\ \MD&\MC&\ME\end{matrix}\right] \right\}$

Vertexes:

$T_2 V_1=\left[\begin{matrix}\MF\\ \MF\\ \MF\end{matrix}\right]=V_2$
$T_2 V_2=\left[\begin{matrix}-\MF\\ \MF\\ \MF\end{matrix}\right]=V_3$
$T_2 V_3=\left[\begin{matrix}-\MA\\-1\\0\end{matrix}\right]=V_4$
$T_2 V_4=\left[\begin{matrix}0\\-\MA\\-1\end{matrix}\right]=V_5$
$T_3 V_5=\left[\begin{matrix}-1\\0\\-\MA\end{matrix}\right]=V_6$
$T_2 V_6=\left[\begin{matrix}1\\0\\-\MA\end{matrix}\right]=V_7$
$T_2 V_7=\left[\begin{matrix}\MF\\ \MF\\-\MF\end{matrix}\right]=V_8$
$T_2 V_8=\left[\begin{matrix}0\\ \MA\\-1\end{matrix}\right]=V_9$
$T_2 V_9=\left[\begin{matrix}-\MF\\ \MF\\-\MF\end{matrix}\right]=V_{10}$
$T_3 V_{10}=\left[\begin{matrix}0\\ \MA\\1\end{matrix}\right]=V_{11}$
$T_2 V_{11}=\left[\begin{matrix}-\MA\\1\\0\end{matrix}\right]=V_{12}$
$T_2 V_{12}=\left[\begin{matrix}-\MF\\-\MF\\-\MF\end{matrix}\right]=V_{13}$
$T_2 V_{13}=\left[\begin{matrix}\MF\\-\MF\\-\MF\end{matrix}\right]=V_{14}$
$T_2 V_{14}=\left[\begin{matrix}\MA\\1\\0\end{matrix}\right]=V_{15}$
$T_3 V_{11}=\left[\begin{matrix}1\\0\\ \MA\end{matrix}\right]=V_{16}$
$T_2 V_{16}=\left[\begin{matrix}-1\\0\\ \MA\end{matrix}\right]=V_{17}$
$T_2 V_{17}=\left[\begin{matrix}-\MF\\-\MF\\ \MF\end{matrix}\right]=V_{18}$
$T_2 V_{18}=\left[\begin{matrix}0\\-\MA\\1\end{matrix}\right]=V_{19}$
$T_2 V_{19}=\left[\begin{matrix}\MF\\-\MF\\ \MF\end{matrix}\right]=V_{20}$

All Transforms:

$T_2 T_2=\left[\begin{matrix}-\MC&-\ME&\MD\\ \ME&\MD&-\MC\\ \MB&-\MC&\ME\end{matrix}\right]=T_4$
$T_3 T_2=\left[\begin{matrix}\ME&\MD&-\MC\\ \MD&\MC&-\ME\\ \MC&\ME&\MB\end{matrix}\right]=T_5$
$T_2 T_4=\left[\begin{matrix}-\MC&\ME&\MB\\-\ME&\MD&-\MC\\ \MD&-\MC&\ME\end{matrix}\right]=T_6$
$T_3 T_4=\left[\begin{matrix}-\ME&\MD&-\MC\\ \MB&\MC&-\ME\\ \MC&-\ME&\MD\end{matrix}\right]=T_7$
$T_2 T_5=\left[\begin{matrix}0&-1&0\\0&0&-1\\1&0&0\end{matrix}\right]=T_8$
$T_3 T_5=\left[\begin{matrix}0&0&-1\\-1&0&0\\0&1&0\end{matrix}\right]=T_9$
$T_2 T_6=\left[\begin{matrix}\MB&\MC&\ME\\-\MC&\ME&\MD\\-\ME&\MD&\MC\end{matrix}\right]=T_{10}$
$T_3 T_6=\left[\begin{matrix}-\MC&\ME&\MD\\ \ME&\MB&-\MC\\ \MD&-\MC&-\ME\end{matrix}\right]=T_{11}$
$T_2 T_7=\left[\begin{matrix}-\MC&-\ME&\MB\\-\ME&\MB&-\MC\\ \MB&-\MC&-\ME\end{matrix}\right]=T_{12}$
$T_3 T_7=\left[\begin{matrix}-\ME&\MB&-\MC\\ \MD&\MC&\ME\\ \MC&\ME&\MD\end{matrix}\right]=T_{13}$
$T_2 T_8=\left[\begin{matrix}-\ME&\MD&\MC\\ \MD&-\MC&-\ME\\ \MC&-\ME&\MB\end{matrix}\right]=T_{14}$
$T_3 T_8=\left[\begin{matrix}\MD&-\MC&-\ME\\-\MC&\ME&\MD\\ \ME&\MB&-\MC\end{matrix}\right]=T_{15}$
$T_2 T_9=\left[\begin{matrix}\MC&-\ME&\MD\\-\ME&\MD&-\MC\\ \MB&\MC&-\ME\end{matrix}\right]=T_{16}$
$T_3 T_9=\left[\begin{matrix}-\ME&\MD&-\MC\\ \MD&-\MC&\ME\\-\MC&\ME&\MB\end{matrix}\right]=T_{17}$
$T_3 T_{10}=\left[\begin{matrix}0&1&0\\0&0&-1\\-1&0&0\end{matrix}\right]=T_{18}$
$T_2 T_{11}=\left[\begin{matrix}-\ME&\MB&\MC\\ \MD&\MC&-\ME\\-\MC&-\ME&\MD\end{matrix}\right]=T_{19}$
$T_3 T_{11}=\left[\begin{matrix}\MD&\MC&-\ME\\ \MC&\ME&\MB\\ \ME&\MD&-\MC\end{matrix}\right]=T_{20}$
$T_2 T_{12}=\left[\begin{matrix}0&0&1\\-1&0&0\\0&-1&0\end{matrix}\right]=T_{21}$
$T_3 T_{12}=\left[\begin{matrix}-1&0&0\\0&1&0\\0&0&-1\end{matrix}\right]=T_{22}$
$T_3 T_{13}=\left[\begin{matrix}-\MC&\ME&\MD\\-\ME&\MD&\MC\\ \MB&\MC&\ME\end{matrix}\right]=T_{23}$
$T_2 T_{14}=\left[\begin{matrix}\MD&\MC&\ME\\-\MC&-\ME&\MB\\ \ME&\MD&\MC\end{matrix}\right]=T_{24}$
$T_2 T_{15}=\left[\begin{matrix}\MB&-\MC&\ME\\-\MC&-\ME&\MD\\ \ME&\MD&-\MC\end{matrix}\right]=T_{25}$
$T_3 T_{15}=\left[\begin{matrix}-\MC&-\ME&\MD\\-\ME&\MB&\MC\\ \MD&\MC&-\ME\end{matrix}\right]=T_{26}$
$T_2 T_{16}=\left[\begin{matrix}\ME&\MD&\MC\\ \MB&-\MC&-\ME\\ \MC&\ME&\MD\end{matrix}\right]=T_{27}$
