$
\def\MA{{\frac{3+\sqrt{5}}{2}}}
\def\MB{{\frac{-1+\sqrt{5}}{4}}}
\def\MC{{\frac{1+\sqrt{5}}{4}}}
\def\MD{{\frac{1-\sqrt{5}}{4}}}
\def\ME{{\frac{1}{2}}}
\def\MF{{\frac{1+\sqrt{5}}{2}}}
\def\MG{{\frac{3(3+\sqrt{5})}{2}}}
\def\MH{{\frac{\sqrt{5}(3+\sqrt{5})}{2}}}
$
Dodecahedron
Initial vertex: $V_1=\left[\begin{matrix}\MA\\-1\\0\end{matrix}\right]$
Transforms for vertex generation:
$\tilde{T}_i\in\left\{
\left[\begin{matrix}1&0&0\\0&1&0\\0&0&1\end{matrix}\right],
\left[\begin{matrix}\MB&-\MC&-\ME\\ \MC&\ME&\MD\\ \ME&\MD&\MC\end{matrix}\right],
\left[\begin{matrix}\MC&\ME&\MD\\-\ME&\MB&-\MC\\ \MD&\MC&\ME\end{matrix}\right]
\right\}$
Vertexes:
$T_2 V_1=\left[\begin{matrix}\MF\\ \MF\\ \MF\end{matrix}\right]=V_2$
$T_2 V_2=\left[\begin{matrix}-\MF\\ \MF\\ \MF\end{matrix}\right]=V_3$
$T_2 V_3=\left[\begin{matrix}-\MA\\-1\\0\end{matrix}\right]=V_4$
$T_2 V_4=\left[\begin{matrix}0\\-\MA\\-1\end{matrix}\right]=V_5$
$T_3 V_5=\left[\begin{matrix}-1\\0\\-\MA\end{matrix}\right]=V_6$
$T_2 V_6=\left[\begin{matrix}1\\0\\-\MA\end{matrix}\right]=V_7$
$T_2 V_7=\left[\begin{matrix}\MF\\ \MF\\-\MF\end{matrix}\right]=V_8$
$T_2 V_8=\left[\begin{matrix}0\\ \MA\\-1\end{matrix}\right]=V_9$
$T_2 V_9=\left[\begin{matrix}-\MF\\ \MF\\-\MF\end{matrix}\right]=V_{10}$
$T_3 V_{10}=\left[\begin{matrix}0\\ \MA\\1\end{matrix}\right]=V_{11}$
$T_2 V_{11}=\left[\begin{matrix}-\MA\\1\\0\end{matrix}\right]=V_{12}$
$T_2 V_{12}=\left[\begin{matrix}-\MF\\-\MF\\-\MF\end{matrix}\right]=V_{13}$
$T_2 V_{13}=\left[\begin{matrix}\MF\\-\MF\\-\MF\end{matrix}\right]=V_{14}$
$T_2 V_{14}=\left[\begin{matrix}\MA\\1\\0\end{matrix}\right]=V_{15}$
$T_3 V_{11}=\left[\begin{matrix}1\\0\\ \MA\end{matrix}\right]=V_{16}$
$T_2 V_{16}=\left[\begin{matrix}-1\\0\\ \MA\end{matrix}\right]=V_{17}$
$T_2 V_{17}=\left[\begin{matrix}-\MF\\-\MF\\ \MF\end{matrix}\right]=V_{18}$
$T_2 V_{18}=\left[\begin{matrix}0\\-\MA\\1\end{matrix}\right]=V_{19}$
$T_2 V_{19}=\left[\begin{matrix}\MF\\-\MF\\ \MF\end{matrix}\right]=V_{20}$
All Transforms:
$T_2 T_2=\left[\begin{matrix}-\MC&-\ME&\MD\\ \ME&\MD&-\MC\\ \MB&-\MC&\ME\end{matrix}\right]=T_4$
$T_3 T_2=\left[\begin{matrix}\ME&\MD&-\MC\\ \MD&\MC&-\ME\\ \MC&\ME&\MB\end{matrix}\right]=T_5$
$T_2 T_4=\left[\begin{matrix}-\MC&\ME&\MB\\-\ME&\MD&-\MC\\ \MD&-\MC&\ME\end{matrix}\right]=T_6$
$T_3 T_4=\left[\begin{matrix}-\ME&\MD&-\MC\\ \MB&\MC&-\ME\\ \MC&-\ME&\MD\end{matrix}\right]=T_7$
$T_2 T_5=\left[\begin{matrix}0&-1&0\\0&0&-1\\1&0&0\end{matrix}\right]=T_8$
$T_3 T_5=\left[\begin{matrix}0&0&-1\\-1&0&0\\0&1&0\end{matrix}\right]=T_9$
$T_2 T_6=\left[\begin{matrix}\MB&\MC&\ME\\-\MC&\ME&\MD\\-\ME&\MD&\MC\end{matrix}\right]=T_{10}$
$T_3 T_6=\left[\begin{matrix}-\MC&\ME&\MD\\ \ME&\MB&-\MC\\ \MD&-\MC&-\ME\end{matrix}\right]=T_{11}$
$T_2 T_7=\left[\begin{matrix}-\MC&-\ME&\MB\\-\ME&\MB&-\MC\\ \MB&-\MC&-\ME\end{matrix}\right]=T_{12}$
$T_3 T_7=\left[\begin{matrix}-\ME&\MB&-\MC\\ \MD&\MC&\ME\\ \MC&\ME&\MD\end{matrix}\right]=T_{13}$
$T_2 T_8=\left[\begin{matrix}-\ME&\MD&\MC\\ \MD&-\MC&-\ME\\ \MC&-\ME&\MB\end{matrix}\right]=T_{14}$
$T_3 T_8=\left[\begin{matrix}\MD&-\MC&-\ME\\-\MC&\ME&\MD\\ \ME&\MB&-\MC\end{matrix}\right]=T_{15}$
$T_2 T_9=\left[\begin{matrix}\MC&-\ME&\MD\\-\ME&\MD&-\MC\\ \MB&\MC&-\ME\end{matrix}\right]=T_{16}$
$T_3 T_9=\left[\begin{matrix}-\ME&\MD&-\MC\\ \MD&-\MC&\ME\\-\MC&\ME&\MB\end{matrix}\right]=T_{17}$
$T_3 T_{10}=\left[\begin{matrix}0&1&0\\0&0&-1\\-1&0&0\end{matrix}\right]=T_{18}$
$T_2 T_{11}=\left[\begin{matrix}-\ME&\MB&\MC\\ \MD&\MC&-\ME\\-\MC&-\ME&\MD\end{matrix}\right]=T_{19}$
$T_3 T_{11}=\left[\begin{matrix}\MD&\MC&-\ME\\ \MC&\ME&\MB\\ \ME&\MD&-\MC\end{matrix}\right]=T_{20}$
