$ \def\MA{{\frac{\sqrt{15}}{4}}} \def\MB{{\frac{1}{4}}} \def\MC{{\frac{1}{3}}} \def\MD{{\frac{\sqrt{2}}{\sqrt{3}}}} \def\ME{{\frac{\sqrt{2}}{3}}} \def\MF{{\frac{1}{2}}} \def\MG{{\frac{\sqrt{3}}{2}}} \def\MH{{\frac{2\sqrt{2}}{3}}} \def\MI{{\frac{1}{2\sqrt{3}}}} \def\MJ{{\frac{1}{6}}} \def\MK{{\frac{11}{12}}} \def\ML{{\frac{1}{2\sqrt{6}}}} \def\MM{{\frac{1}{6\sqrt{2}}}} \def\MN{{\frac{\sqrt{5}}{4\sqrt{3}}}} \def\MO{{\frac{\sqrt{5}}{2\sqrt{2}}}} \def\MP{{\frac{5}{6}}} \def\MQ{{\frac{\sqrt{5}}{2\sqrt{6}}}} \def\MR{{\frac{\sqrt{5}}{\sqrt{6}}}} \def\MS{{\frac{1}{\sqrt{3}}}} \def\MT{{\frac{2}{3}}} \def\MU{{\frac{5}{12}}} \def\MV{{\frac{\sqrt{3}}{2\sqrt{2}}}} \def\MW{{\frac{5}{6\sqrt{2}}}} \def\MX{{\frac{7}{6\sqrt{2}}}} \def\MY{{\frac{1}{3\sqrt{2}}}} \def\MZ{{\frac{1}{12}}} $

5-cell

Initial vertex: $V_1=\left[\begin{matrix}\MA\\0\\0\\-\MB\end{matrix}\right]$

Transforms for vertex generation:

$\tilde{T}_i\in\left\{ \left[\begin{matrix}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{matrix}\right], \left[\begin{matrix}-\MC&-\MD&-\ME&0\\0&\MF&-\MG&0\\ \MH&-\MI&-\MJ&0\\0&0&0&1\end{matrix}\right], \left[\begin{matrix}1&0&0&0\\0&-\MF&-\MG&0\\0&\MG&-\MF&0\\0&0&0&1\end{matrix}\right], \left[\begin{matrix}\MK&\ML&-\MM&-\MN\\-\ML&-\MF&-\MI&-\MO\\-\MM&\MI&\MP&-\MQ\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right] \right\}$

Vertexes:

$T_2 V_1=\left[\begin{matrix}-\MN\\0\\ \MR\\-\MB\end{matrix}\right]=V_2$
$T_2 V_2=\left[\begin{matrix}-\MN\\-\MO\\-\MQ\\-\MB\end{matrix}\right]=V_3$
$T_3 V_3=\left[\begin{matrix}-\MN\\ \MO\\-\MQ\\-\MB\end{matrix}\right]=V_4$
$T_4 V_4=\left[\begin{matrix}0\\0\\0\\1\end{matrix}\right]=V_5$

All Transforms:

$T_2 T_2=\left[\begin{matrix}-\MC&0&\MH&0\\-\MD&\MF&-\MI&0\\-\ME&-\MG&-\MJ&0\\0&0&0&1\end{matrix}\right]=T_5$
$T_3 T_2=\left[\begin{matrix}-\MC&-\MD&-\ME&0\\-\MD&0&\MS&0\\-\ME&\MS&-\MT&0\\0&0&0&1\end{matrix}\right]=T_6$
$T_4 T_2=\left[\begin{matrix}-\MU&-\MV&-\MW&-\MN\\-\ML&0&\MS&-\MO\\ \MX&0&-\MC&-\MQ\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_7$
$T_3 T_5=\left[\begin{matrix}-\MC&0&\MH&0\\ \MD&\MF&\MI&0\\-\ME&\MG&-\MJ&0\\0&0&0&1\end{matrix}\right]=T_8$
$T_4 T_5=\left[\begin{matrix}-\MU&\ML&\MX&-\MN\\ \MV&0&0&-\MO\\-\MW&-\MS&-\MC&-\MQ\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_9$
$T_2 T_6=\left[\begin{matrix}1&0&0&0\\0&-\MF&\MG&0\\0&-\MG&-\MF&0\\0&0&0&1\end{matrix}\right]=T_{10}$
$T_3 T_6=\left[\begin{matrix}-\MC&-\MD&-\ME&0\\ \MD&-\MF&\MI&0\\-\ME&-\MI&\MP&0\\0&0&0&1\end{matrix}\right]=T_{11}$
$T_4 T_6=\left[\begin{matrix}-\MU&-\MD&-\MY&-\MN\\ \MV&0&0&-\MO\\-\MW&\MS&-\MC&-\MQ\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{12}$
$T_2 T_7=\left[\begin{matrix}-\MZ&\ML&-\MM&\MA\\-\MD&0&\MS&0\\-\ME&-\MS&-\MT&0\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{13}$
$T_3 T_7=\left[\begin{matrix}-\MU&-\MV&-\MW&-\MN\\-\MV&0&0&\MO\\-\MW&0&\MT&-\MQ\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{14}$
$T_4 T_7=\left[\begin{matrix}-\MU&-\MD&-\MY&-\MN\\ \ML&-\MF&\MI&\MO\\ \MX&-\MI&\MJ&-\MQ\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{15}$
$T_3 T_8=\left[\begin{matrix}-\MC&0&\MH&0\\0&-{1}&0&0\\ \MH&0&\MC&0\\0&0&0&1\end{matrix}\right]=T_{16}$
$T_4 T_8=\left[\begin{matrix}-\MZ&0&\MH&-\MN\\-\ML&-\MF&-\MI&-\MO\\-\MM&\MG&-\MJ&-\MQ\\ \MA&0&0&-\MB\end{matrix}\right]=T_{17}$
$T_2 T_9=\left[\begin{matrix}-\MZ&\ML&-\MM&\MA\\ \MD&\MF&\MI&0\\-\ME&\MI&\MP&0\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{18}$
$T_3 T_9=\left[\begin{matrix}-\MU&\ML&\MX&-\MN\\ \ML&\MF&\MI&\MO\\ \MX&\MI&\MJ&-\MQ\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{19}$
$T_4 T_9=\left[\begin{matrix}-\MZ&0&\MH&-\MN\\ \ML&-\MF&\MI&\MO\\-\MM&-\MG&-\MJ&-\MQ\\ \MA&0&0&-\MB\end{matrix}\right]=T_{20}$
$T_2 T_{10}=\left[\begin{matrix}-\MC&\MD&-\ME&0\\0&\MF&\MG&0\\ \MH&\MI&-\MJ&0\\0&0&0&1\end{matrix}\right]=T_{21}$
$T_4 T_{10}=\left[\begin{matrix}\MK&0&\MY&-\MN\\-\ML&\MF&-\MI&-\MO\\-\MM&-\MG&-\MJ&-\MQ\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{22}$
$T_2 T_{11}=\left[\begin{matrix}-\MC&\MD&-\ME&0\\ \MD&0&-\MS&0\\-\ME&-\MS&-\MT&0\\0&0&0&1\end{matrix}\right]=T_{23}$
$T_4 T_{11}=\left[\begin{matrix}-\MZ&-\MD&-\ME&-\MN\\-\ML&\MF&-\MI&-\MO\\-\MM&-\MI&\MP&-\MQ\\ \MA&0&0&-\MB\end{matrix}\right]=T_{24}$
$T_2 T_{12}=\left[\begin{matrix}-\MZ&0&\MY&\MA\\ \MD&-\MF&\MI&0\\-\ME&-\MG&-\MJ&0\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{25}$
$T_4 T_{12}=\left[\begin{matrix}-\MZ&-\MD&-\ME&-\MN\\ \ML&0&-\MS&\MO\\-\MM&\MS&-\MT&-\MQ\\ \MA&0&0&-\MB\end{matrix}\right]=T_{26}$
$T_2 T_{13}=\left[\begin{matrix}\MK&\ML&-\MM&-\MN\\0&\MF&\MG&0\\ \MY&\MI&-\MJ&\MR\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{27}$
$T_2 T_{14}=\left[\begin{matrix}\MK&\ML&-\MM&-\MN\\ \ML&0&-\MS&\MO\\-\MM&-\MS&-\MT&-\MQ\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{28}$
$T_3 T_{14}=\left[\begin{matrix}-\MU&-\MV&-\MW&-\MN\\ \MD&0&-\MS&0\\-\MY&0&-\MC&\MR\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{29}$
$T_2 T_{15}=\left[\begin{matrix}-\MU&\MD&-\MY&-\MN\\-\MV&0&0&\MO\\-\MW&-\MS&-\MC&-\MQ\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{30}$
$T_3 T_{15}=\left[\begin{matrix}-\MU&-\MD&-\MY&-\MN\\-\MD&\MF&-\MI&0\\-\MY&-\MI&\MJ&\MR\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{31}$
$T_2 T_{16}=\left[\begin{matrix}-\MC&\MD&-\ME&0\\-\MD&-\MF&-\MI&0\\-\ME&\MI&\MP&0\\0&0&0&1\end{matrix}\right]=T_{32}$
$T_4 T_{16}=\left[\begin{matrix}-\MU&-\ML&\MX&-\MN\\-\ML&\MF&-\MI&-\MO\\ \MX&-\MI&\MJ&-\MQ\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{33}$
$T_2 T_{17}=\left[\begin{matrix}\MB&0&0&\MA\\0&-{1}&0&0\\0&0&1&0\\ \MA&0&0&-\MB\end{matrix}\right]=T_{34}$
$T_4 T_{17}=\left[\begin{matrix}-\MU&-\ML&\MX&-\MN\\-\MV&0&0&\MO\\-\MW&\MS&-\MC&-\MQ\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{35}$
$T_3 T_{18}=\left[\begin{matrix}-\MZ&\ML&-\MM&\MA\\0&-\MF&-\MG&0\\ \MH&\MI&-\MJ&0\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{36}$
$T_3 T_{19}=\left[\begin{matrix}-\MU&\ML&\MX&-\MN\\-\MD&-\MF&-\MI&0\\-\MY&\MI&\MJ&\MR\\-\MN&\MO&-\MQ&-\MB\end{matrix}\right]=T_{37}$
$T_2 T_{20}=\left[\begin{matrix}-\MZ&\MD&-\ME&-\MN\\ \ML&\MF&\MI&\MO\\-\MM&\MI&\MP&-\MQ\\ \MA&0&0&-\MB\end{matrix}\right]=T_{38}$
$T_3 T_{20}=\left[\begin{matrix}-\MZ&0&\MH&-\MN\\0&1&0&0\\ \MY&0&\MC&\MR\\ \MA&0&0&-\MB\end{matrix}\right]=T_{39}$
$T_4 T_{21}=\left[\begin{matrix}-\MU&\MD&-\MY&-\MN\\-\ML&-\MF&-\MI&-\MO\\ \MX&\MI&\MJ&-\MQ\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{40}$
$T_2 T_{22}=\left[\begin{matrix}-\MZ&0&\MY&\MA\\0&1&0&0\\ \MH&0&\MC&0\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{41}$
$T_3 T_{22}=\left[\begin{matrix}\MK&0&\MY&-\MN\\ \ML&\MF&\MI&\MO\\-\MM&\MG&-\MJ&-\MQ\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{42}$
$T_4 T_{23}=\left[\begin{matrix}-\MZ&\MD&-\ME&-\MN\\-\ML&0&\MS&-\MO\\-\MM&-\MS&-\MT&-\MQ\\ \MA&0&0&-\MB\end{matrix}\right]=T_{43}$
$T_2 T_{24}=\left[\begin{matrix}\MB&0&0&\MA\\0&\MF&-\MG&0\\0&-\MG&-\MF&0\\ \MA&0&0&-\MB\end{matrix}\right]=T_{44}$
$T_2 T_{25}=\left[\begin{matrix}-\MU&\MD&-\MY&-\MN\\ \MD&\MF&\MI&0\\-\MY&\MI&\MJ&\MR\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{45}$
$T_3 T_{26}=\left[\begin{matrix}-\MZ&-\MD&-\ME&-\MN\\0&-\MF&\MG&0\\ \MY&-\MI&-\MJ&\MR\\ \MA&0&0&-\MB\end{matrix}\right]=T_{46}$
$T_4 T_{27}=\left[\begin{matrix}\MK&0&\MY&-\MN\\0&-{1}&0&0\\ \MY&0&\MC&\MR\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{47}$
$T_4 T_{32}=\left[\begin{matrix}-\MU&\MV&-\MW&-\MN\\ \MV&0&0&-\MO\\-\MW&0&\MT&-\MQ\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{48}$
$T_2 T_{33}=\left[\begin{matrix}-\MZ&-\ML&-\MM&\MA\\-\MD&\MF&-\MI&0\\-\ME&-\MI&\MP&0\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{49}$
$T_2 T_{34}=\left[\begin{matrix}-\MZ&\MD&-\ME&-\MN\\0&-\MF&-\MG&0\\ \MY&\MI&-\MJ&\MR\\ \MA&0&0&-\MB\end{matrix}\right]=T_{50}$
$T_2 T_{35}=\left[\begin{matrix}\MK&-\ML&-\MM&-\MN\\ \ML&-\MF&\MI&\MO\\-\MM&-\MI&\MP&-\MQ\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{51}$
$T_3 T_{35}=\left[\begin{matrix}-\MU&-\ML&\MX&-\MN\\ \MD&-\MF&\MI&0\\-\MY&-\MI&\MJ&\MR\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{52}$
$T_4 T_{36}=\left[\begin{matrix}-\MZ&-\ML&-\MM&\MA\\0&-\MF&\MG&0\\ \MH&-\MI&-\MJ&0\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{53}$
$T_2 T_{40}=\left[\begin{matrix}-\MZ&0&\MY&\MA\\-\MD&-\MF&-\MI&0\\-\ME&\MG&-\MJ&0\\-\MN&0&\MR&-\MB\end{matrix}\right]=T_{54}$
$T_4 T_{40}=\left[\begin{matrix}-\MU&\MV&-\MW&-\MN\\ \ML&0&-\MS&\MO\\ \MX&0&-\MC&-\MQ\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{55}$
$T_2 T_{43}=\left[\begin{matrix}\MB&0&0&\MA\\0&\MF&\MG&0\\0&\MG&-\MF&0\\ \MA&0&0&-\MB\end{matrix}\right]=T_{56}$
$T_4 T_{47}=\left[\begin{matrix}\MK&-\ML&-\MM&-\MN\\0&\MF&-\MG&0\\ \MY&-\MI&-\MJ&\MR\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{57}$
$T_2 T_{48}=\left[\begin{matrix}-\MZ&-\ML&-\MM&\MA\\ \MD&0&-\MS&0\\-\ME&\MS&-\MT&0\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{58}$
$T_4 T_{50}=\left[\begin{matrix}-\MU&\MV&-\MW&-\MN\\-\MD&0&\MS&0\\-\MY&0&-\MC&\MR\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{59}$
$T_3 T_{57}=\left[\begin{matrix}\MK&-\ML&-\MM&-\MN\\-\ML&0&\MS&-\MO\\-\MM&\MS&-\MT&-\MQ\\-\MN&-\MO&-\MQ&-\MB\end{matrix}\right]=T_{60}$