$T_3 T_{16}=\left[\begin{matrix}\MB&-\MC&-\ME\\-\MC&-\ME&\MB\\-\ME&\MB&-\MC\end{matrix}\right]=T_{28}$
$T_2 T_{17}=\left[\begin{matrix}\ME&\MB&-\MC\\ \MD&-\MC&-\ME\\-\MC&\ME&\MD\end{matrix}\right]=T_{29}$
$T_3 T_{17}=\left[\begin{matrix}\MD&-\MC&-\ME\\ \MC&-\ME&\MB\\-\ME&\MD&\MC\end{matrix}\right]=T_{30}$
$T_2 T_{18}=\left[\begin{matrix}\ME&\MB&\MC\\ \MB&\MC&-\ME\\-\MC&\ME&\MB\end{matrix}\right]=T_{31}$
$T_3 T_{18}=\left[\begin{matrix}\MB&\MC&-\ME\\ \MC&-\ME&\MD\\-\ME&\MD&-\MC\end{matrix}\right]=T_{32}$
$T_2 T_{19}=\left[\begin{matrix}\ME&\MD&\MC\\ \MD&\MC&\ME\\-\MC&-\ME&\MB\end{matrix}\right]=T_{33}$
$T_3 T_{19}=\left[\begin{matrix}\MD&\MC&\ME\\ \MC&\ME&\MD\\-\ME&\MB&-\MC\end{matrix}\right]=T_{34}$
$T_3 T_{20}=\left[\begin{matrix}0&1&0\\0&0&1\\1&0&0\end{matrix}\right]=T_{35}$
$T_2 T_{21}=\left[\begin{matrix}\MC&\ME&\MB\\-\ME&\MB&\MC\\ \MB&-\MC&\ME\end{matrix}\right]=T_{36}$
$T_2 T_{22}=\left[\begin{matrix}\MD&-\MC&\ME\\-\MC&\ME&\MB\\-\ME&\MD&-\MC\end{matrix}\right]=T_{37}$
$T_3 T_{22}=\left[\begin{matrix}-\MC&\ME&\MB\\ \ME&\MB&\MC\\ \MB&\MC&-\ME\end{matrix}\right]=T_{38}$
$T_3 T_{23}=\left[\begin{matrix}-1&0&0\\0&-1&0\\0&0&1\end{matrix}\right]=T_{39}$
$T_2 T_{24}=\left[\begin{matrix}\MB&\MC&-\ME\\-\MC&\ME&\MB\\ \ME&\MB&\MC\end{matrix}\right]=T_{40}$
$T_2 T_{25}=\left[\begin{matrix}\ME&\MB&\MC\\ \MD&-\MC&\ME\\ \MC&-\ME&\MD\end{matrix}\right]=T_{41}$
$T_3 T_{26}=\left[\begin{matrix}-\MC&-\ME&\MB\\ \ME&\MD&\MC\\ \MD&\MC&\ME\end{matrix}\right]=T_{42}$
$T_2 T_{27}=\left[\begin{matrix}-\ME&\MB&\MC\\ \MB&-\MC&\ME\\ \MC&\ME&\MB\end{matrix}\right]=T_{43}$
$T_2 T_{28}=\left[\begin{matrix}1&0&0\\0&-1&0\\0&0&-1\end{matrix}\right]=T_{44}$
$T_3 T_{28}=\left[\begin{matrix}0&-1&0\\0&0&1\\-1&0&0\end{matrix}\right]=T_{45}$
$T_2 T_{29}=\left[\begin{matrix}\MC&\ME&\MB\\ \ME&\MD&-\MC\\ \MD&\MC&-\ME\end{matrix}\right]=T_{46}$
$T_3 T_{29}=\left[\begin{matrix}\ME&\MD&-\MC\\ \MB&-\MC&\ME\\-\MC&-\ME&\MD\end{matrix}\right]=T_{47}$
$T_2 T_{30}=\left[\begin{matrix}-\ME&\MB&-\MC\\ \MB&-\MC&-\ME\\-\MC&-\ME&\MB\end{matrix}\right]=T_{48}$
$T_2 T_{31}=\left[\begin{matrix}\MB&-\MC&\ME\\ \MC&\ME&\MB\\-\ME&\MB&\MC\end{matrix}\right]=T_{49}$
$T_3 T_{32}=\left[\begin{matrix}\MC&\ME&\MD\\ \ME&\MD&\MC\\ \MB&-\MC&-\ME\end{matrix}\right]=T_{50}$
$T_2 T_{33}=\left[\begin{matrix}\MC&-\ME&\MD\\ \ME&\MB&\MC\\ \MD&-\MC&\ME\end{matrix}\right]=T_{51}$
$T_2 T_{34}=\left[\begin{matrix}-\ME&\MD&\MC\\ \MB&\MC&\ME\\-\MC&\ME&\MD\end{matrix}\right]=T_{52}$
$T_3 T_{34}=\left[\begin{matrix}\MB&\MC&\ME\\ \MC&-\ME&\MB\\ \ME&\MB&-\MC\end{matrix}\right]=T_{53}$
$T_2 T_{36}=\left[\begin{matrix}\ME&\MB&-\MC\\ \MB&\MC&\ME\\ \MC&-\ME&\MB\end{matrix}\right]=T_{54}$
$T_2 T_{37}=\left[\begin{matrix}\MC&-\ME&\MB\\-\ME&\MD&\MC\\ \MD&-\MC&-\ME\end{matrix}\right]=T_{55}$
$T_2 T_{39}=\left[\begin{matrix}\MD&\MC&-\ME\\-\MC&-\ME&\MD\\-\ME&\MB&\MC\end{matrix}\right]=T_{56}$
$T_3 T_{42}=\left[\begin{matrix}\MD&-\MC&\ME\\ \MC&-\ME&\MD\\ \ME&\MB&\MC\end{matrix}\right]=T_{57}$
$T_2 T_{46}=\left[\begin{matrix}0&0&1\\1&0&0\\0&1&0\end{matrix}\right]=T_{58}$
$T_3 T_{48}=\left[\begin{matrix}0&0&-1\\1&0&0\\0&-1&0\end{matrix}\right]=T_{59}$
$T_3 T_{49}=\left[\begin{matrix}\MC&-\ME&\MB\\ \ME&\MB&-\MC\\ \MB&\MC&\ME\end{matrix}\right]=T_{60}$


relabeled vertexes as {1, 20, 15, 14, 16, 2, 19, 5, 8, 7, 17, 18, 11, 9, 13, 6, 3, 4, 10, 12}

Vertexes as column vectors:

$V=\left[\begin{matrix} \MA&\MF&\MA&\MF&1&\MF&0&0&\MF&1&-1&-\MF&0&0&-\MF&-1&-\MF&-\MA&-\MF&-\MA\\ -1&-\MF&1&-\MF&0&\MF&-\MA&-\MA&\MF&0&0&-\MF&\MA&\MA&-\MF&0&\MF&-1&\MF&1\\ 0&\MF&0&-\MF&\MA&\MF&1&-1&-\MF&-\MA&\MA&\MF&1&-1&-\MF&-\MA&\MF&0&-\MF&0 \end{matrix}\right]$

Vertex inner products:

