$
\def\MA{{\frac{\sqrt{15}}{4}}}
\def\MB{{\frac{1}{4}}}
\def\MC{{\frac{1}{3}}}
\def\MD{{\frac{\sqrt{2}}{\sqrt{3}}}}
\def\ME{{\frac{\sqrt{2}}{3}}}
\def\MF{{\frac{1}{2}}}
\def\MG{{\frac{\sqrt{3}}{2}}}
\def\MH{{\frac{2\sqrt{2}}{3}}}
\def\MI{{\frac{1}{2\sqrt{3}}}}
\def\MJ{{\frac{1}{6}}}
\def\MK{{\frac{11}{12}}}
\def\ML{{\frac{1}{2\sqrt{6}}}}
\def\MM{{\frac{1}{6\sqrt{2}}}}
\def\MN{{\frac{\sqrt{5}}{4\sqrt{3}}}}
\def\MO{{\frac{\sqrt{5}}{2\sqrt{2}}}}
\def\MP{{\frac{5}{6}}}
\def\MQ{{\frac{\sqrt{5}}{2\sqrt{6}}}}
\def\MR{{\frac{\sqrt{5}}{\sqrt{6}}}}
\def\MS{{\frac{1}{\sqrt{3}}}}
\def\MT{{\frac{2}{3}}}
\def\MU{{\frac{5}{12}}}
\def\MV{{\frac{\sqrt{3}}{2\sqrt{2}}}}
\def\MW{{\frac{5}{6\sqrt{2}}}}
\def\MX{{\frac{7}{6\sqrt{2}}}}
\def\MY{{\frac{1}{3\sqrt{2}}}}
\def\MZ{{\frac{1}{12}}}
$
5-cell
Initial vertex: $V_1=\left[\begin{matrix}\MA\\0\\0\\-\MB\end{matrix}\right]$
Transforms for vertex generation:
$\tilde{T}_i\in\left\{
\left[\begin{matrix}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{matrix}\right],
\left[\begin{matrix}-\MC&-\MD&-\ME&0\\0&\MF&-\MG&0\\ \MH&-\MI&-\MJ&0\\0&0&0&1\end{matrix}\right],
\left[\begin{matrix}1&0&0&0\\0&-\MF&-\MG&0\\0&\MG&-\MF&0\\0&0&0&1\end{matrix}\right],
\left[\begin{matrix}\MK&\ML&-\MM&-\MN\\-\ML&-\MF&-\MI&-\MO\\-\MM&\MI&\MP&-\MQ\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]
\right\}$
Vertexes:
$T_2 V_1=\left[\begin{matrix}-\MN\\0\\ \MR\\-\MB\end{matrix}\right]=V_2$
$T_2 V_2=\left[\begin{matrix}-\MN\\-\MO\\-\MQ\\-\MB\end{matrix}\right]=V_3$
$T_3 V_3=\left[\begin{matrix}-\MN\\ \MO\\-\MQ\\-\MB\end{matrix}\right]=V_4$
$T_4 V_4=\left[\begin{matrix}0\\0\\0\\1\end{matrix}\right]=V_5$
All Transforms:
$T_2 T_2=\left[\begin{matrix}-\MC&0&\MH&0\\-\MD&\MF&-\MI&0\\-\ME&-\MG&-\MJ&0\\0&0&0&1\end{matrix}\right]=T_5$
$T_3 T_2=\left[\begin{matrix}-\MC&-\MD&-\ME&0\\-\MD&0&\MS&0\\-\ME&\MS&-\MT&0\\0&0&0&1\end{matrix}\right]=T_6$
$T_4 T_2=\left[\begin{matrix}-\MU&-\MV&-\MW&-\MN\\-\ML&0&\MS&-\MO\\ \MX&0&-\MC&-\MQ\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_7$
$T_3 T_5=\left[\begin{matrix}-\MC&0&\MH&0\\ \MD&\MF&\MI&0\\-\ME&\MG&-\MJ&0\\0&0&0&1\end{matrix}\right]=T_8$
$T_4 T_5=\left[\begin{matrix}-\MU&\ML&\MX&-\MN\\ \MV&0&0&-\MO\\-\MW&-\MS&-\MC&-\MQ\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_9$
$T_2 T_6=\left[\begin{matrix}1&0&0&0\\0&-\MF&\MG&0\\0&-\MG&-\MF&0\\0&0&0&1\end{matrix}\right]=T_{10}$
$T_3 T_6=\left[\begin{matrix}-\MC&-\MD&-\ME&0\\ \MD&-\MF&\MI&0\\-\ME&-\MI&\MP&0\\0&0&0&1\end{matrix}\right]=T_{11}$
$T_4 T_6=\left[\begin{matrix}-\MU&-\MD&-\MY&-\MN\\ \MV&0&0&-\MO\\-\MW&\MS&-\MC&-\MQ\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{12}$
$T_2 T_7=\left[\begin{matrix}-\MZ&\ML&-\MM&\MA\\-\MD&0&\MS&0\\-\ME&-\MS&-\MT&0\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{13}$
$T_3 T_7=\left[\begin{matrix}-\MU&-\MV&-\MW&-\MN\\-\MV&0&0&\MO\\-\MW&0&\MT&-\MQ\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{14}$
$T_4 T_7=\left[\begin{matrix}-\MU&-\MD&-\MY&-\MN\\ \ML&-\MF&\MI&\MO\\ \MX&-\MI&\MJ&-\MQ\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{15}$
$T_3 T_8=\left[\begin{matrix}-\MC&0&\MH&0\\0&-{1}&0&0\\ \MH&0&\MC&0\\0&0&0&1\end{matrix}\right]=T_{16}$