relabeled vertexes as {1, 5, 2, 4, 3}

Vertexes as column vectors:

$V=\left[\begin{matrix} \MA&0&-\MN&-\MN&-\MN\\ 0&0&0&\MO&-\MO\\ 0&0&\MR&-\MQ&-\MQ\\ -\MB&1&-\MB&-\MB&-\MB \end{matrix}\right]$

Vertex inner products:

$V^T V=\left[\begin{matrix} \MA&0&0&-\MB\\ 0&0&0&1\\ -\MN&0&\MR&-\MB\\ -\MN&\MO&-\MQ&-\MB\\ -\MN&-\MO&-\MQ&-\MB \end{matrix}\right] \left[\begin{matrix} \MA&0&-\MN&-\MN&-\MN\\ 0&0&0&\MO&-\MO\\ 0&0&\MR&-\MQ&-\MQ\\ -\MB&1&-\MB&-\MB&-\MB \end{matrix}\right] = \left[\begin{matrix} 1&-\MB&-\MB&-\MB&-\MB\\ -\MB&1&-\MB&-\MB&-\MB\\ -\MB&-\MB&1&-\MB&-\MB\\ -\MB&-\MB&-\MB&1&-\MB\\ -\MB&-\MB&-\MB&-\MB&1 \end{matrix}\right]$