$V^T V=\left[\begin{matrix} \MA &-1&0\\ \MF&-\MF&\MF\\ \MA&1&0\\ \MF&-\MF&-\MF\\ 1&0&\MA\\ \MF&\MF&\MF\\ 0&-\MA&1\\ 0&-\MA&-1\\ \MF&\MF&-\MF\\ 1&0&-\MA\\ -1&0&\MA\\ -\MF&-\MF&\MF\\ 0&\MA&1\\ 0&\MA&-1\\ -\MF&-\MF&-\MF\\ -1&0&-\MA\\ -\MF&\MF&\MF\\ -\MA&-1&0\\ -\MF&\MF&-\MF\\ -\MA&1&0 \end{matrix}\right] \left[\begin{matrix} \MA&\MF&\MA&\MF&1&\MF&0&0&\MF&1&-1&-\MF&0&0&-\MF&-1&-\MF&-\MA&-\MF&-\MA\\ -1&-\MF&1&-\MF&0&\MF&-\MA&-\MA&\MF&0&0&-\MF&\MA&\MA&-\MF&0&\MF&-1&\MF&1\\ 0&\MF&0&-\MF&\MA&\MF&1&-1&-\MF&-\MA&\MA&\MF&1&-1&-\MF&-\MA&\MF&0&-\MF&0 \end{matrix}\right] =\left[\begin{matrix} \MG&\MH&\MH&\MH&\MA&\MA&\MA&\MA&\MA&\MA&-\MA&-\MA&-\MA&-\MA&-\MA&-\MA&-\MH&-\MH&-\MH&-\MG\\ \MH&\MG&\MA&\MA&\MH&\MA&\MH&\MA&-\MA&-\MA&\MA&\MA&-\MA&-\MH&-\MA&-\MH&-\MA&-\MA&-\MG&-\MH\\ \MH&\MA&\MG&\MA&\MA&\MH&-\MA&-\MA&\MH&\MA&-\MA&-\MH&\MA&\MA&-\MH&-\MA&-\MA&-\MG&-\MA&-\MH\\ \MH&\MA&\MA&\MG&-\MA&-\MA&\MA&\MH&\MA&\MH&-\MH&-\MA&-\MH&-\MA&\MA&\MA&-\MG&-\MA&-\MA&-\MH\\ \MA&\MH&\MA&-\MA&\MG&\MH&\MA&-\MA&-\MA&-\MH&\MH&\MA&\MA&-\MA&-\MH&-\MG&\MA&-\MA&-\MH&-\MA\\ \MA&\MA&\MH&-\MA&\MH&\MG&-\MA&-\MH&\MA&-\MA&\MA&-\MA&\MH&\MA&-\MG&-\MH&\MA&-\MH&-\MA&-\MA\\ \MA&\MH&-\MA&\MA&\MA&-\MA&\MG&\MH&-\MH&-\MA&\MA&\MH&-\MH&-\MG&\MA&-\MA&-\MA&\MA&-\MH&-\MA\\ \MA&\MA&-\MA&\MH&-\MA&-\MH&\MH&\MG&-\MA&\MA&-\MA&\MA&-\MG&-\MH&\MH&\MA&-\MH&\MA&-\MA&-\MA\\ \MA&-\MA&\MH&\MA&-\MA&\MA&-\MH&-\MA&\MG&\MH&-\MH&-\MG&\MA&\MH&-\MA&\MA&-\MA&-\MH&\MA&-\MA\\ \MA&-\MA&\MA&\MH&-\MH&-\MA&-\MA&\MA&\MH&\MG&-\MG&-\MH&-\MA&\MA&\MA&\MH&-\MH&-\MA&\MA&-\MA\\ -\MA&\MA&-\MA&-\MH&\MH&\MA&\MA&-\MA&-\MH&-\MG&\MG&\MH&\MA&-\MA&-\MA&-\MH&\MH&\MA&-\MA&\MA\\ -\MA&\MA&-\MH&-\MA&\MA&-\MA&\MH&\MA&-\MG&-\MH&\MH&\MG&-\MA&-\MH&\MA&-\MA&\MA&\MH&-\MA&\MA\\ -\MA&-\MA&\MA&-\MH&\MA&\MH&-\MH&-\MG&\MA&-\MA&\MA&-\MA&\MG&\MH&-\MH&-\MA&\MH&-\MA&\MA&\MA\\ -\MA&-\MH&\MA&-\MA&-\MA&\MA&-\MG&-\MH&\MH&\MA&-\MA&-\MH&\MH&\MG&-\MA&\MA&\MA&-\MA&\MH&\MA\\ -\MA&-\MA&-\MH&\MA&-\MH&-\MG&\MA&\MH&-\MA&\MA&-\MA&\MA&-\MH&-\MA&\MG&\MH&-\MA&\MH&\MA&\MA\\ -\MA&-\MH&-\MA&\MA&-\MG&-\MH&-\MA&\MA&\MA&\MH&-\MH&-\MA&-\MA&\MA&\MH&\MG&-\MA&\MA&\MH&\MA\\ -\MH&-\MA&-\MA&-\MG&\MA&\MA&-\MA&-\MH&-\MA&-\MH&\MH&\MA&\MH&\MA&-\MA&-\MA&\MG&\MA&\MA&\MH\\ -\MH&-\MA&-\MG&-\MA&-\MA&-\MH&\MA&\MA&-\MH&-\MA&\MA&\MH&-\MA&-\MA&\MH&\MA&\MA&\MG&\MA&\MH\\ -\MH&-\MG&-\MA&-\MA&-\MH&-\MA&-\MH&-\MA&\MA&\MA&-\MA&-\MA&\MA&\MH&\MA&\MH&\MA&\MA&\MG&\MH\\ -\MG&-\MH&-\MH&-\MH&-\MA&-\MA&-\MA&-\MA&-\MA&-\MA&\MA&\MA&\MA&\MA&\MA&\MA&\MH&\MH&\MH&\MG \end{matrix}\right]$

Table of $T_i\cdot V_j=V_k$:
    V1  V2  V3  V4  V5  V6  V7  V8  V9  V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
T1  V1  V2  V3  V4  V5  V6  V7  V8  V9  V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
T2  V2  V3  V4  V5  V1  V7  V8  V9  V10 V6  V12 V13 V14 V15 V11 V17 V18 V19 V20 V16
T3  V14 V20 V17 V12 V6  V9  V8  V15 V2  V11 V16 V3  V10 V7  V1  V19 V18 V4  V13 V5 
T4  V3  V4  V5  V1  V2  V8  V9  V10 V6  V7  V13 V14 V15 V11 V12 V18 V19 V20 V16 V17
T5  V20 V17 V12 V6  V14 V8  V15 V2  V11 V9  V3  V10 V7  V1  V16 V18 V4  V13 V5  V19
T6  V4  V5  V1  V2  V3  V9  V10 V6  V7  V8  V14 V15 V11 V12 V13 V19 V20 V16 V17 V18
T7  V17 V12 V6  V14 V20 V15 V2  V11 V9  V8  V10 V7  V1  V16 V3  V4  V13 V5  V19 V18
T8  V16 V18 V13 V7  V15 V9  V11 V3  V12 V10 V4  V6  V8  V2  V17 V19 V5  V14 V1  V20
T9  V5  V18 V3  V9  V7  V15 V1  V20 V16 V2  V17 V11 V8  V14 V19 V4  V12 V10 V6  V13
T10 V5  V1  V2  V3  V4  V10 V6  V7  V8  V9  V15 V11 V12 V13 V14 V20 V16 V17 V18 V19
T11 V12 V6  V14 V20 V17 V2  V11 V9  V8  V15 V7  V1  V16 V3  V10 V13 V5  V19 V18 V4 
T12 V18 V13 V7  V15 V16 V11 V3  V12 V10 V9  V6  V8  V2  V17 V4  V5  V14 V1  V20 V19
T13 V18 V3  V9  V7  V5  V1  V20 V16 V2  V15 V11 V8  V14 V19 V17 V12 V10 V6  V13 V4 
T14 V17 V19 V14 V8  V11 V10 V12 V4  V13 V6  V5  V7  V9  V3  V18 V20 V1  V15 V2  V16