$T_4 T_8=\left[\begin{matrix}-\MZ&0&\MH&-\MN\\-\ML&-\MF&-\MI&-\MO\\-\MM&\MG&-\MJ&-\MQ\\ \MA&0&0&-\MB\end{matrix}\right]=T_{17}$
$T_2 T_9=\left[\begin{matrix}-\MZ&\ML&-\MM&\MA\\ \MD&\MF&\MI&0\\-\ME&\MI&\MP&0\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{18}$
$T_3 T_9=\left[\begin{matrix}-\MU&\ML&\MX&-\MN\\ \ML&\MF&\MI&\MO\\ \MX&\MI&\MJ&-\MQ\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{19}$
$T_4 T_9=\left[\begin{matrix}-\MZ&0&\MH&-\MN\\ \ML&-\MF&\MI&\MO\\-\MM&-\MG&-\MJ&-\MQ\\ \MA&0&0&-\MB\end{matrix}\right]=T_{20}$
$T_2 T_{10}=\left[\begin{matrix}-\MC&\MD&-\ME&0\\0&\MF&\MG&0\\ \MH&\MI&-\MJ&0\\0&0&0&1\end{matrix}\right]=T_{21}$
$T_4 T_{10}=\left[\begin{matrix}\MK&0&\MY&-\MN\\-\ML&\MF&-\MI&-\MO\\-\MM&-\MG&-\MJ&-\MQ\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{22}$
$T_2 T_{11}=\left[\begin{matrix}-\MC&\MD&-\ME&0\\ \MD&0&-\MS&0\\-\ME&-\MS&-\MT&0\\0&0&0&1\end{matrix}\right]=T_{23}$
$T_4 T_{11}=\left[\begin{matrix}-\MZ&-\MD&-\ME&-\MN\\-\ML&\MF&-\MI&-\MO\\-\MM&-\MI&\MP&-\MQ\\ \MA&0&0&-\MB\end{matrix}\right]=T_{24}$
$T_2 T_{12}=\left[\begin{matrix}-\MZ&0&\MY&\MA\\ \MD&-\MF&\MI&0\\-\ME&-\MG&-\MJ&0\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{25}$
$T_4 T_{12}=\left[\begin{matrix}-\MZ&-\MD&-\ME&-\MN\\ \ML&0&-\MS&\MO\\-\MM&\MS&-\MT&-\MQ\\ \MA&0&0&-\MB\end{matrix}\right]=T_{26}$
$T_2 T_{13}=\left[\begin{matrix}\MK&\ML&-\MM&-\MN\\0&\MF&\MG&0\\ \MY&\MI&-\MJ&\MR\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{27}$
$T_2 T_{14}=\left[\begin{matrix}\MK&\ML&-\MM&-\MN\\ \ML&0&-\MS&\MO\\-\MM&-\MS&-\MT&-\MQ\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{28}$
$T_3 T_{14}=\left[\begin{matrix}-\MU&-\MV&-\MW&-\MN\\ \MD&0&-\MS&0\\-\MY&0&-\MC&\MR\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{29}$
$T_2 T_{15}=\left[\begin{matrix}-\MU&\MD&-\MY&-\MN\\-\MV&0&0&\MO\\-\MW&-\MS&-\MC&-\MQ\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{30}$
$T_3 T_{15}=\left[\begin{matrix}-\MU&-\MD&-\MY&-\MN\\-\MD&\MF&-\MI&0\\-\MY&-\MI&\MJ&\MR\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{31}$
$T_2 T_{16}=\left[\begin{matrix}-\MC&\MD&-\ME&0\\-\MD&-\MF&-\MI&0\\-\ME&\MI&\MP&0\\0&0&0&1\end{matrix}\right]=T_{32}$
$T_4 T_{16}=\left[\begin{matrix}-\MU&-\ML&\MX&-\MN\\-\ML&\MF&-\MI&-\MO\\ \MX&-\MI&\MJ&-\MQ\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{33}$
$T_2 T_{17}=\left[\begin{matrix}\MB&0&0&\MA\\0&-{1}&0&0\\0&0&1&0\\ \MA&0&0&-\MB\end{matrix}\right]=T_{34}$
$T_4 T_{17}=\left[\begin{matrix}-\MU&-\ML&\MX&-\MN\\-\MV&0&0&\MO\\-\MW&\MS&-\MC&-\MQ\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{35}$
$T_3 T_{18}=\left[\begin{matrix}-\MZ&\ML&-\MM&\MA\\0&-\MF&-\MG&0\\ \MH&\MI&-\MJ&0\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{36}$
$T_3 T_{19}=\left[\begin{matrix}-\MU&\ML&\MX&-\MN\\-\MD&-\MF&-\MI&0\\-\MY&\MI&\MJ&\MR\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{37}$
$T_2 T_{20}=\left[\begin{matrix}-\MZ&\MD&-\ME&-\MN\\ \ML&\MF&\MI&\MO\\-\MM&\MI&\MP&-\MQ\\ \MA&0&0&-\MB\end{matrix}\right]=T_{38}$
$T_3 T_{20}=\left[\begin{matrix}-\MZ&0&\MH&-\MN\\0&1&0&0\\ \MY&0&\MC&\MR\\ \MA&0&0&-\MB\end{matrix}\right]=T_{39}$
