120-cell
Initial vertex: ${{ v} _1} = {\left[\begin{array}{c} 0\\ 0\\ 2\\ 2\end{array}\right]}$
Transforms for vertex generation:
${ \tilde{T}} _i$ $\in \{$ $\left[\begin{array}{cccc} 1& 0& 0& 0\\ 0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\end{array}\right]$,$\left[\begin{array}{cccc} 0& -{1}& 0& 0\\ 1& 0& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\end{array}\right]$,$\left[\begin{array}{cccc} 0& 0& 1& 0\\ 0& 1& 0& 0\\ -{1}& 0& 0& 0\\ 0& 0& 0& 1\end{array}\right]$,$\left[\begin{array}{cccc} 0& 0& 0& -{1}\\ 0& 1& 0& 0\\ 0& 0& 1& 0\\ 1& 0& 0& 0\end{array}\right]$,$\left[\begin{array}{cccc} \frac{{1} + {{{7}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}& \frac{{1}{-{\sqrt{5}}}}{{{8}} {{\sqrt{5}}}}& \frac{{3} + {\sqrt{5}}}{{{8}} {{\sqrt{5}}}}& \frac{{{3}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{1}{-{\sqrt{5}}}}{{{8}} {{\sqrt{5}}}}& \frac{{1} + {{{7}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}& \frac{{3} + {\sqrt{5}}}{{{8}} {{\sqrt{5}}}}& \frac{{{3}} {{\left({{-{1}} + {\sqrt{5}}}\right)}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}{{{8}} {{\sqrt{5}}}}& \frac{{{3}} {{\left({{1}{-{\sqrt{5}}}}\right)}}}{{{8}} {{\sqrt{5}}}}& \frac{{{3}} {{\left({{3} + {\sqrt{5}}}\right)}}}{{{8}} {{\sqrt{5}}}}& \frac{{-{9}} + {\sqrt{5}}}{{{8}} {{\sqrt{5}}}}\\ -{\frac{{3} + {\sqrt{5}}}{{{8}} {{\sqrt{5}}}}}& -{\frac{{3} + {\sqrt{5}}}{{{8}} {{\sqrt{5}}}}}& \frac{{11}{-{{{3}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}& \frac{{{3}} {{\left({{3} + {\sqrt{5}}}\right)}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]$ $\}$
Vertexes:
${{{{{ T} _3}} {{{ V} _1}}} = {\left[\begin{array}{c} 2\\ 0\\ 0\\ 2\end{array}\right]}} = {{ V} _2}$
${{{{{ T} _2}} {{{ V} _2}}} = {\left[\begin{array}{c} 0\\ 2\\ 0\\ 2\end{array}\right]}} = {{ V} _3}$
${{{{{ T} _2}} {{{ V} _3}}} = {\left[\begin{array}{c} -{2}\\ 0\\ 0\\ 2\end{array}\right]}} = {{ V} _4}$
${{{{{ T} _2}} {{{ V} _4}}} = {\left[\begin{array}{c} 0\\ -{2}\\ 0\\ 2\end{array}\right]}} = {{ V} _5}$
${{{{{ T} _4}} {{{ V} _5}}} = {\left[\begin{array}{c} -{2}\\ -{2}\\ 0\\ 0\end{array}\right]}} = {{ V} _6}$
${{{{{ T} _2}} {{{ V} _6}}} = {\left[\begin{array}{c} 2\\ -{2}\\ 0\\ 0\end{array}\right]}} = {{ V} _7}$
${{{{{ T} _2}} {{{ V} _7}}} = {\left[\begin{array}{c} 2\\ 2\\ 0\\ 0\end{array}\right]}} = {{ V} _8}$
${{{{{ T} _2}} {{{ V} _8}}} = {\left[\begin{array}{c} -{2}\\ 2\\ 0\\ 0\end{array}\right]}} = {{ V} _9}$
${{{{{ T} _3}} {{{ V} _9}}} = {\left[\begin{array}{c} 0\\ 2\\ 2\\ 0\end{array}\right]}} = {{{ V} _1} _0}$
${{{{{ T} _2}} {{{{ V} _1} _0}}} = {\left[\begin{array}{c} -{2}\\ 0\\ 2\\ 0\end{array}\right]}} = {{{ V} _1} _1}$
${{{{{ T} _2}} {{{{ V} _1} _1}}} = {\left[\begin{array}{c} 0\\ -{2}\\ 2\\ 0\end{array}\right]}} = {{{ V} _1} _2}$
${{{{{ T} _2}} {{{{ V} _1} _2}}} = {\left[\begin{array}{c} 2\\ 0\\ 2\\ 0\end{array}\right]}} = {{{ V} _1} _3}$
${{{{{ T} _3}} {{{{ V} _1} _3}}} = {\left[\begin{array}{c} 2\\ 0\\ -{2}\\ 0\end{array}\right]}} = {{{ V} _1} _4}$
${{{{{ T} _2}} {{{{ V} _1} _4}}} = {\left[\begin{array}{c} 0\\ 2\\ -{2}\\ 0\end{array}\right]}} = {{{ V} _1} _5}$