T15 V19 V4  V10 V8  V1  V2  V16 V17 V3  V11 V12 V9  V15 V20 V18 V13 V6  V7  V14 V5 
T16 V1  V19 V4  V10 V8  V11 V2  V16 V17 V3  V18 V12 V9  V15 V20 V5  V13 V6  V7  V14
T17 V6  V4  V17 V2  V8  V1  V14 V5  V19 V20 V18 V16 V15 V7  V13 V12 V3  V11 V9  V10
T18 V6  V14 V20 V17 V12 V11 V9  V8  V15 V2  V1  V16 V3  V10 V7  V5  V19 V18 V4  V13
T19 V13 V7  V15 V16 V18 V3  V12 V10 V9  V11 V8  V2  V17 V4  V6  V14 V1  V20 V19 V5 
T20 V3  V9  V7  V5  V18 V20 V16 V2  V15 V1  V8  V14 V19 V17 V11 V10 V6  V13 V4  V12
T21 V19 V14 V8  V11 V17 V12 V4  V13 V6  V10 V7  V9  V3  V18 V5  V1  V15 V2  V16 V20
T22 V4  V10 V8  V1  V19 V16 V17 V3  V11 V2  V9  V15 V20 V18 V12 V6  V7  V14 V5  V13
T23 V4  V17 V2  V8  V6  V14 V5  V19 V20 V1  V16 V15 V7  V13 V18 V3  V11 V9  V10 V12
T24 V18 V20 V15 V9  V12 V6  V13 V5  V14 V7  V1  V8  V10 V4  V19 V16 V2  V11 V3  V17
T25 V20 V5  V6  V9  V2  V3  V17 V18 V4  V12 V13 V10 V11 V16 V19 V14 V7  V8  V15 V1 
T26 V13 V12 V11 V15 V14 V20 V19 V18 V17 V16 V3  V2  V1  V5  V4  V10 V9  V8  V7  V6 
T27 V2  V20 V5  V6  V9  V12 V3  V17 V18 V4  V19 V13 V10 V11 V16 V1  V14 V7  V8  V15
T28 V14 V13 V12 V11 V15 V16 V20 V19 V18 V17 V4  V3  V2  V1  V5  V6  V10 V9  V8  V7 
T29 V7  V5  V18 V3  V9  V2  V15 V1  V20 V16 V19 V17 V11 V8  V14 V13 V4  V12 V10 V6 
T30 V9  V12 V18 V20 V15 V14 V7  V6  V13 V5  V4  V19 V1  V8  V10 V3  V17 V16 V2  V11
T31 V7  V15 V16 V18 V13 V12 V10 V9  V11 V3  V2  V17 V4  V6  V8  V1  V20 V19 V5  V14
T32 V9  V7  V5  V18 V3  V16 V2  V15 V1  V20 V14 V19 V17 V11 V8  V6  V13 V4  V12 V10
T33 V14 V8  V11 V17 V19 V4  V13 V6  V10 V12 V9  V3  V18 V5  V7  V15 V2  V16 V20 V1 
T34 V10 V8  V1  V19 V4  V17 V3  V11 V2  V16 V15 V20 V18 V12 V9  V7  V14 V5  V13 V6 
T35 V17 V2  V8  V6  V4  V5  V19 V20 V1  V14 V15 V7  V13 V18 V16 V11 V9  V10 V12 V3 
T36 V20 V15 V9  V12 V18 V13 V5  V14 V7  V6  V8  V10 V4  V19 V1  V2  V11 V3  V17 V16
T37 V5  V6  V9  V2  V20 V17 V18 V4  V12 V3  V10 V11 V16 V19 V13 V7  V8  V15 V1  V14
T38 V12 V11 V15 V14 V13 V19 V18 V17 V16 V20 V2  V1  V5  V4  V3  V9  V8  V7  V6  V10
T39 V12 V18 V20 V15 V9  V7  V6  V13 V5  V14 V19 V1  V8  V10 V4  V17 V16 V2  V11 V3 
T40 V19 V16 V11 V10 V13 V7  V14 V1  V15 V8  V2  V9  V6  V5  V20 V17 V3  V12 V4  V18
T41 V16 V1  V7  V10 V3  V4  V18 V19 V5  V13 V14 V6  V12 V17 V20 V15 V8  V9  V11 V2 
T42 V10 V3  V16 V1  V7  V5  V13 V4  V18 V19 V17 V20 V14 V6  V12 V11 V2  V15 V8  V9 
T43 V3  V16 V1  V7  V10 V13 V4  V18 V19 V5  V20 V14 V6  V12 V17 V2  V15 V8  V9  V11
T44 V15 V14 V13 V12 V11 V17 V16 V20 V19 V18 V5  V4  V3  V2  V1  V7  V6  V10 V9  V8 
T45 V7  V10 V3  V16 V1  V19 V5  V13 V4  V18 V12 V17 V20 V14 V6  V9  V11 V2  V15 V8 
T46 V8  V1  V19 V4  V10 V3  V11 V2  V16 V17 V20 V18 V12 V9  V15 V14 V5  V13 V6  V7 
T47 V8  V6  V4  V17 V2  V20 V1  V14 V5  V19 V13 V18 V16 V15 V7  V10 V12 V3  V11 V9 
T48 V10 V13 V19 V16 V11 V15 V8  V7  V14 V1  V5  V20 V2  V9  V6  V4  V18 V17 V3  V12
T49 V8  V11 V17 V19 V14 V13 V6  V10 V12 V4  V3  V18 V5  V7  V9  V2  V16 V20 V1  V15
T50 V2  V8  V6  V4  V17 V19 V20 V1  V14 V5  V7  V13 V18 V16 V15 V9  V10 V12 V3  V11
T51 V15 V9  V12 V18 V20 V5  V14 V7  V6  V13 V10 V4  V19 V1  V8  V11 V3  V17 V16 V2 
T52 V6  V9  V2  V20 V5  V18 V4  V12 V3  V17 V11 V16 V19 V13 V10 V8  V15 V1  V14 V7 
T53 V11 V15 V14 V13 V12 V18 V17 V16 V20 V19 V1  V5  V4  V3  V2  V8  V7  V6  V10 V9 
T54 V16 V11 V10 V13 V19 V14 V1  V15 V8  V7  V9  V6  V5  V20 V2  V3  V12 V4  V18 V17
T55 V1  V7  V10 V3  V16 V18 V19 V5  V13 V4  V6  V12 V17 V20 V14 V8  V9  V11 V2  V15
T56 V13 V19 V16 V11 V10 V8  V7  V14 V1  V15 V20 V2  V9  V6  V5  V18 V17 V3  V12 V4 
T57 V11 V17 V19 V14 V8  V6  V10 V12 V4  V13 V18 V5  V7  V9  V3  V16 V20 V1  V15 V2 
T58 V9  V2  V20 V5  V6  V4  V12 V3  V17 V18 V16 V19 V13 V10 V11 V15 V1  V14 V7  V8 