$T_4 T_{21}=\left[\begin{matrix}-\MU&\MD&-\MY&-\MN\\-\ML&-\MF&-\MI&-\MO\\ \MX&\MI&\MJ&-\MQ\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{40}$
$T_2 T_{22}=\left[\begin{matrix}-\MZ&0&\MY&\MA\\0&1&0&0\\ \MH&0&\MC&0\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{41}$
$T_3 T_{22}=\left[\begin{matrix}\MK&0&\MY&-\MN\\ \ML&\MF&\MI&\MO\\-\MM&\MG&-\MJ&-\MQ\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{42}$
$T_4 T_{23}=\left[\begin{matrix}-\MZ&\MD&-\ME&-\MN\\-\ML&0&\MS&-\MO\\-\MM&-\MS&-\MT&-\MQ\\ \MA&0&0&-\MB\end{matrix}\right]=T_{43}$
$T_2 T_{24}=\left[\begin{matrix}\MB&0&0&\MA\\0&\MF&-\MG&0\\0&-\MG&-\MF&0\\ \MA&0&0&-\MB\end{matrix}\right]=T_{44}$
$T_2 T_{25}=\left[\begin{matrix}-\MU&\MD&-\MY&-\MN\\ \MD&\MF&\MI&0\\-\MY&\MI&\MJ&\MR\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{45}$
$T_3 T_{26}=\left[\begin{matrix}-\MZ&-\MD&-\ME&-\MN\\0&-\MF&\MG&0\\ \MY&-\MI&-\MJ&\MR\\ \MA&0&0&-\MB\end{matrix}\right]=T_{46}$
$T_4 T_{27}=\left[\begin{matrix}\MK&0&\MY&-\MN\\0&-{1}&0&0\\ \MY&0&\MC&\MR\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{47}$
$T_4 T_{32}=\left[\begin{matrix}-\MU&\MV&-\MW&-\MN\\ \MV&0&0&-\MO\\-\MW&0&\MT&-\MQ\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{48}$
$T_2 T_{33}=\left[\begin{matrix}-\MZ&-\ML&-\MM&\MA\\-\MD&\MF&-\MI&0\\-\ME&-\MI&\MP&0\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{49}$
$T_2 T_{34}=\left[\begin{matrix}-\MZ&\MD&-\ME&-\MN\\0&-\MF&-\MG&0\\ \MY&\MI&-\MJ&\MR\\ \MA&0&0&-\MB\end{matrix}\right]=T_{50}$
$T_2 T_{35}=\left[\begin{matrix}\MK&-\ML&-\MM&-\MN\\ \ML&-\MF&\MI&\MO\\-\MM&-\MI&\MP&-\MQ\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{51}$
$T_3 T_{35}=\left[\begin{matrix}-\MU&-\ML&\MX&-\MN\\ \MD&-\MF&\MI&0\\-\MY&-\MI&\MJ&\MR\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{52}$
$T_4 T_{36}=\left[\begin{matrix}-\MZ&-\ML&-\MM&\MA\\0&-\MF&\MG&0\\ \MH&-\MI&-\MJ&0\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{53}$
$T_2 T_{40}=\left[\begin{matrix}-\MZ&0&\MY&\MA\\-\MD&-\MF&-\MI&0\\-\ME&\MG&-\MJ&0\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{54}$
$T_4 T_{40}=\left[\begin{matrix}-\MU&\MV&-\MW&-\MN\\ \ML&0&-\MS&\MO\\ \MX&0&-\MC&-\MQ\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{55}$
$T_2 T_{43}=\left[\begin{matrix}\MB&0&0&\MA\\0&\MF&\MG&0\\0&\MG&-\MF&0\\ \MA&0&0&-\MB\end{matrix}\right]=T_{56}$
$T_4 T_{47}=\left[\begin{matrix}\MK&-\ML&-\MM&-\MN\\0&\MF&-\MG&0\\ \MY&-\MI&-\MJ&\MR\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{57}$
$T_2 T_{48}=\left[\begin{matrix}-\MZ&-\ML&-\MM&\MA\\ \MD&0&-\MS&0\\-\ME&\MS&-\MT&0\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{58}$
$T_4 T_{50}=\left[\begin{matrix}-\MU&\MV&-\MW&-\MN\\-\MD&0&\MS&0\\-\MY&0&-\MC&\MR\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{59}$
$T_3 T_{57}=\left[\begin{matrix}\MK&-\ML&-\MM&-\MN\\-\ML&0&\MS&-\MO\\-\MM&\MS&-\MT&-\MQ\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{60}$
relabeled vertexes as {1, 5, 2, 4, 3}
Vertexes as column vectors:
$V=\left[\begin{matrix}
\MA&0&-\MN&-\MN&-\MN\\
0&0&0&\MO&-\MO\\
0&0&\MR&-\MQ&-\MQ\\
-\MB&1&-\MB&-\MB&-\MB
\end{matrix}\right]$
Vertex inner products:
$V^T V=\left[\begin{matrix}
\MA&0&0&-\MB\\
0&0&0&1\\
-\MN&0&\MR&-\MB\\
-\MN&\MO&-\MQ&-\MB\\
-\MN&-\MO&-\MQ&-\MB
\end{matrix}\right] \left[\begin{matrix}
\MA&0&-\MN&-\MN&-\MN\\
0&0&0&\MO&-\MO\\
0&0&\MR&-\MQ&-\MQ\\
-\MB&1&-\MB&-\MB&-\MB
\end{matrix}\right] = \left[\begin{matrix}
1&-\MB&-\MB&-\MB&-\MB\\
-\MB&1&-\MB&-\MB&-\MB\\
-\MB&-\MB&1&-\MB&-\MB\\
-\MB&-\MB&-\MB&1&-\MB\\
-\MB&-\MB&-\MB&-\MB&1
\end{matrix}\right]$
Table of $T_i \cdot v_j = v_k$:
V1 V2 V3 V4 V5
T1 V1 V2 V3 V4 V5
T2 V2 V3 V1 V4 V5
T3 V1 V3 V4 V2 V5
T4 V1 V2 V4 V5 V3
T5 V3 V1 V2 V4 V5
T6 V3 V4 V1 V2 V5
T7 V2 V4 V1 V5 V3
T8 V4 V1 V3 V2 V5
T9 V4 V1 V2 V5 V3
T10 V1 V4 V2 V3 V5
T11 V4 V2 V1 V3 V5
T12 V4 V5 V1 V2 V3
T13 V3 V4 V2 V5 V1
T14 V3 V2 V1 V5 V4
T15 V2 V5 V1 V3 V4
T16 V2 V1 V4 V3 V5
T17 V5 V1 V4 V2 V3
T18 V4 V2 V3 V5 V1
T19 V2 V1 V3 V5 V4
T20 V5 V1 V2 V3 V4
T21 V2 V4 V3 V1 V5
T22 V1 V5 V2 V4 V3
T23 V4 V3 V2 V1 V5
T24 V5 V2 V1 V4 V3
T25 V4 V5 V2 V3 V1
T26 V5 V3 V1 V2 V4
T27 V1 V4 V3 V5 V2
T28 V1 V3 V2 V5 V4
T29 V4 V3 V1 V5 V2
T30 V3 V5 V2 V1 V4
T31 V3 V5 V1 V4 V2
T32 V3 V2 V4 V1 V5
T33 V2 V1 V5 V4 V3
T34 V5 V2 V4 V3 V1
T35 V3 V1 V5 V2 V4
T36 V2 V3 V4 V5 V1
T37 V3 V1 V4 V5 V2
T38 V5 V2 V3 V1 V4
T39 V5 V1 V3 V4 V2
T40 V2 V5 V4 V1 V3
T41 V2 V5 V3 V4 V1
T42 V1 V5 V3 V2 V4
T43 V5 V4 V2 V1 V3
T44 V5 V3 V2 V4 V1
T45 V4 V5 V3 V1 V2
T46 V5 V4 V1 V3 V2
T47 V1 V5 V4 V3 V2
T48 V4 V2 V5 V1 V3
T49 V3 V2 V5 V4 V1
T50 V5 V3 V4 V1 V2
T51 V1 V2 V5 V3 V4
T52 V4 V1 V5 V3 V2
T53 V2 V4 V5 V3 V1
T54 V3 V5 V4 V2 V1
T55 V2 V3 V5 V1 V4
T56 V5 V4 V3 V2 V1
T57 V1 V3 V5 V4 V2
T58 V4 V3 V5 V2 V1
T59 V3 V4 V5 V1 V2
T60 V1 V4 V5 V2 V3
Table of $T_i \cdot T_j = T_k$:
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
T1 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
T2 T2 T5 T16 T36 T1 T10 T13 T11 T18 T21 T23 T25 T27 T28 T30 T32 T34 T29 T14 T38 T6 T41 T8 T44 T45 T20 T7 T19 T9 T42 T22 T3 T49 T50 T51 T37 T4 T26 T24 T54 T31 T15 T56 T39 T12 T43 T40 T58 T57 T17 T55 T48 T59 T47 T35 T46 T33 T52 T60 T53
T3 T3 T6 T10 T28 T8 T11 T14 T16 T19 T1 T2 T15 T18 T29 T31 T5 T20 T36 T37 T39 T32 T42 T21 T26 T41 T46 T4 T27 T7 T45 T12 T23 T35 T44 T52 T13 T9 T50 T17 T30 T54 T47 T38 T56 T40 T24 T22 T55 T58 T43 T57 T33 T49 T25 T59 T34 T60 T53 T48 T51
T4 T4 T7 T60 T51 T9 T12 T15 T17 T20 T22 T24 T26 T25 T11 T2 T33 T35 T34 T16 T5 T40 T28 T43 T14 T44 T6 T47 T10 T46 T23 T29 T48 T19 T49 T8 T53 T52 T32 T37 T55 T36 T3 T30 T13 T50 T31 T57 T38 T18 T59 T1 T39 T41 T58 T21 T54 T27 T56 T45 T42
T5 T5 T1 T32 T37 T2 T21 T27 T23 T29 T6 T8 T45 T7 T19 T42 T3 T50 T9 T28 T26 T10 T31 T11 T39 T12 T38 T13 T14 T18 T15 T41 T16 T57 T17 T55 T4 T36 T20 T44 T47 T22 T30 T46 T24 T25 T56 T54 T52 T33 T34 T35 T58 T60 T40 T51 T43 T49 T48 T53 T59
T6 T6 T8 T5 T13 T3 T1 T18 T2 T36 T32 T21 T41 T4 T27 T45 T23 T44 T7 T29 T50 T11 T54 T16 T56 T40 T39 T14 T37 T19 T47 T42 T10 T58 T43 T57 T9 T28 T46 T26 T25 T12 T31 T34 T17 T15 T38 T30 T53 T60 T20 T59 T55 T48 T22 T52 T24 T35 T33 T51 T49
T7 T7 T9 T33 T53 T4 T22 T25 T24 T34 T40 T43 T44 T47 T10 T23 T48 T49 T46 T11 T32 T12 T36 T17 T13 T50 T5 T15 T16 T20 T3 T28 T60 T18 T59 T1 T52 T51 T6 T14 T58 T29 T2 T54 T37 T26 T30 T55 T56 T27 T35 T21 T38 T45 T57 T8 T31 T19 T39 T42 T41