${{{{{ T} _2}} {{{{ V} _1} _5}}} = {\left[\begin{array}{c} -{2}\\ 0\\ -{2}\\ 0\end{array}\right]}} = {{{ V} _1} _6}$
${{{{{ T} _2}} {{{{ V} _1} _6}}} = {\left[\begin{array}{c} 0\\ -{2}\\ -{2}\\ 0\end{array}\right]}} = {{{ V} _1} _7}$
${{{{{ T} _5}} {{{{ V} _1} _7}}} = {\left[\begin{array}{c} -{\frac{1}{\sqrt{5}}}\\ -{\frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}}\\ -{\frac{3}{\sqrt{5}}}\\ \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\end{array}\right]}} = {{{ V} _1} _8}$
${{{{{ T} _2}} {{{{ V} _1} _8}}} = {\left[\begin{array}{c} \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ -{\frac{1}{\sqrt{5}}}\\ -{\frac{3}{\sqrt{5}}}\\ \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\end{array}\right]}} = {{{ V} _1} _9}$
${{{{{ T} _2}} {{{{ V} _1} _9}}} = {\left[\begin{array}{c} \frac{1}{\sqrt{5}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ -{\frac{3}{\sqrt{5}}}\\ \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\end{array}\right]}} = {{{ V} _2} _0}$
${{{{{ T} _2}} {{{{ V} _2} _0}}} = {\left[\begin{array}{c} -{\frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}}\\ \frac{1}{\sqrt{5}}\\ -{\frac{3}{\sqrt{5}}}\\ \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\end{array}\right]}} = {{{ V} _2} _1}$
${{{{{ T} _3}} {{{{ V} _2} _1}}} = {\left[\begin{array}{c} -{\frac{3}{\sqrt{5}}}\\ \frac{1}{\sqrt{5}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\end{array}\right]}} = {{{ V} _2} _2}$
${{{{{ T} _2}} {{{{ V} _2} _2}}} = {\left[\begin{array}{c} -{\frac{1}{\sqrt{5}}}\\ -{\frac{3}{\sqrt{5}}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\end{array}\right]}} = {{{ V} _2} _3}$
${{{{{ T} _2}} {{{{ V} _2} _3}}} = {\left[\begin{array}{c} \frac{3}{\sqrt{5}}\\ -{\frac{1}{\sqrt{5}}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\end{array}\right]}} = {{{ V} _2} _4}$
${{{{{ T} _2}} {{{{ V} _2} _4}}} = {\left[\begin{array}{c} \frac{1}{\sqrt{5}}\\ \frac{3}{\sqrt{5}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\end{array}\right]}} = {{{ V} _2} _5}$
${{{{{ T} _3}} {{{{ V} _2} _5}}} = {\left[\begin{array}{c} \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{3}{\sqrt{5}}\\ -{\frac{1}{\sqrt{5}}}\\ \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\end{array}\right]}} = {{{ V} _2} _6}$
${{{{{ T} _2}} {{{{ V} _2} _6}}} = {\left[\begin{array}{c} -{\frac{3}{\sqrt{5}}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ -{\frac{1}{\sqrt{5}}}\\ \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\end{array}\right]}} = {{{ V} _2} _7}$
${{{{{ T} _2}} {{{{ V} _2} _7}}} = {\left[\begin{array}{c} -{\frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}}\\ -{\frac{3}{\sqrt{5}}}\\ -{\frac{1}{\sqrt{5}}}\\ \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\end{array}\right]}} = {{{ V} _2} _8}$
${{{{{ T} _2}} {{{{ V} _2} _8}}} = {\left[\begin{array}{c} \frac{3}{\sqrt{5}}\\ -{\frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}}\\ -{\frac{1}{\sqrt{5}}}\\ \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\end{array}\right]}} = {{{ V} _2} _9}$