$T_2 T_{12}=\left[\begin{matrix}0&0&1\\-1&0&0\\0&-1&0\end{matrix}\right]=T_{21}$
$T_3 T_{12}=\left[\begin{matrix}-1&0&0\\0&1&0\\0&0&-1\end{matrix}\right]=T_{22}$
$T_3 T_{13}=\left[\begin{matrix}-\MC&\ME&\MD\\-\ME&\MD&\MC\\ \MB&\MC&\ME\end{matrix}\right]=T_{23}$
$T_2 T_{14}=\left[\begin{matrix}\MD&\MC&\ME\\-\MC&-\ME&\MB\\ \ME&\MD&\MC\end{matrix}\right]=T_{24}$
$T_2 T_{15}=\left[\begin{matrix}\MB&-\MC&\ME\\-\MC&-\ME&\MD\\ \ME&\MD&-\MC\end{matrix}\right]=T_{25}$
$T_3 T_{15}=\left[\begin{matrix}-\MC&-\ME&\MD\\-\ME&\MB&\MC\\ \MD&\MC&-\ME\end{matrix}\right]=T_{26}$
$T_2 T_{16}=\left[\begin{matrix}\ME&\MD&\MC\\ \MB&-\MC&-\ME\\ \MC&\ME&\MD\end{matrix}\right]=T_{27}$
$T_3 T_{16}=\left[\begin{matrix}\MB&-\MC&-\ME\\-\MC&-\ME&\MB\\-\ME&\MB&-\MC\end{matrix}\right]=T_{28}$
$T_2 T_{17}=\left[\begin{matrix}\ME&\MB&-\MC\\ \MD&-\MC&-\ME\\-\MC&\ME&\MD\end{matrix}\right]=T_{29}$
$T_3 T_{17}=\left[\begin{matrix}\MD&-\MC&-\ME\\ \MC&-\ME&\MB\\-\ME&\MD&\MC\end{matrix}\right]=T_{30}$
$T_2 T_{18}=\left[\begin{matrix}\ME&\MB&\MC\\ \MB&\MC&-\ME\\-\MC&\ME&\MB\end{matrix}\right]=T_{31}$
$T_3 T_{18}=\left[\begin{matrix}\MB&\MC&-\ME\\ \MC&-\ME&\MD\\-\ME&\MD&-\MC\end{matrix}\right]=T_{32}$
$T_2 T_{19}=\left[\begin{matrix}\ME&\MD&\MC\\ \MD&\MC&\ME\\-\MC&-\ME&\MB\end{matrix}\right]=T_{33}$
$T_3 T_{19}=\left[\begin{matrix}\MD&\MC&\ME\\ \MC&\ME&\MD\\-\ME&\MB&-\MC\end{matrix}\right]=T_{34}$
$T_3 T_{20}=\left[\begin{matrix}0&1&0\\0&0&1\\1&0&0\end{matrix}\right]=T_{35}$
$T_2 T_{21}=\left[\begin{matrix}\MC&\ME&\MB\\-\ME&\MB&\MC\\ \MB&-\MC&\ME\end{matrix}\right]=T_{36}$
$T_2 T_{22}=\left[\begin{matrix}\MD&-\MC&\ME\\-\MC&\ME&\MB\\-\ME&\MD&-\MC\end{matrix}\right]=T_{37}$
$T_3 T_{22}=\left[\begin{matrix}-\MC&\ME&\MB\\ \ME&\MB&\MC\\ \MB&\MC&-\ME\end{matrix}\right]=T_{38}$
$T_3 T_{23}=\left[\begin{matrix}-1&0&0\\0&-1&0\\0&0&1\end{matrix}\right]=T_{39}$
$T_2 T_{24}=\left[\begin{matrix}\MB&\MC&-\ME\\-\MC&\ME&\MB\\ \ME&\MB&\MC\end{matrix}\right]=T_{40}$
$T_2 T_{25}=\left[\begin{matrix}\ME&\MB&\MC\\ \MD&-\MC&\ME\\ \MC&-\ME&\MD\end{matrix}\right]=T_{41}$
$T_3 T_{26}=\left[\begin{matrix}-\MC&-\ME&\MB\\ \ME&\MD&\MC\\ \MD&\MC&\ME\end{matrix}\right]=T_{42}$
$T_2 T_{27}=\left[\begin{matrix}-\ME&\MB&\MC\\ \MB&-\MC&\ME\\ \MC&\ME&\MB\end{matrix}\right]=T_{43}$
$T_2 T_{28}=\left[\begin{matrix}1&0&0\\0&-1&0\\0&0&-1\end{matrix}\right]=T_{44}$
$T_3 T_{28}=\left[\begin{matrix}0&-1&0\\0&0&1\\-1&0&0\end{matrix}\right]=T_{45}$
$T_2 T_{29}=\left[\begin{matrix}\MC&\ME&\MB\\ \ME&\MD&-\MC\\ \MD&\MC&-\ME\end{matrix}\right]=T_{46}$
$T_3 T_{29}=\left[\begin{matrix}\ME&\MD&-\MC\\ \MB&-\MC&\ME\\-\MC&-\ME&\MD\end{matrix}\right]=T_{47}$
$T_2 T_{30}=\left[\begin{matrix}-\ME&\MB&-\MC\\ \MB&-\MC&-\ME\\-\MC&-\ME&\MB\end{matrix}\right]=T_{48}$
$T_2 T_{31}=\left[\begin{matrix}\MB&-\MC&\ME\\ \MC&\ME&\MB\\-\ME&\MB&\MC\end{matrix}\right]=T_{49}$
$T_3 T_{32}=\left[\begin{matrix}\MC&\ME&\MD\\ \ME&\MD&\MC\\ \MB&-\MC&-\ME\end{matrix}\right]=T_{50}$
$T_2 T_{33}=\left[\begin{matrix}\MC&-\ME&\MD\\ \ME&\MB&\MC\\ \MD&-\MC&\ME\end{matrix}\right]=T_{51}$
$T_2 T_{34}=\left[\begin{matrix}-\ME&\MD&\MC\\ \MB&\MC&\ME\\-\MC&\ME&\MD\end{matrix}\right]=T_{52}$
$T_3 T_{34}=\left[\begin{matrix}\MB&\MC&\ME\\ \MC&-\ME&\MB\\ \ME&\MB&-\MC\end{matrix}\right]=T_{53}$
$T_2 T_{36}=\left[\begin{matrix}\ME&\MB&-\MC\\ \MB&\MC&\ME\\ \MC&-\ME&\MB\end{matrix}\right]=T_{54}$
$T_2 T_{37}=\left[\begin{matrix}\MC&-\ME&\MB\\-\ME&\MD&\MC\\ \MD&-\MC&-\ME\end{matrix}\right]=T_{55}$
$T_2 T_{39}=\left[\begin{matrix}\MD&\MC&-\ME\\-\MC&-\ME&\MD\\-\ME&\MB&\MC\end{matrix}\right]=T_{56}$
$T_3 T_{42}=\left[\begin{matrix}\MD&-\MC&\ME\\ \MC&-\ME&\MD\\ \ME&\MB&\MC\end{matrix}\right]=T_{57}$