T8 T8 T3 T23 T9 T6 T32 T4 T21 T7 T11 T16 T40 T14 T37 T47 T10 T43 T19 T27 T46 T1 T12 T2 T17 T15 T50 T18 T29 T36 T31 T54 T5 T60 T20 T59 T28 T13 T39 T56 T22 T42 T45 T24 T26 T41 T34 T25 T33 T35 T44 T52 T53 T51 T30 T57 T38 T58 T55 T49 T48
T9 T9 T4 T48 T52 T7 T40 T47 T43 T46 T12 T17 T50 T15 T16 T3 T60 T59 T20 T10 T6 T22 T29 T24 T37 T26 T32 T25 T11 T34 T2 T36 T33 T27 T35 T21 T51 T53 T5 T13 T57 T28 T23 T31 T14 T44 T54 T58 T39 T19 T49 T8 T56 T42 T55 T1 T30 T18 T38 T41 T45
T10 T10 T11 T1 T27 T16 T2 T29 T5 T37 T3 T6 T31 T36 T7 T12 T8 T39 T13 T9 T17 T23 T47 T32 T46 T54 T24 T28 T4 T14 T40 T15 T21 T52 T56 T33 T18 T19 T43 T20 T45 T25 T22 T50 T34 T30 T26 T42 T59 T53 T38 T60 T35 T58 T41 T48 T44 T51 T49 T55 T57
T11 T11 T16 T8 T18 T10 T3 T36 T6 T13 T23 T32 T54 T28 T4 T40 T21 T56 T14 T7 T43 T2 T25 T5 T34 T30 T17 T29 T9 T37 T22 T47 T1 T53 T38 T60 T19 T27 T24 T46 T41 T15 T12 T44 T20 T31 T50 T45 T49 T51 T39 T48 T59 T55 T42 T33 T26 T52 T35 T57 T58
T12 T12 T17 T9 T25 T60 T4 T34 T7 T53 T48 T40 T36 T51 T47 T50 T43 T13 T15 T46 T59 T24 T58 T33 T54 T55 T37 T11 T52 T16 T57 T3 T22 T56 T30 T27 T20 T10 T31 T6 T44 T26 T29 T49 T35 T2 T32 T23 T41 T42 T5 T45 T21 T38 T28 T39 T14 T8 T19 T1 T18
T13 T13 T18 T49 T59 T36 T41 T45 T44 T50 T54 T56 T39 T40 T21 T8 T58 T57 T43 T23 T3 T25 T37 T34 T27 T17 T1 T30 T32 T38 T16 T19 T53 T29 T60 T2 T48 T55 T10 T28 T52 T9 T5 T47 T4 T20 T42 T35 T46 T7 T51 T6 T26 T12 T33 T11 T22 T14 T24 T15 T31
T14 T14 T19 T35 T49 T28 T42 T41 T26 T44 T30 T38 T56 T22 T1 T21 T55 T58 T24 T2 T23 T15 T13 T20 T18 T43 T8 T31 T5 T39 T10 T27 T51 T36 T48 T3 T33 T57 T11 T29 T53 T7 T6 T25 T9 T46 T45 T59 T34 T4 T52 T32 T50 T40 T60 T16 T12 T37 T17 T47 T54
T15 T15 T20 T19 T41 T51 T28 T44 T14 T49 T55 T30 T13 T57 T22 T43 T38 T18 T31 T24 T48 T26 T53 T35 T25 T59 T9 T2 T33 T5 T60 T10 T42 T34 T45 T4 T39 T1 T12 T11 T56 T46 T7 T58 T52 T6 T23 T21 T54 T47 T8 T40 T32 T50 T27 T17 T29 T16 T37 T3 T36
T16 T16 T10 T21 T19 T11 T23 T28 T32 T14 T2 T5 T30 T29 T9 T22 T1 T38 T37 T4 T24 T3 T15 T6 T20 T31 T43 T36 T7 T13 T12 T25 T8 T51 T39 T48 T27 T18 T17 T34 T42 T47 T40 T26 T46 T54 T44 T41 T35 T52 T56 T33 T49 T57 T45 T60 T50 T53 T59 T58 T55
T17 T17 T60 T43 T20 T12 T48 T51 T40 T15 T24 T33 T55 T11 T52 T57 T22 T30 T16 T47 T31 T4 T26 T7 T35 T2 T59 T34 T46 T53 T29 T58 T9 T42 T5 T45 T10 T25 T37 T54 T28 T3 T50 T14 T6 T36 T49 T44 T19 T8 T13 T39 T41 T1 T23 T27 T32 T56 T21 T18 T38
T18 T18 T36 T58 T48 T13 T54 T40 T56 T43 T25 T34 T17 T30 T32 T16 T53 T60 T38 T21 T10 T41 T9 T44 T4 T20 T3 T45 T23 T50 T5 T37 T49 T7 T51 T6 T55 T59 T1 T27 T33 T19 T8 T22 T28 T39 T47 T52 T24 T14 T57 T11 T46 T15 T35 T2 T42 T29 T26 T31 T12
T19 T19 T28 T55 T33 T14 T30 T22 T38 T24 T15 T20 T43 T31 T5 T10 T51 T48 T39 T1 T11 T42 T7 T26 T9 T46 T23 T41 T2 T44 T6 T13 T35 T4 T52 T32 T57 T49 T8 T18 T60 T27 T21 T12 T29 T56 T25 T53 T17 T37 T58 T16 T34 T47 T59 T3 T45 T36 T50 T54 T40
T20 T20 T51 T38 T39 T15 T55 T57 T30 T31 T26 T35 T59 T2 T33 T60 T42 T45 T5 T22 T12 T28 T46 T14 T52 T6 T48 T44 T24 T49 T7 T53 T19 T47 T8 T40 T1 T41 T9 T25 T27 T10 T43 T29 T11 T13 T58 T56 T37 T16 T18 T17 T54 T3 T21 T4 T23 T34 T32 T36 T50