T59 V11 V10 V13 V19 V16 V1  V15 V8  V7  V14 V6  V5  V20 V2  V9  V12 V4  V18 V17 V3 
T60 V15 V16 V18 V13 V7  V10 V9  V11 V3  V12 V17 V4  V6  V8  V2  V20 V19 V5  V14 V1 


Table of $T_i\cdot T_j=T_k$:
    T1  T2  T3  T4  T5  T6  T7  T8  T9  T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
T1  T1  T2  T3  T4  T5  T6  T7  T8  T9  T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
T2  T2  T4  T60 T6  T8  T10 T12 T14 T16 T1  T19 T21 T15 T24 T25 T27 T29 T31 T33 T22 T36 T37 T9  T40 T41 T28 T43 T44 T46 T48 T49 T34 T51 T52 T13 T54 T55 T26 T56 T5  T35 T17 T23 T53 T47 T58 T32 T18 T30 T20 T59 T45 T38 T7  T50 T3  T39 T42 T11 T57
T3  T3  T5  T29 T7  T9  T11 T13 T15 T17 T18 T20 T22 T23 T12 T26 T28 T30 T32 T34 T35 T19 T38 T39 T6  T37 T42 T25 T45 T47 T2  T46 T50 T31 T53 T24 T10 T52 T43 T4  T56 T21 T57 T14 T55 T49 T44 T51 T59 T60 T36 T1  T58 T41 T40 T33 T48 T8  T27 T54 T16
T4  T4  T6  T57 T10 T14 T1  T21 T24 T27 T2  T33 T36 T25 T40 T41 T43 T46 T49 T51 T37 T54 T55 T16 T5  T35 T44 T23 T53 T58 T18 T30 T52 T59 T45 T15 T7  T50 T28 T3  T8  T13 T29 T9  T38 T32 T42 T34 T31 T48 T22 T11 T47 T26 T12 T20 T60 T56 T17 T19 T39
T5  T5  T7  T16 T11 T15 T18 T22 T12 T28 T3  T34 T19 T26 T6  T37 T25 T47 T46 T31 T38 T10 T52 T17 T56 T21 T45 T14 T55 T44 T59 T60 T53 T1  T58 T23 T40 T33 T42 T48 T9  T24 T30 T39 T41 T51 T27 T50 T32 T2  T35 T54 T49 T43 T13 T36 T29 T4  T57 T20 T8 
T6  T6  T10 T39 T1  T24 T2  T36 T40 T43 T4  T51 T54 T41 T5  T35 T23 T58 T30 T59 T55 T7  T50 T27 T8  T13 T53 T9  T38 T42 T31 T48 T45 T11 T47 T25 T12 T20 T44 T60 T14 T15 T46 T16 T26 T34 T17 T52 T49 T18 T37 T19 T32 T28 T21 T22 T57 T3  T29 T33 T56
T7  T7  T11 T8  T18 T12 T3  T19 T6  T25 T5  T31 T10 T37 T56 T21 T14 T44 T60 T1  T52 T40 T33 T28 T9  T24 T55 T39 T41 T27 T32 T2  T58 T54 T49 T26 T13 T36 T45 T29 T15 T23 T47 T17 T43 T50 T57 T53 T46 T59 T38 T20 T51 T42 T22 T35 T16 T48 T30 T34 T4 
T8  T8  T12 T27 T19 T25 T31 T37 T21 T44 T60 T52 T33 T28 T10 T55 T41 T32 T58 T49 T26 T1  T45 T29 T3  T36 T47 T24 T50 T53 T11 T57 T38 T2  T42 T9  T5  T51 T17 T18 T16 T40 T48 T56 T35 T59 T43 T20 T34 T4  T13 T7  T30 T23 T15 T54 T46 T6  T39 T22 T14
T9  T9  T13 T28 T20 T26 T32 T38 T22 T45 T29 T53 T34 T42 T11 T52 T37 T51 T44 T46 T43 T18 T58 T30 T48 T19 T49 T12 T33 T55 T54 T16 T41 T3  T27 T39 T56 T31 T57 T59 T17 T6  T2  T4  T21 T1  T25 T36 T50 T5  T24 T40 T60 T14 T23 T10 T47 T7  T8  T35 T15
T10 T10 T1  T56 T2  T40 T4  T54 T5  T23 T6  T59 T7  T35 T8  T13 T9  T42 T48 T11 T50 T12 T20 T43 T14 T15 T38 T16 T26 T17 T49 T18 T47 T19 T32 T41 T21 T22 T53 T57 T24 T25 T58 T27 T28 T52 T29 T45 T30 T31 T55 T33 T34 T44 T36 T37 T39 T60 T46 T51 T3 
T11 T11 T18 T4  T3  T6  T5  T10 T56 T14 T7  T1  T40 T21 T9  T24 T39 T27 T2  T54 T33 T13 T36 T25 T15 T23 T41 T17 T43 T57 T46 T59 T49 T20 T51 T37 T22 T35 T55 T16 T12 T26 T44 T28 T42 T53 T30 T58 T60 T32 T52 T34 T50 T45 T19 T38 T8  T29 T47 T31 T48
T12 T12 T19 T14 T31 T21 T60 T33 T10 T41 T8  T49 T1  T55 T3  T36 T24 T53 T57 T2  T45 T5  T51 T44 T16 T40 T50 T56 T35 T43 T34 T4  T42 T7  T30 T28 T15 T54 T47 T46 T25 T9  T32 T29 T23 T20 T39 T38 T58 T11 T26 T22 T59 T17 T37 T13 T27 T18 T48 T52 T6 
T13 T13 T20 T15 T32 T22 T29 T34 T11 T37 T9  T46 T18 T52 T48 T19 T12 T55 T16 T3  T58 T56 T31 T45 T17 T6  T33 T4  T21 T25 T50 T5  T27 T40 T60 T42 T23 T10 T49 T47 T26 T39 T51 T30 T14 T36 T8  T41 T44 T54 T43 T35 T1  T57 T38 T24 T28 T59 T2  T53 T7 
T14 T14 T21 T43 T33 T41 T49 T55 T36 T53 T57 T45 T51 T44 T1  T50 T35 T34 T42 T30 T28 T2  T47 T46 T60 T54 T32 T40 T20 T38 T19 T39 T26 T4  T17 T16 T8  T59 T29 T31 T27 T5  T18 T3  T13 T11 T23 T22 T52 T6  T15 T12 T48 T9  T25 T7  T58 T10 T56 T37 T24
T15 T15 T22 T25 T34 T37 T46 T52 T19 T55 T16 T58 T31 T45 T18 T33 T21 T50 T27 T60 T42 T3  T49 T47 T29 T10 T51 T6  T36 T41 T20 T8  T43 T5  T57 T17 T9  T1  T30 T32 T28 T56 T59 T48 T24 T54 T14 T35 T53 T7  T23 T13 T2  T39 T26 T40 T44 T11 T4  T38 T12