$T_2 T_{46}=\left[\begin{matrix}0&0&1\\1&0&0\\0&1&0\end{matrix}\right]=T_{58}$
$T_3 T_{48}=\left[\begin{matrix}0&0&-1\\1&0&0\\0&-1&0\end{matrix}\right]=T_{59}$
$T_3 T_{49}=\left[\begin{matrix}\MC&-\ME&\MB\\ \ME&\MB&-\MC\\ \MB&\MC&\ME\end{matrix}\right]=T_{60}$
relabeled vertexes as {1, 20, 15, 14, 16, 2, 19, 5, 8, 7, 17, 18, 11, 9, 13, 6, 3, 4, 10, 12}
Vertexes as column vectors:
$V=\left[\begin{matrix}
\MA&\MF&\MA&\MF&1&\MF&0&0&\MF&1&-1&-\MF&0&0&-\MF&-1&-\MF&-\MA&-\MF&-\MA\\
-1&-\MF&1&-\MF&0&\MF&-\MA&-\MA&\MF&0&0&-\MF&\MA&\MA&-\MF&0&\MF&-1&\MF&1\\
0&\MF&0&-\MF&\MA&\MF&1&-1&-\MF&-\MA&\MA&\MF&1&-1&-\MF&-\MA&\MF&0&-\MF&0
\end{matrix}\right]$
Vertex inner products:
$V^T V=\left[\begin{matrix}
\MA &-1&0\\
\MF&-\MF&\MF\\
\MA&1&0\\
\MF&-\MF&-\MF\\
1&0&\MA\\
\MF&\MF&\MF\\
0&-\MA&1\\
0&-\MA&-1\\
\MF&\MF&-\MF\\
1&0&-\MA\\
-1&0&\MA\\
-\MF&-\MF&\MF\\
0&\MA&1\\
0&\MA&-1\\
-\MF&-\MF&-\MF\\
-1&0&-\MA\\
-\MF&\MF&\MF\\
-\MA&-1&0\\
-\MF&\MF&-\MF\\
-\MA&1&0
\end{matrix}\right]
\left[\begin{matrix}
\MA&\MF&\MA&\MF&1&\MF&0&0&\MF&1&-1&-\MF&0&0&-\MF&-1&-\MF&-\MA&-\MF&-\MA\\
-1&-\MF&1&-\MF&0&\MF&-\MA&-\MA&\MF&0&0&-\MF&\MA&\MA&-\MF&0&\MF&-1&\MF&1\\
0&\MF&0&-\MF&\MA&\MF&1&-1&-\MF&-\MA&\MA&\MF&1&-1&-\MF&-\MA&\MF&0&-\MF&0
\end{matrix}\right]
=\left[\begin{matrix}
\MG&\MH&\MH&\MH&\MA&\MA&\MA&\MA&\MA&\MA&-\MA&-\MA&-\MA&-\MA&-\MA&-\MA&-\MH&-\MH&-\MH&-\MG\\
\MH&\MG&\MA&\MA&\MH&\MA&\MH&\MA&-\MA&-\MA&\MA&\MA&-\MA&-\MH&-\MA&-\MH&-\MA&-\MA&-\MG&-\MH\\
\MH&\MA&\MG&\MA&\MA&\MH&-\MA&-\MA&\MH&\MA&-\MA&-\MH&\MA&\MA&-\MH&-\MA&-\MA&-\MG&-\MA&-\MH\\
\MH&\MA&\MA&\MG&-\MA&-\MA&\MA&\MH&\MA&\MH&-\MH&-\MA&-\MH&-\MA&\MA&\MA&-\MG&-\MA&-\MA&-\MH\\
\MA&\MH&\MA&-\MA&\MG&\MH&\MA&-\MA&-\MA&-\MH&\MH&\MA&\MA&-\MA&-\MH&-\MG&\MA&-\MA&-\MH&-\MA\\
\MA&\MA&\MH&-\MA&\MH&\MG&-\MA&-\MH&\MA&-\MA&\MA&-\MA&\MH&\MA&-\MG&-\MH&\MA&-\MH&-\MA&-\MA\\
\MA&\MH&-\MA&\MA&\MA&-\MA&\MG&\MH&-\MH&-\MA&\MA&\MH&-\MH&-\MG&\MA&-\MA&-\MA&\MA&-\MH&-\MA\\
\MA&\MA&-\MA&\MH&-\MA&-\MH&\MH&\MG&-\MA&\MA&-\MA&\MA&-\MG&-\MH&\MH&\MA&-\MH&\MA&-\MA&-\MA\\
\MA&-\MA&\MH&\MA&-\MA&\MA&-\MH&-\MA&\MG&\MH&-\MH&-\MG&\MA&\MH&-\MA&\MA&-\MA&-\MH&\MA&-\MA\\
\MA&-\MA&\MA&\MH&-\MH&-\MA&-\MA&\MA&\MH&\MG&-\MG&-\MH&-\MA&\MA&\MA&\MH&-\MH&-\MA&\MA&-\MA\\
-\MA&\MA&-\MA&-\MH&\MH&\MA&\MA&-\MA&-\MH&-\MG&\MG&\MH&\MA&-\MA&-\MA&-\MH&\MH&\MA&-\MA&\MA\\
-\MA&\MA&-\MH&-\MA&\MA&-\MA&\MH&\MA&-\MG&-\MH&\MH&\MG&-\MA&-\MH&\MA&-\MA&\MA&\MH&-\MA&\MA\\
-\MA&-\MA&\MA&-\MH&\MA&\MH&-\MH&-\MG&\MA&-\MA&\MA&-\MA&\MG&\MH&-\MH&-\MA&\MH&-\MA&\MA&\MA\\
-\MA&-\MH&\MA&-\MA&-\MA&\MA&-\MG&-\MH&\MH&\MA&-\MA&-\MH&\MH&\MG&-\MA&\MA&\MA&-\MA&\MH&\MA\\
-\MA&-\MA&-\MH&\MA&-\MH&-\MG&\MA&\MH&-\MA&\MA&-\MA&\MA&-\MH&-\MA&\MG&\MH&-\MA&\MH&\MA&\MA\\
-\MA&-\MH&-\MA&\MA&-\MG&-\MH&-\MA&\MA&\MA&\MH&-\MH&-\MA&-\MA&\MA&\MH&\MG&-\MA&\MA&\MH&\MA\\
-\MH&-\MA&-\MA&-\MG&\MA&\MA&-\MA&-\MH&-\MA&-\MH&\MH&\MA&\MH&\MA&-\MA&-\MA&\MG&\MA&\MA&\MH\\
-\MH&-\MA&-\MG&-\MA&-\MA&-\MH&\MA&\MA&-\MH&-\MA&\MA&\MH&-\MA&-\MA&\MH&\MA&\MA&\MG&\MA&\MH\\
-\MH&-\MG&-\MA&-\MA&-\MH&-\MA&-\MH&-\MA&\MA&\MA&-\MA&-\MA&\MA&\MH&\MA&\MH&\MA&\MA&\MG&\MH\\
-\MG&-\MH&-\MH&-\MH&-\MA&-\MA&-\MA&-\MA&-\MA&-\MA&\MA&\MA&\MA&\MA&\MA&\MA&\MH&\MH&\MH&\MG
\end{matrix}\right]$
Table of $T_i\cdot V_j=V_k$:
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
T1 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
T2 V2 V3 V4 V5 V1 V7 V8 V9 V10 V6 V12 V13 V14 V15 V11 V17 V18 V19 V20 V16
T3 V14 V20 V17 V12 V6 V9 V8 V15 V2 V11 V16 V3 V10 V7 V1 V19 V18 V4 V13 V5
T4 V3 V4 V5 V1 V2 V8 V9 V10 V6 V7 V13 V14 V15 V11 V12 V18 V19 V20 V16 V17
T5 V20 V17 V12 V6 V14 V8 V15 V2 V11 V9 V3 V10 V7 V1 V16 V18 V4 V13 V5 V19
T6 V4 V5 V1 V2 V3 V9 V10 V6 V7 V8 V14 V15 V11 V12 V13 V19 V20 V16 V17 V18