${{{{{ T} _4}} {{{{ V} _2} _9}}} = {\left[\begin{array}{c} \frac{{2}{-{\sqrt{5}}}}{\sqrt{5}}\\ -{\frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}}\\ -{\frac{1}{\sqrt{5}}}\\ \frac{3}{\sqrt{5}}\end{array}\right]}} = {{{ V} _3} _0}$
${{{{{ T} _2}} {{{{ V} _3} _0}}} = {\left[\begin{array}{c} \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{{2}{-{\sqrt{5}}}}{\sqrt{5}}\\ -{\frac{1}{\sqrt{5}}}\\ \frac{3}{\sqrt{5}}\end{array}\right]}} = {{{ V} _3} _1}$
${{{{{ T} _2}} {{{{ V} _3} _1}}} = {\left[\begin{array}{c} \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ -{\frac{1}{\sqrt{5}}}\\ \frac{3}{\sqrt{5}}\end{array}\right]}} = {{{ V} _3} _2}$
${{{{{ T} _2}} {{{{ V} _3} _2}}} = {\left[\begin{array}{c} -{\frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}}\\ \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\\ -{\frac{1}{\sqrt{5}}}\\ \frac{3}{\sqrt{5}}\end{array}\right]}} = {{{ V} _3} _3}$
${{{{{ T} _3}} {{{{ V} _3} _3}}} = {\left[\begin{array}{c} -{\frac{1}{\sqrt{5}}}\\ \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{3}{\sqrt{5}}\end{array}\right]}} = {{{ V} _3} _4}$
${{{{{ T} _2}} {{{{ V} _3} _4}}} = {\left[\begin{array}{c} \frac{{2}{-{\sqrt{5}}}}{\sqrt{5}}\\ -{\frac{1}{\sqrt{5}}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{3}{\sqrt{5}}\end{array}\right]}} = {{{ V} _3} _5}$
${{{{{ T} _2}} {{{{ V} _3} _5}}} = {\left[\begin{array}{c} \frac{1}{\sqrt{5}}\\ \frac{{2}{-{\sqrt{5}}}}{\sqrt{5}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{3}{\sqrt{5}}\end{array}\right]}} = {{{ V} _3} _6}$
${{{{{ T} _2}} {{{{ V} _3} _6}}} = {\left[\begin{array}{c} \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{3}{\sqrt{5}}\end{array}\right]}} = {{{ V} _3} _7}$
${{{{{ T} _3}} {{{{ V} _3} _7}}} = {\left[\begin{array}{c} \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\\ \frac{{2}{-{\sqrt{5}}}}{\sqrt{5}}\\ \frac{3}{\sqrt{5}}\end{array}\right]}} = {{{ V} _3} _8}$
${{{{{ T} _2}} {{{{ V} _3} _8}}} = {\left[\begin{array}{c} -{\frac{1}{\sqrt{5}}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{{2}{-{\sqrt{5}}}}{\sqrt{5}}\\ \frac{3}{\sqrt{5}}\end{array}\right]}} = {{{ V} _3} _9}$
${{{{{ T} _2}} {{{{ V} _3} _9}}} = {\left[\begin{array}{c} -{\frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}}\\ -{\frac{1}{\sqrt{5}}}\\ \frac{{2}{-{\sqrt{5}}}}{\sqrt{5}}\\ \frac{3}{\sqrt{5}}\end{array}\right]}} = {{{ V} _4} _0}$
${{{{{ T} _2}} {{{{ V} _4} _0}}} = {\left[\begin{array}{c} \frac{1}{\sqrt{5}}\\ -{\frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}}\\ \frac{{2}{-{\sqrt{5}}}}{\sqrt{5}}\\ \frac{3}{\sqrt{5}}\end{array}\right]}} = {{{ V} _4} _1}$
${{{{{ T} _4}} {{{{ V} _4} _1}}} = {\left[\begin{array}{c} -{\frac{3}{\sqrt{5}}}\\ -{\frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}}\\ \frac{{2}{-{\sqrt{5}}}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\end{array}\right]}} = {{{ V} _4} _2}$
${{{{{ T} _2}} {{{{ V} _4} _2}}} = {\left[\begin{array}{c} \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ -{\frac{3}{\sqrt{5}}}\\ \frac{{2}{-{\sqrt{5}}}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\end{array}\right]}} = {{{ V} _4} _3}$