T16 T16 T15 T44 T22 T28 T34 T26 T37 T47 T46 T38 T52 T17 T19 T45 T55 T59 T53 T58 T23 T31 T42 T48 T18 T33 T30 T21 T51 T50 T7  T27 T35 T60 T43 T56 T3  T49 T39 T11 T29 T10 T4  T6  T36 T2  T41 T54 T20 T8  T40 T5  T57 T24 T9  T1  T32 T12 T14 T13 T25
T17 T17 T23 T45 T35 T42 T50 T43 T38 T49 T47 T41 T53 T57 T20 T58 T52 T1  T55 T44 T14 T32 T27 T2  T59 T34 T60 T22 T31 T33 T40 T28 T21 T29 T25 T4  T48 T46 T8  T54 T30 T11 T5  T7  T19 T3  T37 T10 T36 T9  T6  T56 T16 T12 T39 T18 T51 T13 T15 T24 T26
T18 T18 T3  T48 T5  T56 T7  T40 T9  T39 T11 T54 T13 T24 T15 T23 T17 T57 T59 T20 T36 T22 T35 T14 T12 T26 T43 T28 T42 T30 T60 T32 T51 T34 T50 T21 T19 T38 T41 T8  T6  T37 T27 T25 T45 T58 T47 T49 T2  T46 T33 T31 T53 T55 T10 T52 T4  T16 T44 T1  T29
T19 T19 T31 T6  T60 T10 T8  T1  T3  T24 T12 T2  T5  T36 T16 T40 T56 T43 T4  T7  T51 T15 T54 T41 T25 T9  T35 T29 T23 T39 T58 T11 T30 T22 T59 T55 T37 T13 T50 T27 T21 T28 T53 T44 T17 T38 T48 T42 T57 T34 T45 T52 T20 T47 T33 T26 T14 T46 T32 T49 T18
T20 T20 T32 T7  T29 T11 T9  T18 T48 T12 T13 T3  T56 T19 T17 T6  T4  T25 T5  T40 T31 T23 T10 T37 T26 T39 T21 T30 T14 T8  T44 T54 T60 T35 T1  T52 T38 T24 T33 T28 T22 T42 T55 T45 T57 T41 T2  T27 T16 T50 T58 T53 T36 T49 T34 T43 T15 T47 T51 T46 T59
T21 T21 T33 T24 T49 T36 T57 T51 T1  T35 T14 T30 T2  T50 T60 T54 T40 T38 T39 T4  T47 T8  T59 T53 T27 T5  T20 T3  T13 T23 T52 T6  T17 T12 T48 T44 T25 T7  T32 T58 T41 T16 T34 T46 T9  T22 T56 T26 T42 T19 T28 T37 T11 T29 T55 T15 T43 T31 T18 T45 T10
T22 T22 T34 T12 T46 T19 T16 T31 T18 T21 T15 T60 T3  T33 T29 T10 T6  T41 T8  T5  T49 T9  T1  T55 T28 T56 T36 T48 T24 T14 T53 T7  T57 T13 T2  T45 T26 T40 T51 T44 T37 T17 T50 T47 T39 T35 T4  T43 T27 T20 T42 T38 T54 T30 T52 T23 T25 T32 T59 T58 T11
T23 T23 T35 T26 T50 T38 T47 T53 T20 T52 T17 T44 T32 T58 T59 T34 T22 T33 T28 T29 T27 T48 T46 T49 T30 T11 T31 T7  T19 T37 T36 T9  T25 T56 T16 T57 T39 T18 T60 T51 T42 T4  T1  T2  T12 T10 T15 T21 T55 T40 T14 T24 T3  T8  T43 T6  T45 T54 T5  T41 T13
T24 T24 T36 T23 T51 T35 T30 T50 T54 T38 T39 T47 T59 T53 T2  T20 T13 T52 T17 T48 T44 T4  T32 T58 T57 T7  T34 T5  T22 T26 T33 T56 T28 T6  T29 T27 T14 T11 T46 T49 T43 T8  T31 T60 T15 T19 T9  T37 T45 T10 T25 T21 T18 T16 T41 T12 T42 T1  T3  T55 T40
T25 T25 T37 T41 T52 T55 T58 T45 T33 T50 T27 T42 T49 T47 T31 T51 T36 T20 T43 T57 T17 T60 T30 T32 T46 T1  T59 T10 T54 T35 T22 T14 T23 T8  T39 T29 T16 T2  T48 T34 T44 T3  T11 T18 T40 T7  T24 T13 T38 T12 T9  T15 T4  T56 T28 T5  T53 T19 T6  T26 T21
T26 T26 T38 T37 T53 T52 T44 T58 T34 T33 T28 T27 T46 T49 T32 T31 T19 T36 T25 T16 T57 T29 T60 T51 T47 T18 T1  T11 T10 T21 T35 T15 T14 T9  T8  T30 T17 T3  T2  T50 T45 T48 T54 T59 T6  T40 T12 T24 T41 T13 T39 T23 T5  T4  T42 T56 T55 T20 T7  T43 T22
T27 T27 T25 T53 T37 T44 T52 T28 T55 T32 T58 T26 T45 T29 T33 T47 T50 T11 T38 T42 T9  T49 T17 T18 T31 T51 T48 T36 T59 T20 T12 T43 T13 T57 T23 T3  T60 T30 T56 T19 T46 T1  T6  T10 T54 T4  T35 T7  T22 T14 T5  T8  T39 T40 T16 T2  T34 T21 T24 T15 T41
T28 T28 T26 T55 T38 T45 T53 T42 T52 T51 T44 T43 T58 T30 T34 T49 T33 T54 T41 T27 T39 T46 T57 T59 T32 T31 T2  T19 T1  T36 T13 T25 T24 T16 T14 T48 T29 T60 T4  T20 T47 T18 T7  T11 T10 T5  T21 T40 T35 T15 T56 T9  T8  T6  T17 T3  T50 T22 T12 T23 T37
T29 T29 T9  T47 T13 T17 T20 T23 T26 T30 T32 T35 T38 T39 T22 T42 T45 T2  T50 T53 T24 T34 T43 T4  T11 T52 T57 T37 T49 T51 T5  T44 T36 T46 T41 T6  T18 T58 T14 T7  T48 T19 T8  T12 T33 T60 T55 T1  T54 T16 T10 T3  T27 T21 T56 T31 T59 T15 T25 T40 T28
T30 T30 T39 T49 T24 T57 T36 T14 T43 T60 T51 T21 T41 T8  T35 T27 T58 T3  T33 T55 T12 T50 T25 T5  T54 T53 T16 T38 T46 T31 T56 T45 T19 T47 T37 T7  T59 T44 T15 T40 T2  T20 T9  T13 T34 T29 T52 T18 T10 T17 T11 T48 T28 T22 T4  T32 T1  T23 T26 T6  T42