T7 V17 V12 V6 V14 V20 V15 V2 V11 V9 V8 V10 V7 V1 V16 V3 V4 V13 V5 V19 V18
T8 V16 V18 V13 V7 V15 V9 V11 V3 V12 V10 V4 V6 V8 V2 V17 V19 V5 V14 V1 V20
T9 V5 V18 V3 V9 V7 V15 V1 V20 V16 V2 V17 V11 V8 V14 V19 V4 V12 V10 V6 V13
T10 V5 V1 V2 V3 V4 V10 V6 V7 V8 V9 V15 V11 V12 V13 V14 V20 V16 V17 V18 V19
T11 V12 V6 V14 V20 V17 V2 V11 V9 V8 V15 V7 V1 V16 V3 V10 V13 V5 V19 V18 V4
T12 V18 V13 V7 V15 V16 V11 V3 V12 V10 V9 V6 V8 V2 V17 V4 V5 V14 V1 V20 V19
T13 V18 V3 V9 V7 V5 V1 V20 V16 V2 V15 V11 V8 V14 V19 V17 V12 V10 V6 V13 V4
T14 V17 V19 V14 V8 V11 V10 V12 V4 V13 V6 V5 V7 V9 V3 V18 V20 V1 V15 V2 V16
T15 V19 V4 V10 V8 V1 V2 V16 V17 V3 V11 V12 V9 V15 V20 V18 V13 V6 V7 V14 V5
T16 V1 V19 V4 V10 V8 V11 V2 V16 V17 V3 V18 V12 V9 V15 V20 V5 V13 V6 V7 V14
T17 V6 V4 V17 V2 V8 V1 V14 V5 V19 V20 V18 V16 V15 V7 V13 V12 V3 V11 V9 V10
T18 V6 V14 V20 V17 V12 V11 V9 V8 V15 V2 V1 V16 V3 V10 V7 V5 V19 V18 V4 V13
T19 V13 V7 V15 V16 V18 V3 V12 V10 V9 V11 V8 V2 V17 V4 V6 V14 V1 V20 V19 V5
T20 V3 V9 V7 V5 V18 V20 V16 V2 V15 V1 V8 V14 V19 V17 V11 V10 V6 V13 V4 V12
T21 V19 V14 V8 V11 V17 V12 V4 V13 V6 V10 V7 V9 V3 V18 V5 V1 V15 V2 V16 V20
T22 V4 V10 V8 V1 V19 V16 V17 V3 V11 V2 V9 V15 V20 V18 V12 V6 V7 V14 V5 V13
T23 V4 V17 V2 V8 V6 V14 V5 V19 V20 V1 V16 V15 V7 V13 V18 V3 V11 V9 V10 V12
T24 V18 V20 V15 V9 V12 V6 V13 V5 V14 V7 V1 V8 V10 V4 V19 V16 V2 V11 V3 V17
T25 V20 V5 V6 V9 V2 V3 V17 V18 V4 V12 V13 V10 V11 V16 V19 V14 V7 V8 V15 V1
T26 V13 V12 V11 V15 V14 V20 V19 V18 V17 V16 V3 V2 V1 V5 V4 V10 V9 V8 V7 V6
T27 V2 V20 V5 V6 V9 V12 V3 V17 V18 V4 V19 V13 V10 V11 V16 V1 V14 V7 V8 V15
T28 V14 V13 V12 V11 V15 V16 V20 V19 V18 V17 V4 V3 V2 V1 V5 V6 V10 V9 V8 V7
T29 V7 V5 V18 V3 V9 V2 V15 V1 V20 V16 V19 V17 V11 V8 V14 V13 V4 V12 V10 V6
T30 V9 V12 V18 V20 V15 V14 V7 V6 V13 V5 V4 V19 V1 V8 V10 V3 V17 V16 V2 V11
T31 V7 V15 V16 V18 V13 V12 V10 V9 V11 V3 V2 V17 V4 V6 V8 V1 V20 V19 V5 V14
T32 V9 V7 V5 V18 V3 V16 V2 V15 V1 V20 V14 V19 V17 V11 V8 V6 V13 V4 V12 V10
T33 V14 V8 V11 V17 V19 V4 V13 V6 V10 V12 V9 V3 V18 V5 V7 V15 V2 V16 V20 V1
T34 V10 V8 V1 V19 V4 V17 V3 V11 V2 V16 V15 V20 V18 V12 V9 V7 V14 V5 V13 V6
T35 V17 V2 V8 V6 V4 V5 V19 V20 V1 V14 V15 V7 V13 V18 V16 V11 V9 V10 V12 V3
T36 V20 V15 V9 V12 V18 V13 V5 V14 V7 V6 V8 V10 V4 V19 V1 V2 V11 V3 V17 V16
T37 V5 V6 V9 V2 V20 V17 V18 V4 V12 V3 V10 V11 V16 V19 V13 V7 V8 V15 V1 V14
T38 V12 V11 V15 V14 V13 V19 V18 V17 V16 V20 V2 V1 V5 V4 V3 V9 V8 V7 V6 V10
T39 V12 V18 V20 V15 V9 V7 V6 V13 V5 V14 V19 V1 V8 V10 V4 V17 V16 V2 V11 V3
T40 V19 V16 V11 V10 V13 V7 V14 V1 V15 V8 V2 V9 V6 V5 V20 V17 V3 V12 V4 V18
T41 V16 V1 V7 V10 V3 V4 V18 V19 V5 V13 V14 V6 V12 V17 V20 V15 V8 V9 V11 V2
T42 V10 V3 V16 V1 V7 V5 V13 V4 V18 V19 V17 V20 V14 V6 V12 V11 V2 V15 V8 V9
T43 V3 V16 V1 V7 V10 V13 V4 V18 V19 V5 V20 V14 V6 V12 V17 V2 V15 V8 V9 V11
T44 V15 V14 V13 V12 V11 V17 V16 V20 V19 V18 V5 V4 V3 V2 V1 V7 V6 V10 V9 V8
T45 V7 V10 V3 V16 V1 V19 V5 V13 V4 V18 V12 V17 V20 V14 V6 V9 V11 V2 V15 V8
T46 V8 V1 V19 V4 V10 V3 V11 V2 V16 V17 V20 V18 V12 V9 V15 V14 V5 V13 V6 V7
T47 V8 V6 V4 V17 V2 V20 V1 V14 V5 V19 V13 V18 V16 V15 V7 V10 V12 V3 V11 V9
T48 V10 V13 V19 V16 V11 V15 V8 V7 V14 V1 V5 V20 V2 V9 V6 V4 V18 V17 V3 V12
T49 V8 V11 V17 V19 V14 V13 V6 V10 V12 V4 V3 V18 V5 V7 V9 V2 V16 V20 V1 V15
T50 V2 V8 V6 V4 V17 V19 V20 V1 V14 V5 V7 V13 V18 V16 V15 V9 V10 V12 V3 V11
T51 V15 V9 V12 V18 V20 V5 V14 V7 V6 V13 V10 V4 V19 V1 V8 V11 V3 V17 V16 V2
T52 V6 V9 V2 V20 V5 V18 V4 V12 V3 V17 V11 V16 V19 V13 V10 V8 V15 V1 V14 V7
T53 V11 V15 V14 V13 V12 V18 V17 V16 V20 V19 V1 V5 V4 V3 V2 V8 V7 V6 V10 V9
T54 V16 V11 V10 V13 V19 V14 V1 V15 V8 V7 V9 V6 V5 V20 V2 V3 V12 V4 V18 V17