${{{{{ T} _2}} {{{{ V} _4} _3}}} = {\left[\begin{array}{c} \frac{3}{\sqrt{5}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{{2}{-{\sqrt{5}}}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\end{array}\right]}} = {{{ V} _4} _4}$
${{{{{ T} _2}} {{{{ V} _4} _4}}} = {\left[\begin{array}{c} -{\frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}}\\ \frac{3}{\sqrt{5}}\\ \frac{{2}{-{\sqrt{5}}}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\end{array}\right]}} = {{{ V} _4} _5}$
${{{{{ T} _3}} {{{{ V} _4} _5}}} = {\left[\begin{array}{c} \frac{{2}{-{\sqrt{5}}}}{\sqrt{5}}\\ \frac{3}{\sqrt{5}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\end{array}\right]}} = {{{ V} _4} _6}$
${{{{{ T} _2}} {{{{ V} _4} _6}}} = {\left[\begin{array}{c} -{\frac{3}{\sqrt{5}}}\\ \frac{{2}{-{\sqrt{5}}}}{\sqrt{5}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\end{array}\right]}} = {{{ V} _4} _7}$
${{{{{ T} _2}} {{{{ V} _4} _7}}} = {\left[\begin{array}{c} \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\\ -{\frac{3}{\sqrt{5}}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\end{array}\right]}} = {{{ V} _4} _8}$
${{{{{ T} _2}} {{{{ V} _4} _8}}} = {\left[\begin{array}{c} \frac{3}{\sqrt{5}}\\ \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\end{array}\right]}} = {{{ V} _4} _9}$
${{{{{ T} _3}} {{{{ V} _4} _9}}} = {\left[\begin{array}{c} \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\\ -{\frac{3}{\sqrt{5}}}\\ \frac{1}{\sqrt{5}}\end{array}\right]}} = {{{ V} _5} _0}$
${{{{{ T} _2}} {{{{ V} _5} _0}}} = {\left[\begin{array}{c} \frac{{2}{-{\sqrt{5}}}}{\sqrt{5}}\\ \frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}\\ -{\frac{3}{\sqrt{5}}}\\ \frac{1}{\sqrt{5}}\end{array}\right]}} = {{{ V} _5} _1}$
${{{{{ T} _2}} {{{{ V} _5} _1}}} = {\left[\begin{array}{c} -{\frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}}\\ \frac{{2}{-{\sqrt{5}}}}{\sqrt{5}}\\ -{\frac{3}{\sqrt{5}}}\\ \frac{1}{\sqrt{5}}\end{array}\right]}} = {{{ V} _5} _2}$
${{{{{ T} _2}} {{{{ V} _5} _2}}} = {\left[\begin{array}{c} \frac{{-{2}} + {\sqrt{5}}}{\sqrt{5}}\\ -{\frac{{1} + {{{2}} {{\sqrt{5}}}}}{\sqrt{5}}}\\ -{\frac{3}{\sqrt{5}}}\\ \frac{1}{\sqrt{5}}\end{array}\right]}} = {{{ V} _5} _3}$
${{{{{ T} _5}} {{{{ V} _5} _3}}} = {\left[\begin{array}{c} \frac{{-{7}} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}}\\ -{\frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _5} _4}$
${{{{{ T} _2}} {{{{ V} _5} _4}}} = {\left[\begin{array}{c} \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{-{7}} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ -{\frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _5} _5}$
${{{{{ T} _2}} {{{{ V} _5} _5}}} = {\left[\begin{array}{c} \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ -{\frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _5} _6}$
${{{{{ T} _2}} {{{{ V} _5} _6}}} = {\left[\begin{array}{c} -{\frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\\ -{\frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _5} _7}$