T21 T21 T23 T2 T7 T32 T5 T9 T1 T4 T16 T10 T22 T37 T13 T25 T11 T24 T27 T18 T34 T8 T40 T3 T43 T47 T44 T19 T36 T28 T54 T30 T6 T48 T46 T49 T29 T14 T56 T38 T12 T45 T41 T17 T50 T42 T20 T15 T60 T59 T26 T53 T51 T52 T31 T58 T39 T55 T57 T35 T33
T22 T22 T24 T4 T47 T33 T7 T46 T9 T52 T60 T12 T29 T53 T15 T26 T17 T37 T25 T20 T35 T43 T57 T48 T31 T58 T14 T10 T51 T11 T55 T2 T40 T39 T54 T19 T34 T16 T30 T5 T50 T44 T28 T59 T49 T23 T6 T3 T45 T41 T32 T42 T8 T56 T36 T38 T13 T1 T18 T21 T27
T23 T23 T32 T11 T29 T21 T16 T37 T10 T27 T8 T3 T47 T19 T36 T54 T6 T46 T28 T13 T56 T5 T45 T1 T50 T42 T34 T9 T18 T4 T41 T40 T2 T59 T26 T53 T14 T7 T44 T43 T31 T30 T25 T39 T38 T22 T17 T12 T57 T55 T24 T58 T60 T35 T15 T49 T20 T48 T51 T33 T52
T24 T24 T33 T17 T34 T22 T60 T53 T12 T25 T43 T48 T58 T10 T51 T55 T40 T54 T11 T15 T30 T7 T44 T9 T49 T23 T35 T46 T20 T52 T28 T57 T4 T41 T32 T42 T16 T47 T14 T31 T36 T2 T26 T13 T5 T29 T59 T50 T18 T1 T37 T38 T45 T21 T3 T19 T6 T39 T8 T27 T56
T25 T25 T34 T18 T45 T53 T36 T50 T13 T59 T58 T54 T37 T55 T40 T17 T56 T27 T30 T43 T60 T44 T52 T49 T47 T35 T4 T23 T48 T32 T33 T16 T41 T46 T42 T7 T38 T21 T22 T10 T39 T20 T9 T57 T51 T5 T3 T8 T31 T15 T1 T12 T6 T26 T19 T24 T28 T11 T14 T2 T29
T26 T26 T35 T20 T44 T42 T51 T49 T15 T41 T38 T55 T53 T1 T57 T59 T30 T25 T2 T31 T45 T14 T56 T19 T58 T21 T52 T24 T39 T33 T27 T60 T28 T54 T23 T47 T5 T22 T29 T12 T13 T6 T46 T18 T8 T7 T48 T43 T36 T3 T9 T50 T40 T32 T10 T37 T11 T17 T16 T4 T34
T27 T27 T29 T57 T60 T37 T31 T12 T39 T17 T47 T46 T24 T54 T6 T11 T52 T33 T56 T8 T16 T45 T4 T50 T7 T34 T2 T42 T3 T26 T32 T14 T59 T9 T53 T5 T58 T35 T21 T19 T48 T18 T1 T40 T36 T38 T15 T51 T43 T13 T55 T10 T20 T25 T49 T23 T41 T28 T44 T30 T22
T28 T28 T14 T51 T57 T19 T15 T31 T20 T39 T42 T26 T46 T41 T2 T6 T35 T52 T44 T5 T8 T30 T27 T38 T29 T56 T11 T22 T1 T24 T21 T7 T55 T37 T58 T16 T49 T33 T23 T9 T59 T13 T10 T45 T18 T43 T12 T60 T50 T36 T48 T3 T17 T54 T53 T32 T25 T4 T34 T40 T47
T29 T29 T37 T52 T58 T27 T47 T54 T46 T56 T45 T50 T34 T42 T3 T32 T59 T53 T26 T6 T21 T31 T18 T39 T36 T38 T16 T12 T8 T17 T1 T4 T57 T13 T55 T10 T35 T60 T2 T7 T49 T14 T11 T41 T19 T24 T40 T48 T44 T28 T33 T23 T43 T30 T51 T5 T15 T9 T20 T22 T25
T30 T30 T38 T14 T31 T55 T19 T39 T28 T57 T35 T42 T27 T33 T41 T56 T26 T29 T22 T44 T58 T20 T59 T51 T45 T60 T18 T5 T49 T1 T53 T21 T15 T50 T12 T36 T24 T2 T25 T23 T46 T43 T13 T52 T48 T10 T8 T6 T47 T40 T11 T54 T3 T17 T7 T34 T9 T32 T4 T16 T37
T31 T31 T39 T37 T54 T57 T27 T56 T29 T58 T59 T45 T18 T60 T42 T38 T50 T36 T12 T26 T55 T46 T49 T52 T41 T48 T19 T6 T35 T8 T51 T1 T47 T44 T40 T28 T17 T3 T15 T2 T34 T24 T14 T53 T33 T11 T21 T32 T25 T22 T16 T30 T23 T43 T4 T20 T7 T5 T9 T10 T13
T32 T32 T21 T6 T14 T23 T8 T19 T3 T28 T5 T1 T42 T9 T18 T41 T2 T26 T4 T36 T44 T16 T30 T10 T38 T22 T56 T37 T13 T27 T25 T45 T11 T55 T24 T58 T7 T29 T34 T50 T15 T40 T54 T20 T43 T47 T39 T31 T51 T48 T46 T49 T57 T33 T12 T53 T17 T59 T60 T52 T35
T33 T33 T22 T40 T16 T24 T43 T10 T48 T11 T7 T9 T23 T46 T20 T28 T4 T32 T52 T51 T14 T60 T2 T12 T5 T29 T30 T53 T15 T25 T26 T44 T17 T1 T37 T38 T47 T34 T35 T49 T3 T57 T55 T6 T31 T58 T13 T36 T8 T39 T54 T19 T18 T27 T50 T42 T59 T41 T45 T56 T21