T55 V1 V7 V10 V3 V16 V18 V19 V5 V13 V4 V6 V12 V17 V20 V14 V8 V9 V11 V2 V15
T56 V13 V19 V16 V11 V10 V8 V7 V14 V1 V15 V20 V2 V9 V6 V5 V18 V17 V3 V12 V4
T57 V11 V17 V19 V14 V8 V6 V10 V12 V4 V13 V18 V5 V7 V9 V3 V16 V20 V1 V15 V2
T58 V9 V2 V20 V5 V6 V4 V12 V3 V17 V18 V16 V19 V13 V10 V11 V15 V1 V14 V7 V8
T59 V11 V10 V13 V19 V16 V1 V15 V8 V7 V14 V6 V5 V20 V2 V9 V12 V4 V18 V17 V3
T60 V15 V16 V18 V13 V7 V10 V9 V11 V3 V12 V17 V4 V6 V8 V2 V20 V19 V5 V14 V1
Table of $T_i\cdot T_j=T_k$:
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
T1 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
T2 T2 T4 T60 T6 T8 T10 T12 T14 T16 T1 T19 T21 T15 T24 T25 T27 T29 T31 T33 T22 T36 T37 T9 T40 T41 T28 T43 T44 T46 T48 T49 T34 T51 T52 T13 T54 T55 T26 T56 T5 T35 T17 T23 T53 T47 T58 T32 T18 T30 T20 T59 T45 T38 T7 T50 T3 T39 T42 T11 T57
T3 T3 T5 T29 T7 T9 T11 T13 T15 T17 T18 T20 T22 T23 T12 T26 T28 T30 T32 T34 T35 T19 T38 T39 T6 T37 T42 T25 T45 T47 T2 T46 T50 T31 T53 T24 T10 T52 T43 T4 T56 T21 T57 T14 T55 T49 T44 T51 T59 T60 T36 T1 T58 T41 T40 T33 T48 T8 T27 T54 T16
T4 T4 T6 T57 T10 T14 T1 T21 T24 T27 T2 T33 T36 T25 T40 T41 T43 T46 T49 T51 T37 T54 T55 T16 T5 T35 T44 T23 T53 T58 T18 T30 T52 T59 T45 T15 T7 T50 T28 T3 T8 T13 T29 T9 T38 T32 T42 T34 T31 T48 T22 T11 T47 T26 T12 T20 T60 T56 T17 T19 T39
T5 T5 T7 T16 T11 T15 T18 T22 T12 T28 T3 T34 T19 T26 T6 T37 T25 T47 T46 T31 T38 T10 T52 T17 T56 T21 T45 T14 T55 T44 T59 T60 T53 T1 T58 T23 T40 T33 T42 T48 T9 T24 T30 T39 T41 T51 T27 T50 T32 T2 T35 T54 T49 T43 T13 T36 T29 T4 T57 T20 T8
T6 T6 T10 T39 T1 T24 T2 T36 T40 T43 T4 T51 T54 T41 T5 T35 T23 T58 T30 T59 T55 T7 T50 T27 T8 T13 T53 T9 T38 T42 T31 T48 T45 T11 T47 T25 T12 T20 T44 T60 T14 T15 T46 T16 T26 T34 T17 T52 T49 T18 T37 T19 T32 T28 T21 T22 T57 T3 T29 T33 T56
T7 T7 T11 T8 T18 T12 T3 T19 T6 T25 T5 T31 T10 T37 T56 T21 T14 T44 T60 T1 T52 T40 T33 T28 T9 T24 T55 T39 T41 T27 T32 T2 T58 T54 T49 T26 T13 T36 T45 T29 T15 T23 T47 T17 T43 T50 T57 T53 T46 T59 T38 T20 T51 T42 T22 T35 T16 T48 T30 T34 T4
T8 T8 T12 T27 T19 T25 T31 T37 T21 T44 T60 T52 T33 T28 T10 T55 T41 T32 T58 T49 T26 T1 T45 T29 T3 T36 T47 T24 T50 T53 T11 T57 T38 T2 T42 T9 T5 T51 T17 T18 T16 T40 T48 T56 T35 T59 T43 T20 T34 T4 T13 T7 T30 T23 T15 T54 T46 T6 T39 T22 T14
T9 T9 T13 T28 T20 T26 T32 T38 T22 T45 T29 T53 T34 T42 T11 T52 T37 T51 T44 T46 T43 T18 T58 T30 T48 T19 T49 T12 T33 T55 T54 T16 T41 T3 T27 T39 T56 T31 T57 T59 T17 T6 T2 T4 T21 T1 T25 T36 T50 T5 T24 T40 T60 T14 T23 T10 T47 T7 T8 T35 T15
T10 T10 T1 T56 T2 T40 T4 T54 T5 T23 T6 T59 T7 T35 T8 T13 T9 T42 T48 T11 T50 T12 T20 T43 T14 T15 T38 T16 T26 T17 T49 T18 T47 T19 T32 T41 T21 T22 T53 T57 T24 T25 T58 T27 T28 T52 T29 T45 T30 T31 T55 T33 T34 T44 T36 T37 T39 T60 T46 T51 T3
T11 T11 T18 T4 T3 T6 T5 T10 T56 T14 T7 T1 T40 T21 T9 T24 T39 T27 T2 T54 T33 T13 T36 T25 T15 T23 T41 T17 T43 T57 T46 T59 T49 T20 T51 T37 T22 T35 T55 T16 T12 T26 T44 T28 T42 T53 T30 T58 T60 T32 T52 T34 T50 T45 T19 T38 T8 T29 T47 T31 T48
T12 T12 T19 T14 T31 T21 T60 T33 T10 T41 T8 T49 T1 T55 T3 T36 T24 T53 T57 T2 T45 T5 T51 T44 T16 T40 T50 T56 T35 T43 T34 T4 T42 T7 T30 T28 T15 T54 T47 T46 T25 T9 T32 T29 T23 T20 T39 T38 T58 T11 T26 T22 T59 T17 T37 T13 T27 T18 T48 T52 T6
T13 T13 T20 T15 T32 T22 T29 T34 T11 T37 T9 T46 T18 T52 T48 T19 T12 T55 T16 T3 T58 T56 T31 T45 T17 T6 T33 T4 T21 T25 T50 T5 T27 T40 T60 T42 T23 T10 T49 T47 T26 T39 T51 T30 T14 T36 T8 T41 T44 T54 T43 T35 T1 T57 T38 T24 T28 T59 T2 T53 T7
T14 T14 T21 T43 T33 T41 T49 T55 T36 T53 T57 T45 T51 T44 T1 T50 T35 T34 T42 T30 T28 T2 T47 T46 T60 T54 T32 T40 T20 T38 T19 T39 T26 T4 T17 T16 T8 T59 T29 T31 T27 T5 T18 T3 T13 T11 T23 T22 T52 T6 T15 T12 T48 T9 T25 T7 T58 T10 T56 T37 T24