T31 T31 T60 T18 T8  T3  T12 T5  T16 T56 T19 T7  T15 T40 T25 T9  T29 T39 T11 T22 T54 T37 T13 T24 T21 T28 T23 T44 T17 T48 T57 T34 T59 T52 T20 T36 T33 T26 T35 T14 T10 T55 T43 T41 T47 T42 T32 T30 T4  T58 T51 T49 T38 T50 T1  T45 T6  T27 T53 T2  T46
T32 T32 T29 T59 T9  T48 T13 T56 T17 T4  T20 T40 T23 T6  T26 T39 T30 T8  T54 T35 T10 T38 T24 T12 T22 T42 T14 T45 T57 T2  T16 T50 T1  T53 T36 T19 T34 T43 T21 T15 T11 T52 T25 T37 T49 T27 T51 T60 T5  T44 T31 T46 T41 T33 T18 T58 T7  T28 T55 T3  T47
T33 T33 T49 T10 T57 T1  T14 T2  T60 T40 T21 T4  T8  T54 T27 T5  T3  T23 T6  T12 T59 T25 T7  T35 T41 T16 T13 T46 T9  T56 T42 T19 T48 T37 T11 T50 T55 T15 T20 T43 T36 T44 T38 T53 T29 T26 T18 T17 T39 T52 T47 T45 T22 T32 T51 T28 T24 T58 T34 T30 T31
T34 T34 T46 T11 T16 T18 T15 T3  T29 T6  T22 T5  T9  T10 T28 T56 T48 T14 T7  T13 T1  T26 T40 T21 T37 T17 T24 T47 T39 T4  T27 T20 T2  T38 T54 T33 T52 T23 T36 T25 T19 T45 T41 T55 T30 T43 T59 T57 T8  T53 T49 T58 T35 T51 T31 T42 T12 T44 T50 T60 T32
T35 T35 T50 T13 T47 T20 T17 T32 T59 T22 T23 T29 T48 T34 T30 T11 T7  T37 T9  T56 T46 T39 T18 T52 T42 T4  T19 T2  T12 T15 T55 T40 T16 T24 T3  T58 T43 T6  T31 T45 T38 T57 T33 T49 T8  T21 T5  T25 T28 T36 T27 T41 T10 T60 T53 T14 T26 T51 T1  T44 T54
T36 T36 T51 T40 T30 T54 T39 T59 T2  T13 T24 T48 T4  T20 T57 T7  T5  T26 T56 T6  T32 T14 T11 T38 T43 T8  T22 T60 T15 T9  T45 T10 T29 T21 T18 T53 T41 T12 T34 T42 T35 T27 T52 T58 T16 T37 T3  T28 T17 T33 T44 T55 T19 T46 T50 T25 T23 T49 T31 T47 T1 
T37 T37 T52 T21 T58 T33 T27 T49 T31 T36 T25 T57 T60 T51 T46 T1  T10 T35 T14 T8  T30 T16 T2  T50 T44 T3  T54 T18 T40 T24 T38 T12 T39 T15 T4  T47 T28 T5  T59 T53 T55 T29 T20 T32 T56 T13 T6  T23 T43 T22 T17 T26 T7  T48 T45 T9  T41 T34 T11 T42 T19
T38 T38 T53 T22 T44 T34 T28 T46 T32 T19 T26 T16 T29 T31 T47 T18 T11 T21 T15 T9  T60 T17 T3  T33 T45 T48 T10 T59 T6  T12 T41 T13 T8  T23 T5  T49 T42 T56 T1  T55 T52 T30 T36 T51 T4  T24 T7  T14 T25 T35 T57 T43 T40 T2  T58 T39 T37 T50 T54 T27 T20
T39 T39 T24 T42 T36 T43 T51 T41 T35 T58 T30 T55 T50 T27 T54 T53 T38 T31 T45 T47 T25 T59 T44 T60 T2  T20 T46 T13 T34 T52 T10 T17 T37 T48 T28 T8  T4  T32 T16 T1  T57 T7  T3  T5  T22 T18 T26 T19 T33 T56 T12 T6  T29 T15 T14 T11 T49 T40 T9  T21 T23
T40 T40 T54 T9  T59 T13 T48 T20 T7  T26 T56 T32 T11 T38 T4  T22 T15 T45 T29 T18 T53 T6  T34 T42 T39 T12 T52 T8  T37 T28 T51 T3  T44 T10 T46 T43 T24 T19 T58 T30 T23 T14 T49 T57 T25 T33 T16 T55 T47 T1  T41 T36 T31 T27 T35 T21 T17 T2  T60 T50 T5 
T41 T41 T55 T35 T45 T50 T42 T47 T51 T20 T43 T17 T30 T32 T49 T59 T54 T22 T23 T39 T29 T57 T48 T34 T58 T2  T11 T1  T7  T13 T37 T24 T9  T14 T56 T46 T27 T4  T18 T52 T53 T60 T19 T31 T5  T12 T40 T15 T26 T21 T16 T25 T6  T3  T44 T8  T38 T33 T10 T28 T36
T42 T42 T43 T52 T41 T58 T55 T27 T53 T31 T45 T25 T44 T60 T50 T46 T34 T10 T37 T28 T8  T47 T16 T1  T51 T32 T3  T20 T18 T19 T24 T26 T12 T17 T15 T2  T30 T29 T5  T36 T49 T59 T40 T54 T11 T56 T22 T6  T21 T23 T4  T39 T9  T7  T57 T48 T33 T35 T13 T14 T38
T43 T43 T41 T38 T55 T53 T45 T44 T50 T34 T42 T28 T47 T46 T51 T32 T20 T19 T26 T17 T16 T30 T29 T31 T49 T59 T18 T54 T11 T22 T21 T23 T15 T39 T9  T60 T57 T48 T3  T33 T58 T2  T10 T1  T7  T6  T13 T12 T37 T24 T8  T14 T56 T5  T27 T4  T52 T36 T40 T25 T35
T44 T44 T28 T50 T26 T47 T38 T17 T45 T59 T53 T23 T42 T48 T52 T30 T51 T7  T35 T43 T56 T58 T39 T11 T34 T49 T4  T33 T2  T54 T15 T41 T40 T27 T24 T18 T46 T57 T6  T22 T32 T31 T12 T19 T1  T8  T36 T5  T13 T25 T3  T16 T14 T10 T29 T60 T20 T37 T21 T9  T55
T45 T45 T42 T33 T43 T49 T41 T57 T58 T1  T55 T14 T27 T2  T53 T60 T31 T40 T21 T25 T4  T44 T8  T54 T50 T46 T5  T34 T3  T10 T23 T37 T6  T28 T12 T59 T47 T16 T7  T35 T51 T32 T13 T20 T18 T9  T19 T56 T24 T26 T48 T17 T15 T11 T30 T29 T36 T38 T22 T39 T52