T34 T34 T53 T56 T38 T25 T58 T55 T54 T30 T44 T49 T35 T23 T48 T33 T41 T42 T32 T40 T22 T36 T20 T13 T51 T5 T60 T50 T43 T59 T9 T52 T18 T15 T1 T12 T21 T45 T4 T47 T19 T16 T17 T28 T10 T37 T57 T39 T14 T11 T27 T24 T31 T2 T8 T7 T3 T46 T6 T29 T26
T35 T35 T42 T30 T5 T26 T38 T1 T55 T2 T14 T19 T21 T24 T39 T27 T28 T23 T33 T57 T29 T51 T6 T15 T8 T7 T45 T49 T31 T41 T46 T56 T20 T3 T9 T50 T22 T44 T52 T58 T10 T60 T59 T11 T12 T53 T18 T13 T16 T17 T25 T37 T36 T4 T43 T47 T48 T54 T40 T34 T32
T36 T36 T13 T53 T55 T18 T25 T30 T34 T38 T41 T44 T20 T45 T23 T5 T49 T51 T50 T32 T1 T54 T19 T56 T28 T39 T10 T40 T21 T43 T8 T9 T58 T14 T57 T11 T59 T48 T3 T4 T35 T37 T16 T42 T27 T17 T22 T33 T26 T29 T60 T2 T24 T31 T52 T6 T47 T7 T46 T12 T15
T37 T37 T27 T59 T35 T29 T45 T42 T50 T26 T31 T39 T38 T12 T8 T1 T57 T55 T17 T3 T2 T47 T14 T46 T19 T24 T21 T54 T6 T56 T11 T18 T52 T28 T33 T23 T60 T58 T16 T36 T51 T4 T32 T15 T7 T34 T41 T49 T20 T9 T53 T5 T44 T22 T48 T10 T40 T13 T43 T25 T30
T38 T38 T55 T26 T24 T30 T35 T33 T42 T22 T20 T51 T60 T5 T49 T53 T15 T12 T1 T41 T25 T19 T43 T28 T48 T10 T58 T39 T44 T57 T13 T59 T14 T40 T11 T54 T2 T31 T18 T45 T7 T21 T56 T9 T23 T27 T52 T46 T4 T32 T29 T34 T47 T16 T6 T36 T8 T50 T3 T37 T17
T39 T39 T57 T50 T17 T31 T59 T60 T45 T12 T46 T52 T48 T6 T35 T51 T47 T40 T8 T42 T15 T27 T24 T29 T33 T11 T55 T56 T26 T58 T14 T49 T37 T22 T16 T30 T3 T54 T19 T41 T4 T1 T38 T7 T2 T18 T53 T34 T9 T5 T36 T20 T25 T10 T32 T28 T21 T44 T23 T13 T43
T40 T40 T43 T7 T15 T48 T9 T20 T4 T51 T33 T22 T28 T52 T25 T44 T24 T14 T47 T34 T49 T17 T55 T60 T30 T57 T13 T16 T53 T10 T58 T23 T12 T38 T31 T18 T46 T11 T54 T32 T26 T50 T36 T35 T59 T3 T5 T2 T42 T45 T6 T41 T1 T39 T29 T56 T37 T21 T27 T8 T19
T41 T41 T44 T36 T40 T49 T13 T43 T18 T48 T53 T25 T9 T59 T30 T20 T34 T4 T45 T38 T51 T56 T33 T58 T22 T52 T28 T21 T55 T23 T35 T5 T54 T24 T47 T14 T50 T32 T42 T1 T17 T39 T19 T60 T57 T8 T10 T16 T12 T31 T3 T15 T11 T46 T37 T26 T27 T2 T29 T6 T7
T42 T42 T26 T28 T22 T35 T14 T24 T19 T33 T51 T15 T7 T49 T31 T46 T20 T9 T41 T39 T52 T38 T60 T55 T12 T53 T29 T1 T57 T2 T59 T6 T30 T17 T25 T37 T44 T5 T45 T8 T43 T56 T27 T48 T58 T21 T11 T10 T40 T54 T23 T47 T16 T34 T13 T50 T18 T3 T36 T32 T4
T43 T43 T48 T24 T46 T40 T33 T52 T22 T47 T17 T60 T57 T16 T53 T58 T12 T31 T10 T25 T54 T9 T50 T4 T59 T3 T49 T20 T34 T51 T36 T55 T7 T45 T6 T41 T11 T15 T13 T30 T29 T23 T44 T37 T32 T28 T35 T26 T27 T21 T14 T56 T42 T8 T2 T18 T5 T38 T1 T19 T39
T44 T44 T49 T34 T50 T41 T53 T59 T25 T45 T56 T58 T52 T21 T55 T35 T54 T47 T23 T30 T42 T13 T39 T18 T57 T8 T51 T43 T38 T48 T19 T33 T36 T31 T3 T15 T32 T40 T28 T22 T37 T5 T20 T27 T1 T9 T60 T17 T29 T2 T4 T26 T12 T6 T16 T14 T10 T24 T11 T7 T46
T45 T45 T50 T29 T12 T59 T37 T17 T27 T60 T52 T47 T4 T35 T54 T34 T46 T7 T42 T56 T53 T39 T48 T57 T40 T51 T36 T8 T58 T3 T49 T32 T31 T43 T15 T13 T26 T6 T41 T21 T24 T38 T18 T33 T55 T1 T16 T11 T22 T30 T2 T25 T10 T20 T14 T44 T19 T23 T28 T5 T9
T46 T46 T52 T39 T56 T47 T57 T58 T31 T54 T50 T59 T49 T3 T60 T48 T45 T41 T6 T12 T40 T29 T34 T37 T53 T32 T33 T26 T17 T35 T4 T51 T27 T25 T21 T22 T8 T42 T7 T15 T18 T11 T24 T36 T16 T14 T55 T38 T13 T10 T19 T43 T30 T23 T1 T9 T2 T20 T5 T28 T44
T47 T47 T46 T27 T42 T52 T29 T26 T37 T35 T57 T31 T14 T58 T12 T24 T39 T19 T54 T17 T33 T50 T51 T59 T15 T49 T7 T3 T60 T6 T48 T11 T45 T20 T41 T9 T56 T8 T40 T16 T38 T34 T4 T55 T53 T32 T2 T1 T30 T25 T21 T22 T5 T44 T18 T43 T36 T10 T13 T23 T28