T15 T15 T22 T25 T34 T37 T46 T52 T19 T55 T16 T58 T31 T45 T18 T33 T21 T50 T27 T60 T42 T3 T49 T47 T29 T10 T51 T6 T36 T41 T20 T8 T43 T5 T57 T17 T9 T1 T30 T32 T28 T56 T59 T48 T24 T54 T14 T35 T53 T7 T23 T13 T2 T39 T26 T40 T44 T11 T4 T38 T12
T16 T16 T15 T44 T22 T28 T34 T26 T37 T47 T46 T38 T52 T17 T19 T45 T55 T59 T53 T58 T23 T31 T42 T48 T18 T33 T30 T21 T51 T50 T7 T27 T35 T60 T43 T56 T3 T49 T39 T11 T29 T10 T4 T6 T36 T2 T41 T54 T20 T8 T40 T5 T57 T24 T9 T1 T32 T12 T14 T13 T25
T17 T17 T23 T45 T35 T42 T50 T43 T38 T49 T47 T41 T53 T57 T20 T58 T52 T1 T55 T44 T14 T32 T27 T2 T59 T34 T60 T22 T31 T33 T40 T28 T21 T29 T25 T4 T48 T46 T8 T54 T30 T11 T5 T7 T19 T3 T37 T10 T36 T9 T6 T56 T16 T12 T39 T18 T51 T13 T15 T24 T26
T18 T18 T3 T48 T5 T56 T7 T40 T9 T39 T11 T54 T13 T24 T15 T23 T17 T57 T59 T20 T36 T22 T35 T14 T12 T26 T43 T28 T42 T30 T60 T32 T51 T34 T50 T21 T19 T38 T41 T8 T6 T37 T27 T25 T45 T58 T47 T49 T2 T46 T33 T31 T53 T55 T10 T52 T4 T16 T44 T1 T29
T19 T19 T31 T6 T60 T10 T8 T1 T3 T24 T12 T2 T5 T36 T16 T40 T56 T43 T4 T7 T51 T15 T54 T41 T25 T9 T35 T29 T23 T39 T58 T11 T30 T22 T59 T55 T37 T13 T50 T27 T21 T28 T53 T44 T17 T38 T48 T42 T57 T34 T45 T52 T20 T47 T33 T26 T14 T46 T32 T49 T18
T20 T20 T32 T7 T29 T11 T9 T18 T48 T12 T13 T3 T56 T19 T17 T6 T4 T25 T5 T40 T31 T23 T10 T37 T26 T39 T21 T30 T14 T8 T44 T54 T60 T35 T1 T52 T38 T24 T33 T28 T22 T42 T55 T45 T57 T41 T2 T27 T16 T50 T58 T53 T36 T49 T34 T43 T15 T47 T51 T46 T59
T21 T21 T33 T24 T49 T36 T57 T51 T1 T35 T14 T30 T2 T50 T60 T54 T40 T38 T39 T4 T47 T8 T59 T53 T27 T5 T20 T3 T13 T23 T52 T6 T17 T12 T48 T44 T25 T7 T32 T58 T41 T16 T34 T46 T9 T22 T56 T26 T42 T19 T28 T37 T11 T29 T55 T15 T43 T31 T18 T45 T10
T22 T22 T34 T12 T46 T19 T16 T31 T18 T21 T15 T60 T3 T33 T29 T10 T6 T41 T8 T5 T49 T9 T1 T55 T28 T56 T36 T48 T24 T14 T53 T7 T57 T13 T2 T45 T26 T40 T51 T44 T37 T17 T50 T47 T39 T35 T4 T43 T27 T20 T42 T38 T54 T30 T52 T23 T25 T32 T59 T58 T11
T23 T23 T35 T26 T50 T38 T47 T53 T20 T52 T17 T44 T32 T58 T59 T34 T22 T33 T28 T29 T27 T48 T46 T49 T30 T11 T31 T7 T19 T37 T36 T9 T25 T56 T16 T57 T39 T18 T60 T51 T42 T4 T1 T2 T12 T10 T15 T21 T55 T40 T14 T24 T3 T8 T43 T6 T45 T54 T5 T41 T13
T24 T24 T36 T23 T51 T35 T30 T50 T54 T38 T39 T47 T59 T53 T2 T20 T13 T52 T17 T48 T44 T4 T32 T58 T57 T7 T34 T5 T22 T26 T33 T56 T28 T6 T29 T27 T14 T11 T46 T49 T43 T8 T31 T60 T15 T19 T9 T37 T45 T10 T25 T21 T18 T16 T41 T12 T42 T1 T3 T55 T40
T25 T25 T37 T41 T52 T55 T58 T45 T33 T50 T27 T42 T49 T47 T31 T51 T36 T20 T43 T57 T17 T60 T30 T32 T46 T1 T59 T10 T54 T35 T22 T14 T23 T8 T39 T29 T16 T2 T48 T34 T44 T3 T11 T18 T40 T7 T24 T13 T38 T12 T9 T15 T4 T56 T28 T5 T53 T19 T6 T26 T21
T26 T26 T38 T37 T53 T52 T44 T58 T34 T33 T28 T27 T46 T49 T32 T31 T19 T36 T25 T16 T57 T29 T60 T51 T47 T18 T1 T11 T10 T21 T35 T15 T14 T9 T8 T30 T17 T3 T2 T50 T45 T48 T54 T59 T6 T40 T12 T24 T41 T13 T39 T23 T5 T4 T42 T56 T55 T20 T7 T43 T22
T27 T27 T25 T53 T37 T44 T52 T28 T55 T32 T58 T26 T45 T29 T33 T47 T50 T11 T38 T42 T9 T49 T17 T18 T31 T51 T48 T36 T59 T20 T12 T43 T13 T57 T23 T3 T60 T30 T56 T19 T46 T1 T6 T10 T54 T4 T35 T7 T22 T14 T5 T8 T39 T40 T16 T2 T34 T21 T24 T15 T41
T28 T28 T26 T55 T38 T45 T53 T42 T52 T51 T44 T43 T58 T30 T34 T49 T33 T54 T41 T27 T39 T46 T57 T59 T32 T31 T2 T19 T1 T36 T13 T25 T24 T16 T14 T48 T29 T60 T4 T20 T47 T18 T7 T11 T10 T5 T21 T40 T35 T15 T56 T9 T8 T6 T17 T3 T50 T22 T12 T23 T37
T29 T29 T9 T47 T13 T17 T20 T23 T26 T30 T32 T35 T38 T39 T22 T42 T45 T2 T50 T53 T24 T34 T43 T4 T11 T52 T57 T37 T49 T51 T5 T44 T36 T46 T41 T6 T18 T58 T14 T7 T48 T19 T8 T12 T33 T60 T55 T1 T54 T16 T10 T3 T27 T21 T56 T31 T59 T15 T25 T40 T28