Table of $T_i \cdot v_j = v_k$:
    V1 V2 V3 V4 V5 
T1  V1 V2 V3 V4 V5 
T2  V2 V3 V1 V4 V5 
T3  V1 V3 V4 V2 V5 
T4  V1 V2 V4 V5 V3 
T5  V3 V1 V2 V4 V5 
T6  V3 V4 V1 V2 V5 
T7  V2 V4 V1 V5 V3 
T8  V4 V1 V3 V2 V5 
T9  V4 V1 V2 V5 V3 
T10 V1 V4 V2 V3 V5 
T11 V4 V2 V1 V3 V5 
T12 V4 V5 V1 V2 V3 
T13 V3 V4 V2 V5 V1 
T14 V3 V2 V1 V5 V4 
T15 V2 V5 V1 V3 V4 
T16 V2 V1 V4 V3 V5 
T17 V5 V1 V4 V2 V3 
T18 V4 V2 V3 V5 V1 
T19 V2 V1 V3 V5 V4 
T20 V5 V1 V2 V3 V4 
T21 V2 V4 V3 V1 V5 
T22 V1 V5 V2 V4 V3 
T23 V4 V3 V2 V1 V5 
T24 V5 V2 V1 V4 V3 
T25 V4 V5 V2 V3 V1 
T26 V5 V3 V1 V2 V4 
T27 V1 V4 V3 V5 V2 
T28 V1 V3 V2 V5 V4 
T29 V4 V3 V1 V5 V2 
T30 V3 V5 V2 V1 V4 
T31 V3 V5 V1 V4 V2 
T32 V3 V2 V4 V1 V5 
T33 V2 V1 V5 V4 V3 
T34 V5 V2 V4 V3 V1 
T35 V3 V1 V5 V2 V4 
T36 V2 V3 V4 V5 V1 
T37 V3 V1 V4 V5 V2 
T38 V5 V2 V3 V1 V4 
T39 V5 V1 V3 V4 V2 
T40 V2 V5 V4 V1 V3 
T41 V2 V5 V3 V4 V1 
T42 V1 V5 V3 V2 V4 
T43 V5 V4 V2 V1 V3 
T44 V5 V3 V2 V4 V1 
T45 V4 V5 V3 V1 V2 
T46 V5 V4 V1 V3 V2 
T47 V1 V5 V4 V3 V2 
T48 V4 V2 V5 V1 V3 
T49 V3 V2 V5 V4 V1 
T50 V5 V3 V4 V1 V2 
T51 V1 V2 V5 V3 V4 
T52 V4 V1 V5 V3 V2 
T53 V2 V4 V5 V3 V1 
T54 V3 V5 V4 V2 V1 
T55 V2 V3 V5 V1 V4 
T56 V5 V4 V3 V2 V1 
T57 V1 V3 V5 V4 V2 
T58 V4 V3 V5 V2 V1 
T59 V3 V4 V5 V1 V2 
T60 V1 V4 V5 V2 V3 