T48 T48 T40 T12 T11 T43 T17 T16 T60 T10 T9 T4 T3 T20 T34 T36 T7 T6 T51 T53 T13 T33 T23 T22 T32 T28 T54 T52 T25 T47 T44 T50 T24 T21 T14 T56 T15 T46 T49 T59 T2 T55 T58 T5 T30 T57 T37 T29 T1 T38 T31 T18 T27 T19 T26 T41 T35 T45 T42 T39 T8
T49 T49 T41 T54 T32 T44 T56 T21 T58 T23 T13 T18 T8 T43 T38 T19 T36 T3 T48 T55 T28 T53 T5 T25 T1 T9 T42 T59 T30 T45 T20 T39 T34 T2 T4 T26 T40 T50 T51 T57 T16 T33 T35 T10 T22 T52 T27 T37 T11 T24 T47 T14 T29 T7 T17 T15 T60 T31 T12 T46 T6
T50 T50 T59 T46 T26 T45 T52 T35 T47 T42 T39 T57 T51 T8 T58 T49 T31 T15 T3 T54 T41 T37 T38 T27 T55 T1 T53 T17 T56 T60 T18 T48 T29 T30 T2 T25 T6 T12 T36 T40 T14 T32 T34 T19 T21 T4 T33 T24 T28 T23 T7 T44 T22 T5 T11 T13 T16 T43 T10 T9 T20
T51 T51 T15 T42 T1 T20 T26 T2 T35 T5 T28 T14 T6 T44 T24 T7 T19 T8 T49 T33 T9 T55 T10 T30 T11 T13 T12 T57 T22 T31 T43 T46 T38 T16 T18 T17 T41 T39 T48 T52 T21 T53 T60 T23 T25 T59 T29 T27 T32 T34 T45 T4 T37 T36 T56 T40 T58 T47 T54 T50 T3
T52 T52 T47 T45 T8 T46 T50 T3 T59 T6 T29 T37 T32 T26 T17 T4 T27 T21 T35 T60 T7 T57 T11 T31 T16 T14 T40 T58 T12 T54 T24 T34 T39 T10 T19 T43 T42 T56 T33 T53 T1 T51 T48 T2 T15 T49 T36 T18 T5 T20 T41 T9 T13 T28 T38 T22 T55 T25 T30 T44 T23
T53 T53 T25 T41 T21 T34 T44 T23 T49 T32 T36 T13 T5 T50 T43 T9 T18 T1 T59 T48 T4 T58 T16 T54 T10 T37 T22 T55 T40 T30 T17 T20 T56 T11 T27 T24 T45 T38 T60 T51 T8 T52 T33 T3 T47 T35 T28 T19 T6 T46 T42 T7 T14 T29 T39 T12 T57 T15 T31 T26 T2
T54 T54 T56 T13 T30 T58 T18 T38 T36 T55 T49 T41 T19 T48 T45 T39 T44 T28 T40 T50 T57 T34 T35 T53 T42 T33 T27 T32 T59 T21 T52 T8 T25 T26 T22 T29 T43 T23 T47 T3 T20 T17 T37 T51 T60 T16 T1 T5 T15 T12 T10 T31 T2 T24 T9 T46 T4 T6 T7 T11 T14
T55 T55 T30 T15 T2 T38 T20 T5 T51 T1 T19 T28 T10 T39 T44 T13 T14 T11 T57 T49 T18 T35 T21 T42 T23 T27 T25 T33 T41 T22 T56 T43 T26 T32 T29 T34 T31 T24 T58 T48 T6 T59 T53 T8 T45 T60 T9 T7 T3 T50 T12 T36 T4 T37 T46 T54 T52 T40 T47 T17 T16
T56 T56 T58 T44 T43 T54 T49 T48 T41 T40 T34 T53 T33 T32 T59 T52 T25 T22 T21 T45 T47 T18 T17 T36 T60 T16 T57 T38 T50 T55 T37 T35 T13 T12 T10 T31 T23 T30 T27 T42 T9 T8 T39 T4 T3 T19 T51 T20 T7 T6 T28 T46 T15 T11 T5 T29 T1 T26 T2 T14 T24
T57 T57 T31 T47 T3 T39 T46 T6 T52 T8 T27 T29 T11 T56 T26 T14 T37 T16 T58 T35 T19 T59 T1 T45 T2 T18 T15 T60 T42 T12 T38 T24 T50 T5 T36 T20 T54 T17 T55 T33 T32 T49 T51 T21 T41 T48 T7 T4 T23 T44 T40 T28 T9 T13 T34 T30 T53 T22 T25 T43 T10
T58 T58 T54 T25 T23 T56 T34 T32 T53 T21 T18 T36 T16 T38 T50 T37 T13 T10 T55 T59 T27 T49 T8 T41 T3 T19 T47 T48 T45 T40 T39 T17 T44 T6 T28 T46 T30 T43 T57 T60 T5 T35 T52 T1 T42 T33 T4 T9 T2 T26 T22 T29 T7 T14 T20 T31 T51 T12 T15 T24 T11
T59 T59 T45 T31 T6 T50 T39 T8 T57 T3 T37 T27 T1 T17 T56 T18 T29 T2 T60 T58 T36 T52 T32 T47 T21 T4 T41 T35 T54 T42 T34 T38 T46 T23 T7 T44 T12 T26 T53 T55 T11 T48 T49 T16 T40 T51 T19 T14 T10 T43 T15 T13 T28 T9 T24 T25 T33 T30 T22 T20 T5
T60 T60 T12 T22 T10 T17 T24 T11 T33 T16 T4 T7 T2 T34 T46 T29 T9 T5 T53 T52 T37 T48 T3 T40 T6 T36 T31 T51 T47 T15 T50 T26 T43 T8 T13 T39 T25 T20 T59 T35 T23 T58 T57 T32 T54 T55 T14 T28 T21 T56 T30 T27 T19 T18 T44 T45 T49 T42 T41 T38 T1