T46 T46 T16 T32 T15 T29 T22 T9  T28 T48 T34 T13 T26 T56 T37 T17 T47 T4  T20 T38 T40 T52 T23 T6  T19 T45 T39 T55 T30 T59 T8  T53 T54 T58 T35 T10 T31 T42 T24 T12 T18 T33 T14 T21 T51 T57 T50 T2  T7  T27 T1  T60 T43 T36 T3  T49 T11 T25 T41 T5  T44
T47 T47 T17 T51 T23 T30 T35 T39 T42 T2  T50 T24 T43 T4  T38 T57 T49 T5  T36 T41 T6  T53 T14 T7  T20 T58 T8  T52 T60 T1  T9  T55 T10 T44 T21 T11 T32 T27 T12 T13 T59 T34 T15 T22 T31 T16 T33 T3  T40 T28 T18 T29 T25 T19 T48 T46 T54 T26 T37 T56 T45
T48 T48 T56 T30 T40 T39 T54 T24 T23 T57 T59 T36 T35 T14 T13 T43 T42 T60 T51 T50 T21 T20 T41 T8  T7  T38 T27 T26 T58 T49 T3  T47 T33 T32 T55 T12 T11 T53 T25 T5  T4  T22 T16 T15 T52 T46 T45 T31 T1  T29 T19 T18 T44 T37 T6  T34 T2  T9  T28 T10 T17
T49 T49 T57 T31 T14 T60 T21 T8  T27 T3  T33 T12 T25 T5  T41 T16 T46 T56 T19 T37 T7  T55 T15 T40 T36 T44 T9  T53 T29 T18 T39 T52 T11 T45 T22 T54 T51 T28 T13 T24 T1  T50 T23 T35 T32 T17 T34 T48 T6  T42 T59 T30 T26 T20 T2  T47 T10 T43 T38 T4  T58
T50 T50 T47 T54 T17 T59 T23 T48 T30 T7  T35 T56 T39 T11 T42 T4  T2  T15 T40 T24 T18 T43 T6  T22 T38 T57 T12 T49 T8  T5  T28 T36 T3  T41 T10 T34 T53 T14 T19 T26 T20 T58 T37 T52 T60 T25 T1  T16 T9  T55 T46 T44 T21 T31 T32 T27 T13 T45 T33 T29 T51
T51 T51 T30 T1  T39 T2  T24 T4  T57 T5  T36 T6  T14 T7  T43 T8  T60 T9  T10 T21 T11 T41 T12 T13 T35 T27 T15 T58 T16 T3  T17 T33 T18 T55 T19 T20 T50 T25 T22 T23 T54 T53 T26 T38 T46 T28 T31 T29 T56 T45 T32 T47 T37 T34 T59 T44 T40 T42 T52 T48 T49
T52 T52 T58 T19 T27 T31 T25 T60 T46 T10 T37 T8  T16 T1  T44 T3  T18 T24 T12 T15 T2  T28 T5  T36 T55 T29 T40 T32 T56 T6  T43 T22 T4  T26 T7  T51 T45 T9  T54 T41 T33 T47 T35 T50 T48 T23 T11 T39 T14 T38 T30 T42 T13 T59 T49 T17 T21 T53 T20 T57 T34
T53 T53 T44 T20 T28 T32 T26 T29 T47 T11 T38 T9  T17 T18 T45 T48 T59 T12 T13 T23 T3  T42 T56 T19 T52 T30 T6  T51 T4  T7  T25 T35 T5  T43 T40 T31 T58 T39 T10 T37 T34 T49 T21 T33 T2  T14 T54 T8  T15 T41 T60 T27 T24 T1  T46 T57 T22 T55 T36 T16 T50
T54 T54 T59 T5  T48 T7  T56 T11 T4  T15 T40 T18 T6  T22 T39 T12 T8  T28 T3  T10 T34 T24 T19 T26 T23 T14 T37 T57 T25 T16 T47 T1  T46 T36 T31 T38 T35 T21 T52 T17 T13 T43 T45 T42 T27 T55 T60 T44 T29 T51 T53 T50 T33 T58 T20 T41 T9  T30 T49 T32 T2 
T55 T55 T45 T36 T42 T51 T43 T30 T49 T54 T41 T39 T57 T59 T58 T2  T1  T13 T24 T14 T48 T27 T4  T20 T53 T60 T7  T31 T5  T40 T26 T21 T56 T25 T6  T32 T44 T8  T11 T38 T50 T46 T22 T34 T3  T15 T10 T9  T23 T37 T29 T28 T12 T18 T47 T16 T35 T52 T19 T17 T33
T56 T56 T40 T17 T54 T23 T59 T35 T13 T42 T48 T50 T20 T43 T7  T38 T26 T49 T47 T32 T41 T11 T53 T57 T4  T22 T58 T15 T52 T45 T1  T29 T55 T18 T44 T14 T6  T34 T27 T2  T39 T12 T60 T8  T37 T31 T28 T33 T51 T3  T21 T10 T46 T25 T24 T19 T30 T5  T16 T36 T9 
T57 T57 T14 T58 T21 T27 T33 T25 T41 T46 T49 T37 T55 T16 T36 T44 T53 T18 T52 T45 T15 T51 T28 T3  T1  T50 T29 T35 T32 T34 T6  T42 T22 T30 T26 T5  T2  T47 T9  T10 T60 T54 T56 T40 T20 T48 T38 T11 T19 T39 T7  T4  T17 T13 T8  T59 T31 T24 T23 T12 T43
T58 T58 T27 T34 T25 T46 T37 T16 T44 T18 T52 T15 T28 T3  T55 T29 T32 T6  T22 T26 T5  T45 T9  T10 T33 T47 T56 T50 T48 T11 T14 T38 T7  T42 T13 T1  T49 T17 T40 T21 T31 T51 T24 T36 T59 T39 T20 T4  T12 T43 T2  T57 T23 T54 T60 T30 T19 T41 T35 T8  T53
T59 T59 T48 T2  T56 T4  T40 T6  T39 T8  T54 T10 T24 T12 T23 T14 T57 T16 T1  T36 T19 T35 T21 T15 T13 T43 T25 T42 T27 T60 T29 T51 T31 T50 T33 T22 T20 T41 T37 T9  T7  T38 T28 T26 T58 T44 T49 T46 T3  T47 T34 T32 T55 T52 T11 T53 T5  T17 T45 T18 T30
T60 T60 T8  T46 T12 T16 T19 T15 T25 T29 T31 T22 T37 T9  T21 T28 T44 T48 T34 T52 T13 T33 T26 T56 T10 T55 T17 T41 T47 T32 T4  T58 T20 T49 T38 T40 T1  T45 T23 T6  T3  T36 T39 T24 T50 T30 T53 T59 T11 T57 T54 T2  T42 T35 T5  T51 T18 T14 T43 T7  T27