Table of $T_i \cdot T_j = T_k$:
    T1  T2  T3  T4  T5  T6  T7  T8  T9  T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
T1  T1  T2  T3  T4  T5  T6  T7  T8  T9  T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60
T2  T2  T5  T16 T36 T1  T10 T13 T11 T18 T21 T23 T25 T27 T28 T30 T32 T34 T29 T14 T38 T6  T41 T8  T44 T45 T20 T7  T19 T9  T42 T22 T3  T49 T50 T51 T37 T4  T26 T24 T54 T31 T15 T56 T39 T12 T43 T40 T58 T57 T17 T55 T48 T59 T47 T35 T46 T33 T52 T60 T53
T3  T3  T6  T10 T28 T8  T11 T14 T16 T19 T1  T2  T15 T18 T29 T31 T5  T20 T36 T37 T39 T32 T42 T21 T26 T41 T46 T4  T27 T7  T45 T12 T23 T35 T44 T52 T13 T9  T50 T17 T30 T54 T47 T38 T56 T40 T24 T22 T55 T58 T43 T57 T33 T49 T25 T59 T34 T60 T53 T48 T51
T4  T4  T7  T60 T51 T9  T12 T15 T17 T20 T22 T24 T26 T25 T11 T2  T33 T35 T34 T16 T5  T40 T28 T43 T14 T44 T6  T47 T10 T46 T23 T29 T48 T19 T49 T8  T53 T52 T32 T37 T55 T36 T3  T30 T13 T50 T31 T57 T38 T18 T59 T1  T39 T41 T58 T21 T54 T27 T56 T45 T42
T5  T5  T1  T32 T37 T2  T21 T27 T23 T29 T6  T8  T45 T7  T19 T42 T3  T50 T9  T28 T26 T10 T31 T11 T39 T12 T38 T13 T14 T18 T15 T41 T16 T57 T17 T55 T4  T36 T20 T44 T47 T22 T30 T46 T24 T25 T56 T54 T52 T33 T34 T35 T58 T60 T40 T51 T43 T49 T48 T53 T59
T6  T6  T8  T5  T13 T3  T1  T18 T2  T36 T32 T21 T41 T4  T27 T45 T23 T44 T7  T29 T50 T11 T54 T16 T56 T40 T39 T14 T37 T19 T47 T42 T10 T58 T43 T57 T9  T28 T46 T26 T25 T12 T31 T34 T17 T15 T38 T30 T53 T60 T20 T59 T55 T48 T22 T52 T24 T35 T33 T51 T49
T7  T7  T9  T33 T53 T4  T22 T25 T24 T34 T40 T43 T44 T47 T10 T23 T48 T49 T46 T11 T32 T12 T36 T17 T13 T50 T5  T15 T16 T20 T3  T28 T60 T18 T59 T1  T52 T51 T6  T14 T58 T29 T2  T54 T37 T26 T30 T55 T56 T27 T35 T21 T38 T45 T57 T8  T31 T19 T39 T42 T41
T8  T8  T3  T23 T9  T6  T32 T4  T21 T7  T11 T16 T40 T14 T37 T47 T10 T43 T19 T27 T46 T1  T12 T2  T17 T15 T50 T18 T29 T36 T31 T54 T5  T60 T20 T59 T28 T13 T39 T56 T22 T42 T45 T24 T26 T41 T34 T25 T33 T35 T44 T52 T53 T51 T30 T57 T38 T58 T55 T49 T48
T9  T9  T4  T48 T52 T7  T40 T47 T43 T46 T12 T17 T50 T15 T16 T3  T60 T59 T20 T10 T6  T22 T29 T24 T37 T26 T32 T25 T11 T34 T2  T36 T33 T27 T35 T21 T51 T53 T5  T13 T57 T28 T23 T31 T14 T44 T54 T58 T39 T19 T49 T8  T56 T42 T55 T1  T30 T18 T38 T41 T45
T10 T10 T11 T1  T27 T16 T2  T29 T5  T37 T3  T6  T31 T36 T7  T12 T8  T39 T13 T9  T17 T23 T47 T32 T46 T54 T24 T28 T4  T14 T40 T15 T21 T52 T56 T33 T18 T19 T43 T20 T45 T25 T22 T50 T34 T30 T26 T42 T59 T53 T38 T60 T35 T58 T41 T48 T44 T51 T49 T55 T57
T11 T11 T16 T8  T18 T10 T3  T36 T6  T13 T23 T32 T54 T28 T4  T40 T21 T56 T14 T7  T43 T2  T25 T5  T34 T30 T17 T29 T9  T37 T22 T47 T1  T53 T38 T60 T19 T27 T24 T46 T41 T15 T12 T44 T20 T31 T50 T45 T49 T51 T39 T48 T59 T55 T42 T33 T26 T52 T35 T57 T58
T12 T12 T17 T9  T25 T60 T4  T34 T7  T53 T48 T40 T36 T51 T47 T50 T43 T13 T15 T46 T59 T24 T58 T33 T54 T55 T37 T11 T52 T16 T57 T3  T22 T56 T30 T27 T20 T10 T31 T6  T44 T26 T29 T49 T35 T2  T32 T23 T41 T42 T5  T45 T21 T38 T28 T39 T14 T8  T19 T1  T18
T13 T13 T18 T49 T59 T36 T41 T45 T44 T50 T54 T56 T39 T40 T21 T8  T58 T57 T43 T23 T3  T25 T37 T34 T27 T17 T1  T30 T32 T38 T16 T19 T53 T29 T60 T2  T48 T55 T10 T28 T52 T9  T5  T47 T4  T20 T42 T35 T46 T7  T51 T6  T26 T12 T33 T11 T22 T14 T24 T15 T31
T14 T14 T19 T35 T49 T28 T42 T41 T26 T44 T30 T38 T56 T22 T1  T21 T55 T58 T24 T2  T23 T15 T13 T20 T18 T43 T8  T31 T5  T39 T10 T27 T51 T36 T48 T3  T33 T57 T11 T29 T53 T7  T6  T25 T9  T46 T45 T59 T34 T4  T52 T32 T50 T40 T60 T16 T12 T37 T17 T47 T54
T15 T15 T20 T19 T41 T51 T28 T44 T14 T49 T55 T30 T13 T57 T22 T43 T38 T18 T31 T24 T48 T26 T53 T35 T25 T59 T9  T2  T33 T5  T60 T10 T42 T34 T45 T4  T39 T1  T12 T11 T56 T46 T7  T58 T52 T6  T23 T21 T54 T47 T8  T40 T32 T50 T27 T17 T29 T16 T37 T3  T36