T30 T30 T39 T49 T24 T57 T36 T14 T43 T60 T51 T21 T41 T8 T35 T27 T58 T3 T33 T55 T12 T50 T25 T5 T54 T53 T16 T38 T46 T31 T56 T45 T19 T47 T37 T7 T59 T44 T15 T40 T2 T20 T9 T13 T34 T29 T52 T18 T10 T17 T11 T48 T28 T22 T4 T32 T1 T23 T26 T6 T42
T31 T31 T60 T18 T8 T3 T12 T5 T16 T56 T19 T7 T15 T40 T25 T9 T29 T39 T11 T22 T54 T37 T13 T24 T21 T28 T23 T44 T17 T48 T57 T34 T59 T52 T20 T36 T33 T26 T35 T14 T10 T55 T43 T41 T47 T42 T32 T30 T4 T58 T51 T49 T38 T50 T1 T45 T6 T27 T53 T2 T46
T32 T32 T29 T59 T9 T48 T13 T56 T17 T4 T20 T40 T23 T6 T26 T39 T30 T8 T54 T35 T10 T38 T24 T12 T22 T42 T14 T45 T57 T2 T16 T50 T1 T53 T36 T19 T34 T43 T21 T15 T11 T52 T25 T37 T49 T27 T51 T60 T5 T44 T31 T46 T41 T33 T18 T58 T7 T28 T55 T3 T47
T33 T33 T49 T10 T57 T1 T14 T2 T60 T40 T21 T4 T8 T54 T27 T5 T3 T23 T6 T12 T59 T25 T7 T35 T41 T16 T13 T46 T9 T56 T42 T19 T48 T37 T11 T50 T55 T15 T20 T43 T36 T44 T38 T53 T29 T26 T18 T17 T39 T52 T47 T45 T22 T32 T51 T28 T24 T58 T34 T30 T31
T34 T34 T46 T11 T16 T18 T15 T3 T29 T6 T22 T5 T9 T10 T28 T56 T48 T14 T7 T13 T1 T26 T40 T21 T37 T17 T24 T47 T39 T4 T27 T20 T2 T38 T54 T33 T52 T23 T36 T25 T19 T45 T41 T55 T30 T43 T59 T57 T8 T53 T49 T58 T35 T51 T31 T42 T12 T44 T50 T60 T32
T35 T35 T50 T13 T47 T20 T17 T32 T59 T22 T23 T29 T48 T34 T30 T11 T7 T37 T9 T56 T46 T39 T18 T52 T42 T4 T19 T2 T12 T15 T55 T40 T16 T24 T3 T58 T43 T6 T31 T45 T38 T57 T33 T49 T8 T21 T5 T25 T28 T36 T27 T41 T10 T60 T53 T14 T26 T51 T1 T44 T54
T36 T36 T51 T40 T30 T54 T39 T59 T2 T13 T24 T48 T4 T20 T57 T7 T5 T26 T56 T6 T32 T14 T11 T38 T43 T8 T22 T60 T15 T9 T45 T10 T29 T21 T18 T53 T41 T12 T34 T42 T35 T27 T52 T58 T16 T37 T3 T28 T17 T33 T44 T55 T19 T46 T50 T25 T23 T49 T31 T47 T1
T37 T37 T52 T21 T58 T33 T27 T49 T31 T36 T25 T57 T60 T51 T46 T1 T10 T35 T14 T8 T30 T16 T2 T50 T44 T3 T54 T18 T40 T24 T38 T12 T39 T15 T4 T47 T28 T5 T59 T53 T55 T29 T20 T32 T56 T13 T6 T23 T43 T22 T17 T26 T7 T48 T45 T9 T41 T34 T11 T42 T19
T38 T38 T53 T22 T44 T34 T28 T46 T32 T19 T26 T16 T29 T31 T47 T18 T11 T21 T15 T9 T60 T17 T3 T33 T45 T48 T10 T59 T6 T12 T41 T13 T8 T23 T5 T49 T42 T56 T1 T55 T52 T30 T36 T51 T4 T24 T7 T14 T25 T35 T57 T43 T40 T2 T58 T39 T37 T50 T54 T27 T20
T39 T39 T24 T42 T36 T43 T51 T41 T35 T58 T30 T55 T50 T27 T54 T53 T38 T31 T45 T47 T25 T59 T44 T60 T2 T20 T46 T13 T34 T52 T10 T17 T37 T48 T28 T8 T4 T32 T16 T1 T57 T7 T3 T5 T22 T18 T26 T19 T33 T56 T12 T6 T29 T15 T14 T11 T49 T40 T9 T21 T23
T40 T40 T54 T9 T59 T13 T48 T20 T7 T26 T56 T32 T11 T38 T4 T22 T15 T45 T29 T18 T53 T6 T34 T42 T39 T12 T52 T8 T37 T28 T51 T3 T44 T10 T46 T43 T24 T19 T58 T30 T23 T14 T49 T57 T25 T33 T16 T55 T47 T1 T41 T36 T31 T27 T35 T21 T17 T2 T60 T50 T5
T41 T41 T55 T35 T45 T50 T42 T47 T51 T20 T43 T17 T30 T32 T49 T59 T54 T22 T23 T39 T29 T57 T48 T34 T58 T2 T11 T1 T7 T13 T37 T24 T9 T14 T56 T46 T27 T4 T18 T52 T53 T60 T19 T31 T5 T12 T40 T15 T26 T21 T16 T25 T6 T3 T44 T8 T38 T33 T10 T28 T36
T42 T42 T43 T52 T41 T58 T55 T27 T53 T31 T45 T25 T44 T60 T50 T46 T34 T10 T37 T28 T8 T47 T16 T1 T51 T32 T3 T20 T18 T19 T24 T26 T12 T17 T15 T2 T30 T29 T5 T36 T49 T59 T40 T54 T11 T56 T22 T6 T21 T23 T4 T39 T9 T7 T57 T48 T33 T35 T13 T14 T38
T43 T43 T41 T38 T55 T53 T45 T44 T50 T34 T42 T28 T47 T46 T51 T32 T20 T19 T26 T17 T16 T30 T29 T31 T49 T59 T18 T54 T11 T22 T21 T23 T15 T39 T9 T60 T57 T48 T3 T33 T58 T2 T10 T1 T7 T6 T13 T12 T37 T24 T8 T14 T56 T5 T27 T4 T52 T36 T40 T25 T35
T44 T44 T28 T50 T26 T47 T38 T17 T45 T59 T53 T23 T42 T48 T52 T30 T51 T7 T35 T43 T56 T58 T39 T11 T34 T49 T4 T33 T2 T54 T15 T41 T40 T27 T24 T18 T46 T57 T6 T22 T32 T31 T12 T19 T1 T8 T36 T5 T13 T25 T3 T16 T14 T10 T29 T60 T20 T37 T21 T9 T55
T45 T45 T42 T33 T43 T49 T41 T57 T58 T1 T55 T14 T27 T2 T53 T60 T31 T40 T21 T25 T4 T44 T8 T54 T50 T46 T5 T34 T3 T10 T23 T37 T6 T28 T12 T59 T47 T16 T7 T35 T51 T32 T13 T20 T18 T9 T19 T56 T24 T26 T48 T17 T15 T11 T30 T29 T36 T38 T22 T39 T52