T16 T16 T10 T21 T19 T11 T23 T28 T32 T14 T2  T5  T30 T29 T9  T22 T1  T38 T37 T4  T24 T3  T15 T6  T20 T31 T43 T36 T7  T13 T12 T25 T8  T51 T39 T48 T27 T18 T17 T34 T42 T47 T40 T26 T46 T54 T44 T41 T35 T52 T56 T33 T49 T57 T45 T60 T50 T53 T59 T58 T55
T17 T17 T60 T43 T20 T12 T48 T51 T40 T15 T24 T33 T55 T11 T52 T57 T22 T30 T16 T47 T31 T4  T26 T7  T35 T2  T59 T34 T46 T53 T29 T58 T9  T42 T5  T45 T10 T25 T37 T54 T28 T3  T50 T14 T6  T36 T49 T44 T19 T8  T13 T39 T41 T1  T23 T27 T32 T56 T21 T18 T38
T18 T18 T36 T58 T48 T13 T54 T40 T56 T43 T25 T34 T17 T30 T32 T16 T53 T60 T38 T21 T10 T41 T9  T44 T4  T20 T3  T45 T23 T50 T5  T37 T49 T7  T51 T6  T55 T59 T1  T27 T33 T19 T8  T22 T28 T39 T47 T52 T24 T14 T57 T11 T46 T15 T35 T2  T42 T29 T26 T31 T12
T19 T19 T28 T55 T33 T14 T30 T22 T38 T24 T15 T20 T43 T31 T5  T10 T51 T48 T39 T1  T11 T42 T7  T26 T9  T46 T23 T41 T2  T44 T6  T13 T35 T4  T52 T32 T57 T49 T8  T18 T60 T27 T21 T12 T29 T56 T25 T53 T17 T37 T58 T16 T34 T47 T59 T3  T45 T36 T50 T54 T40
T20 T20 T51 T38 T39 T15 T55 T57 T30 T31 T26 T35 T59 T2  T33 T60 T42 T45 T5  T22 T12 T28 T46 T14 T52 T6  T48 T44 T24 T49 T7  T53 T19 T47 T8  T40 T1  T41 T9  T25 T27 T10 T43 T29 T11 T13 T58 T56 T37 T16 T18 T17 T54 T3  T21 T4  T23 T34 T32 T36 T50
T21 T21 T23 T2  T7  T32 T5  T9  T1  T4  T16 T10 T22 T37 T13 T25 T11 T24 T27 T18 T34 T8  T40 T3  T43 T47 T44 T19 T36 T28 T54 T30 T6  T48 T46 T49 T29 T14 T56 T38 T12 T45 T41 T17 T50 T42 T20 T15 T60 T59 T26 T53 T51 T52 T31 T58 T39 T55 T57 T35 T33
T22 T22 T24 T4  T47 T33 T7  T46 T9  T52 T60 T12 T29 T53 T15 T26 T17 T37 T25 T20 T35 T43 T57 T48 T31 T58 T14 T10 T51 T11 T55 T2  T40 T39 T54 T19 T34 T16 T30 T5  T50 T44 T28 T59 T49 T23 T6  T3  T45 T41 T32 T42 T8  T56 T36 T38 T13 T1  T18 T21 T27
T23 T23 T32 T11 T29 T21 T16 T37 T10 T27 T8  T3  T47 T19 T36 T54 T6  T46 T28 T13 T56 T5  T45 T1  T50 T42 T34 T9  T18 T4  T41 T40 T2  T59 T26 T53 T14 T7  T44 T43 T31 T30 T25 T39 T38 T22 T17 T12 T57 T55 T24 T58 T60 T35 T15 T49 T20 T48 T51 T33 T52
T24 T24 T33 T17 T34 T22 T60 T53 T12 T25 T43 T48 T58 T10 T51 T55 T40 T54 T11 T15 T30 T7  T44 T9  T49 T23 T35 T46 T20 T52 T28 T57 T4  T41 T32 T42 T16 T47 T14 T31 T36 T2  T26 T13 T5  T29 T59 T50 T18 T1  T37 T38 T45 T21 T3  T19 T6  T39 T8  T27 T56
T25 T25 T34 T18 T45 T53 T36 T50 T13 T59 T58 T54 T37 T55 T40 T17 T56 T27 T30 T43 T60 T44 T52 T49 T47 T35 T4  T23 T48 T32 T33 T16 T41 T46 T42 T7  T38 T21 T22 T10 T39 T20 T9  T57 T51 T5  T3  T8  T31 T15 T1  T12 T6  T26 T19 T24 T28 T11 T14 T2  T29
T26 T26 T35 T20 T44 T42 T51 T49 T15 T41 T38 T55 T53 T1  T57 T59 T30 T25 T2  T31 T45 T14 T56 T19 T58 T21 T52 T24 T39 T33 T27 T60 T28 T54 T23 T47 T5  T22 T29 T12 T13 T6  T46 T18 T8  T7  T48 T43 T36 T3  T9  T50 T40 T32 T10 T37 T11 T17 T16 T4  T34
T27 T27 T29 T57 T60 T37 T31 T12 T39 T17 T47 T46 T24 T54 T6  T11 T52 T33 T56 T8  T16 T45 T4  T50 T7  T34 T2  T42 T3  T26 T32 T14 T59 T9  T53 T5  T58 T35 T21 T19 T48 T18 T1  T40 T36 T38 T15 T51 T43 T13 T55 T10 T20 T25 T49 T23 T41 T28 T44 T30 T22
T28 T28 T14 T51 T57 T19 T15 T31 T20 T39 T42 T26 T46 T41 T2  T6  T35 T52 T44 T5  T8  T30 T27 T38 T29 T56 T11 T22 T1  T24 T21 T7  T55 T37 T58 T16 T49 T33 T23 T9  T59 T13 T10 T45 T18 T43 T12 T60 T50 T36 T48 T3  T17 T54 T53 T32 T25 T4  T34 T40 T47
T29 T29 T37 T52 T58 T27 T47 T54 T46 T56 T45 T50 T34 T42 T3  T32 T59 T53 T26 T6  T21 T31 T18 T39 T36 T38 T16 T12 T8  T17 T1  T4  T57 T13 T55 T10 T35 T60 T2  T7  T49 T14 T11 T41 T19 T24 T40 T48 T44 T28 T33 T23 T43 T30 T51 T5  T15 T9  T20 T22 T25
T30 T30 T38 T14 T31 T55 T19 T39 T28 T57 T35 T42 T27 T33 T41 T56 T26 T29 T22 T44 T58 T20 T59 T51 T45 T60 T18 T5  T49 T1  T53 T21 T15 T50 T12 T36 T24 T2  T25 T23 T46 T43 T13 T52 T48 T10 T8  T6  T47 T40 T11 T54 T3  T17 T7  T34 T9  T32 T4  T16 T37
T31 T31 T39 T37 T54 T57 T27 T56 T29 T58 T59 T45 T18 T60 T42 T38 T50 T36 T12 T26 T55 T46 T49 T52 T41 T48 T19 T6  T35 T8  T51 T1  T47 T44 T40 T28 T17 T3  T15 T2  T34 T24 T14 T53 T33 T11 T21 T32 T25 T22 T16 T30 T23 T43 T4  T20 T7  T5  T9  T10 T13
T32 T32 T21 T6  T14 T23 T8  T19 T3  T28 T5  T1  T42 T9  T18 T41 T2  T26 T4  T36 T44 T16 T30 T10 T38 T22 T56 T37 T13 T27 T25 T45 T11 T55 T24 T58 T7  T29 T34 T50 T15 T40 T54 T20 T43 T47 T39 T31 T51 T48 T46 T49 T57 T33 T12 T53 T17 T59 T60 T52 T35
T33 T33 T22 T40 T16 T24 T43 T10 T48 T11 T7  T9  T23 T46 T20 T28 T4  T32 T52 T51 T14 T60 T2  T12 T5  T29 T30 T53 T15 T25 T26 T44 T17 T1  T37 T38 T47 T34 T35 T49 T3  T57 T55 T6  T31 T58 T13 T36 T8  T39 T54 T19 T18 T27 T50 T42 T59 T41 T45 T56 T21
T34 T34 T53 T56 T38 T25 T58 T55 T54 T30 T44 T49 T35 T23 T48 T33 T41 T42 T32 T40 T22 T36 T20 T13 T51 T5  T60 T50 T43 T59 T9  T52 T18 T15 T1  T12 T21 T45 T4  T47 T19 T16 T17 T28 T10 T37 T57 T39 T14 T11 T27 T24 T31 T2  T8  T7  T3  T46 T6  T29 T26
T35 T35 T42 T30 T5  T26 T38 T1  T55 T2  T14 T19 T21 T24 T39 T27 T28 T23 T33 T57 T29 T51 T6  T15 T8  T7  T45 T49 T31 T41 T46 T56 T20 T3  T9  T50 T22 T44 T52 T58 T10 T60 T59 T11 T12 T53 T18 T13 T16 T17 T25 T37 T36 T4  T43 T47 T48 T54 T40 T34 T32
T36 T36 T13 T53 T55 T18 T25 T30 T34 T38 T41 T44 T20 T45 T23 T5  T49 T51 T50 T32 T1  T54 T19 T56 T28 T39 T10 T40 T21 T43 T8  T9  T58 T14 T57 T11 T59 T48 T3  T4  T35 T37 T16 T42 T27 T17 T22 T33 T26 T29 T60 T2  T24 T31 T52 T6  T47 T7  T46 T12 T15
T37 T37 T27 T59 T35 T29 T45 T42 T50 T26 T31 T39 T38 T12 T8  T1  T57 T55 T17 T3  T2  T47 T14 T46 T19 T24 T21 T54 T6  T56 T11 T18 T52 T28 T33 T23 T60 T58 T16 T36 T51 T4  T32 T15 T7  T34 T41 T49 T20 T9  T53 T5  T44 T22 T48 T10 T40 T13 T43 T25 T30
T38 T38 T55 T26 T24 T30 T35 T33 T42 T22 T20 T51 T60 T5  T49 T53 T15 T12 T1  T41 T25 T19 T43 T28 T48 T10 T58 T39 T44 T57 T13 T59 T14 T40 T11 T54 T2  T31 T18 T45 T7  T21 T56 T9  T23 T27 T52 T46 T4  T32 T29 T34 T47 T16 T6  T36 T8  T50 T3  T37 T17
T39 T39 T57 T50 T17 T31 T59 T60 T45 T12 T46 T52 T48 T6  T35 T51 T47 T40 T8  T42 T15 T27 T24 T29 T33 T11 T55 T56 T26 T58 T14 T49 T37 T22 T16 T30 T3  T54 T19 T41 T4  T1  T38 T7  T2  T18 T53 T34 T9  T5  T36 T20 T25 T10 T32 T28 T21 T44 T23 T13 T43
T40 T40 T43 T7  T15 T48 T9  T20 T4  T51 T33 T22 T28 T52 T25 T44 T24 T14 T47 T34 T49 T17 T55 T60 T30 T57 T13 T16 T53 T10 T58 T23 T12 T38 T31 T18 T46 T11 T54 T32 T26 T50 T36 T35 T59 T3  T5  T2  T42 T45 T6  T41 T1  T39 T29 T56 T37 T21 T27 T8  T19
T41 T41 T44 T36 T40 T49 T13 T43 T18 T48 T53 T25 T9  T59 T30 T20 T34 T4  T45 T38 T51 T56 T33 T58 T22 T52 T28 T21 T55 T23 T35 T5  T54 T24 T47 T14 T50 T32 T42 T1  T17 T39 T19 T60 T57 T8  T10 T16 T12 T31 T3  T15 T11 T46 T37 T26 T27 T2  T29 T6  T7 
T42 T42 T26 T28 T22 T35 T14 T24 T19 T33 T51 T15 T7  T49 T31 T46 T20 T9  T41 T39 T52 T38 T60 T55 T12 T53 T29 T1  T57 T2  T59 T6  T30 T17 T25 T37 T44 T5  T45 T8  T43 T56 T27 T48 T58 T21 T11 T10 T40 T54 T23 T47 T16 T34 T13 T50 T18 T3  T36 T32 T4 
T43 T43 T48 T24 T46 T40 T33 T52 T22 T47 T17 T60 T57 T16 T53 T58 T12 T31 T10 T25 T54 T9  T50 T4  T59 T3  T49 T20 T34 T51 T36 T55 T7  T45 T6  T41 T11 T15 T13 T30 T29 T23 T44 T37 T32 T28 T35 T26 T27 T21 T14 T56 T42 T8  T2  T18 T5  T38 T1  T19 T39
T44 T44 T49 T34 T50 T41 T53 T59 T25 T45 T56 T58 T52 T21 T55 T35 T54 T47 T23 T30 T42 T13 T39 T18 T57 T8  T51 T43 T38 T48 T19 T33 T36 T31 T3  T15 T32 T40 T28 T22 T37 T5  T20 T27 T1  T9  T60 T17 T29 T2  T4  T26 T12 T6  T16 T14 T10 T24 T11 T7  T46
T45 T45 T50 T29 T12 T59 T37 T17 T27 T60 T52 T47 T4  T35 T54 T34 T46 T7  T42 T56 T53 T39 T48 T57 T40 T51 T36 T8  T58 T3  T49 T32 T31 T43 T15 T13 T26 T6  T41 T21 T24 T38 T18 T33 T55 T1  T16 T11 T22 T30 T2  T25 T10 T20 T14 T44 T19 T23 T28 T5  T9 