T46 T46 T16 T32 T15 T29 T22 T9 T28 T48 T34 T13 T26 T56 T37 T17 T47 T4 T20 T38 T40 T52 T23 T6 T19 T45 T39 T55 T30 T59 T8 T53 T54 T58 T35 T10 T31 T42 T24 T12 T18 T33 T14 T21 T51 T57 T50 T2 T7 T27 T1 T60 T43 T36 T3 T49 T11 T25 T41 T5 T44
T47 T47 T17 T51 T23 T30 T35 T39 T42 T2 T50 T24 T43 T4 T38 T57 T49 T5 T36 T41 T6 T53 T14 T7 T20 T58 T8 T52 T60 T1 T9 T55 T10 T44 T21 T11 T32 T27 T12 T13 T59 T34 T15 T22 T31 T16 T33 T3 T40 T28 T18 T29 T25 T19 T48 T46 T54 T26 T37 T56 T45
T48 T48 T56 T30 T40 T39 T54 T24 T23 T57 T59 T36 T35 T14 T13 T43 T42 T60 T51 T50 T21 T20 T41 T8 T7 T38 T27 T26 T58 T49 T3 T47 T33 T32 T55 T12 T11 T53 T25 T5 T4 T22 T16 T15 T52 T46 T45 T31 T1 T29 T19 T18 T44 T37 T6 T34 T2 T9 T28 T10 T17
T49 T49 T57 T31 T14 T60 T21 T8 T27 T3 T33 T12 T25 T5 T41 T16 T46 T56 T19 T37 T7 T55 T15 T40 T36 T44 T9 T53 T29 T18 T39 T52 T11 T45 T22 T54 T51 T28 T13 T24 T1 T50 T23 T35 T32 T17 T34 T48 T6 T42 T59 T30 T26 T20 T2 T47 T10 T43 T38 T4 T58
T50 T50 T47 T54 T17 T59 T23 T48 T30 T7 T35 T56 T39 T11 T42 T4 T2 T15 T40 T24 T18 T43 T6 T22 T38 T57 T12 T49 T8 T5 T28 T36 T3 T41 T10 T34 T53 T14 T19 T26 T20 T58 T37 T52 T60 T25 T1 T16 T9 T55 T46 T44 T21 T31 T32 T27 T13 T45 T33 T29 T51
T51 T51 T30 T1 T39 T2 T24 T4 T57 T5 T36 T6 T14 T7 T43 T8 T60 T9 T10 T21 T11 T41 T12 T13 T35 T27 T15 T58 T16 T3 T17 T33 T18 T55 T19 T20 T50 T25 T22 T23 T54 T53 T26 T38 T46 T28 T31 T29 T56 T45 T32 T47 T37 T34 T59 T44 T40 T42 T52 T48 T49
T52 T52 T58 T19 T27 T31 T25 T60 T46 T10 T37 T8 T16 T1 T44 T3 T18 T24 T12 T15 T2 T28 T5 T36 T55 T29 T40 T32 T56 T6 T43 T22 T4 T26 T7 T51 T45 T9 T54 T41 T33 T47 T35 T50 T48 T23 T11 T39 T14 T38 T30 T42 T13 T59 T49 T17 T21 T53 T20 T57 T34
T53 T53 T44 T20 T28 T32 T26 T29 T47 T11 T38 T9 T17 T18 T45 T48 T59 T12 T13 T23 T3 T42 T56 T19 T52 T30 T6 T51 T4 T7 T25 T35 T5 T43 T40 T31 T58 T39 T10 T37 T34 T49 T21 T33 T2 T14 T54 T8 T15 T41 T60 T27 T24 T1 T46 T57 T22 T55 T36 T16 T50
T54 T54 T59 T5 T48 T7 T56 T11 T4 T15 T40 T18 T6 T22 T39 T12 T8 T28 T3 T10 T34 T24 T19 T26 T23 T14 T37 T57 T25 T16 T47 T1 T46 T36 T31 T38 T35 T21 T52 T17 T13 T43 T45 T42 T27 T55 T60 T44 T29 T51 T53 T50 T33 T58 T20 T41 T9 T30 T49 T32 T2
T55 T55 T45 T36 T42 T51 T43 T30 T49 T54 T41 T39 T57 T59 T58 T2 T1 T13 T24 T14 T48 T27 T4 T20 T53 T60 T7 T31 T5 T40 T26 T21 T56 T25 T6 T32 T44 T8 T11 T38 T50 T46 T22 T34 T3 T15 T10 T9 T23 T37 T29 T28 T12 T18 T47 T16 T35 T52 T19 T17 T33
T56 T56 T40 T17 T54 T23 T59 T35 T13 T42 T48 T50 T20 T43 T7 T38 T26 T49 T47 T32 T41 T11 T53 T57 T4 T22 T58 T15 T52 T45 T1 T29 T55 T18 T44 T14 T6 T34 T27 T2 T39 T12 T60 T8 T37 T31 T28 T33 T51 T3 T21 T10 T46 T25 T24 T19 T30 T5 T16 T36 T9
T57 T57 T14 T58 T21 T27 T33 T25 T41 T46 T49 T37 T55 T16 T36 T44 T53 T18 T52 T45 T15 T51 T28 T3 T1 T50 T29 T35 T32 T34 T6 T42 T22 T30 T26 T5 T2 T47 T9 T10 T60 T54 T56 T40 T20 T48 T38 T11 T19 T39 T7 T4 T17 T13 T8 T59 T31 T24 T23 T12 T43
T58 T58 T27 T34 T25 T46 T37 T16 T44 T18 T52 T15 T28 T3 T55 T29 T32 T6 T22 T26 T5 T45 T9 T10 T33 T47 T56 T50 T48 T11 T14 T38 T7 T42 T13 T1 T49 T17 T40 T21 T31 T51 T24 T36 T59 T39 T20 T4 T12 T43 T2 T57 T23 T54 T60 T30 T19 T41 T35 T8 T53
T59 T59 T48 T2 T56 T4 T40 T6 T39 T8 T54 T10 T24 T12 T23 T14 T57 T16 T1 T36 T19 T35 T21 T15 T13 T43 T25 T42 T27 T60 T29 T51 T31 T50 T33 T22 T20 T41 T37 T9 T7 T38 T28 T26 T58 T44 T49 T46 T3 T47 T34 T32 T55 T52 T11 T53 T5 T17 T45 T18 T30
T60 T60 T8 T46 T12 T16 T19 T15 T25 T29 T31 T22 T37 T9 T21 T28 T44 T48 T34 T52 T13 T33 T26 T56 T10 T55 T17 T41 T47 T32 T4 T58 T20 T49 T38 T40 T1 T45 T23 T6 T3 T36 T39 T24 T50 T30 T53 T59 T11 T57 T54 T2 T42 T35 T5 T51 T18 T14 T43 T7 T27