T46 T46 T52 T39 T56 T47 T57 T58 T31 T54 T50 T59 T49 T3  T60 T48 T45 T41 T6  T12 T40 T29 T34 T37 T53 T32 T33 T26 T17 T35 T4  T51 T27 T25 T21 T22 T8  T42 T7  T15 T18 T11 T24 T36 T16 T14 T55 T38 T13 T10 T19 T43 T30 T23 T1  T9  T2  T20 T5  T28 T44
T47 T47 T46 T27 T42 T52 T29 T26 T37 T35 T57 T31 T14 T58 T12 T24 T39 T19 T54 T17 T33 T50 T51 T59 T15 T49 T7  T3  T60 T6  T48 T11 T45 T20 T41 T9  T56 T8  T40 T16 T38 T34 T4  T55 T53 T32 T2  T1  T30 T25 T21 T22 T5  T44 T18 T43 T36 T10 T13 T23 T28
T48 T48 T40 T12 T11 T43 T17 T16 T60 T10 T9  T4  T3  T20 T34 T36 T7  T6  T51 T53 T13 T33 T23 T22 T32 T28 T54 T52 T25 T47 T44 T50 T24 T21 T14 T56 T15 T46 T49 T59 T2  T55 T58 T5  T30 T57 T37 T29 T1  T38 T31 T18 T27 T19 T26 T41 T35 T45 T42 T39 T8 
T49 T49 T41 T54 T32 T44 T56 T21 T58 T23 T13 T18 T8  T43 T38 T19 T36 T3  T48 T55 T28 T53 T5  T25 T1  T9  T42 T59 T30 T45 T20 T39 T34 T2  T4  T26 T40 T50 T51 T57 T16 T33 T35 T10 T22 T52 T27 T37 T11 T24 T47 T14 T29 T7  T17 T15 T60 T31 T12 T46 T6 
T50 T50 T59 T46 T26 T45 T52 T35 T47 T42 T39 T57 T51 T8  T58 T49 T31 T15 T3  T54 T41 T37 T38 T27 T55 T1  T53 T17 T56 T60 T18 T48 T29 T30 T2  T25 T6  T12 T36 T40 T14 T32 T34 T19 T21 T4  T33 T24 T28 T23 T7  T44 T22 T5  T11 T13 T16 T43 T10 T9  T20
T51 T51 T15 T42 T1  T20 T26 T2  T35 T5  T28 T14 T6  T44 T24 T7  T19 T8  T49 T33 T9  T55 T10 T30 T11 T13 T12 T57 T22 T31 T43 T46 T38 T16 T18 T17 T41 T39 T48 T52 T21 T53 T60 T23 T25 T59 T29 T27 T32 T34 T45 T4  T37 T36 T56 T40 T58 T47 T54 T50 T3 
T52 T52 T47 T45 T8  T46 T50 T3  T59 T6  T29 T37 T32 T26 T17 T4  T27 T21 T35 T60 T7  T57 T11 T31 T16 T14 T40 T58 T12 T54 T24 T34 T39 T10 T19 T43 T42 T56 T33 T53 T1  T51 T48 T2  T15 T49 T36 T18 T5  T20 T41 T9  T13 T28 T38 T22 T55 T25 T30 T44 T23
T53 T53 T25 T41 T21 T34 T44 T23 T49 T32 T36 T13 T5  T50 T43 T9  T18 T1  T59 T48 T4  T58 T16 T54 T10 T37 T22 T55 T40 T30 T17 T20 T56 T11 T27 T24 T45 T38 T60 T51 T8  T52 T33 T3  T47 T35 T28 T19 T6  T46 T42 T7  T14 T29 T39 T12 T57 T15 T31 T26 T2 
T54 T54 T56 T13 T30 T58 T18 T38 T36 T55 T49 T41 T19 T48 T45 T39 T44 T28 T40 T50 T57 T34 T35 T53 T42 T33 T27 T32 T59 T21 T52 T8  T25 T26 T22 T29 T43 T23 T47 T3  T20 T17 T37 T51 T60 T16 T1  T5  T15 T12 T10 T31 T2  T24 T9  T46 T4  T6  T7  T11 T14
T55 T55 T30 T15 T2  T38 T20 T5  T51 T1  T19 T28 T10 T39 T44 T13 T14 T11 T57 T49 T18 T35 T21 T42 T23 T27 T25 T33 T41 T22 T56 T43 T26 T32 T29 T34 T31 T24 T58 T48 T6  T59 T53 T8  T45 T60 T9  T7  T3  T50 T12 T36 T4  T37 T46 T54 T52 T40 T47 T17 T16
T56 T56 T58 T44 T43 T54 T49 T48 T41 T40 T34 T53 T33 T32 T59 T52 T25 T22 T21 T45 T47 T18 T17 T36 T60 T16 T57 T38 T50 T55 T37 T35 T13 T12 T10 T31 T23 T30 T27 T42 T9  T8  T39 T4  T3  T19 T51 T20 T7  T6  T28 T46 T15 T11 T5  T29 T1  T26 T2  T14 T24
T57 T57 T31 T47 T3  T39 T46 T6  T52 T8  T27 T29 T11 T56 T26 T14 T37 T16 T58 T35 T19 T59 T1  T45 T2  T18 T15 T60 T42 T12 T38 T24 T50 T5  T36 T20 T54 T17 T55 T33 T32 T49 T51 T21 T41 T48 T7  T4  T23 T44 T40 T28 T9  T13 T34 T30 T53 T22 T25 T43 T10
T58 T58 T54 T25 T23 T56 T34 T32 T53 T21 T18 T36 T16 T38 T50 T37 T13 T10 T55 T59 T27 T49 T8  T41 T3  T19 T47 T48 T45 T40 T39 T17 T44 T6  T28 T46 T30 T43 T57 T60 T5  T35 T52 T1  T42 T33 T4  T9  T2  T26 T22 T29 T7  T14 T20 T31 T51 T12 T15 T24 T11
T59 T59 T45 T31 T6  T50 T39 T8  T57 T3  T37 T27 T1  T17 T56 T18 T29 T2  T60 T58 T36 T52 T32 T47 T21 T4  T41 T35 T54 T42 T34 T38 T46 T23 T7  T44 T12 T26 T53 T55 T11 T48 T49 T16 T40 T51 T19 T14 T10 T43 T15 T13 T28 T9  T24 T25 T33 T30 T22 T20 T5 
T60 T60 T12 T22 T10 T17 T24 T11 T33 T16 T4  T7  T2  T34 T46 T29 T9  T5  T53 T52 T37 T48 T3  T40 T6  T36 T31 T51 T47 T15 T50 T26 T43 T8  T13 T39 T25 T20 T59 T35 T23 T58 T57 T32 T54 T55 T14 T28 T21 T56 T30 T27 T19 T18 T44 T45 T49 T42 T41 T38 T1