${{{{{ T} _3}} {{{{ V} _5} _7}}} = {\left[\begin{array}{c} -{\frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _5} _8}$
${{{{{ T} _2}} {{{{ V} _5} _8}}} = {\left[\begin{array}{c} \frac{{-{7}} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ -{\frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _5} _9}$
${{{{{ T} _2}} {{{{ V} _5} _9}}} = {\left[\begin{array}{c} \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{-{7}} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _6} _0}$
${{{{{ T} _2}} {{{{ V} _6} _0}}} = {\left[\begin{array}{c} \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _6} _1}$
${{{{{ T} _3}} {{{{ V} _6} _1}}} = {\left[\begin{array}{c} \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{-{7}} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _6} _2}$
${{{{{ T} _2}} {{{{ V} _6} _2}}} = {\left[\begin{array}{c} -{\frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{-{7}} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _6} _3}$
${{{{{ T} _2}} {{{{ V} _6} _3}}} = {\left[\begin{array}{c} -{\frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}}\\ -{\frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{-{7}} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _6} _4}$
${{{{{ T} _2}} {{{{ V} _6} _4}}} = {\left[\begin{array}{c} \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{-{7}} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _6} _5}$
${{{{{ T} _4}} {{{{ V} _6} _5}}} = {\left[\begin{array}{c} \frac{{-{9}} + {\sqrt{5}}}{{{4}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{-{7}} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _6} _6}$
${{{{{ T} _2}} {{{{ V} _6} _6}}} = {\left[\begin{array}{c} \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{-{9}} + {\sqrt{5}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{-{7}} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _6} _7}$
${{{{{ T} _2}} {{{{ V} _6} _7}}} = {\left[\begin{array}{c} \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{-{7}} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _6} _8}$
${{{{{ T} _2}} {{{{ V} _6} _8}}} = {\left[\begin{array}{c} -{\frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{-{7}} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _6} _9}$
${{{{{ T} _3}} {{{{ V} _6} _9}}} = {\left[\begin{array}{c} \frac{{-{7}} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _7} _0}$
${{{{{ T} _2}} {{{{ V} _7} _0}}} = {\left[\begin{array}{c} \frac{{-{9}} + {\sqrt{5}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{-{7}} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _7} _1}$
${{{{{ T} _2}} {{{{ V} _7} _1}}} = {\left[\begin{array}{c} \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{-{9}} + {\sqrt{5}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _7} _2}$
${{{{{ T} _2}} {{{{ V} _7} _2}}} = {\left[\begin{array}{c} \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _7} _3}$
${{{{{ T} _3}} {{{{ V} _7} _3}}} = {\left[\begin{array}{c} \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{-{9}} + {\sqrt{5}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _7} _4}$
${{{{{ T} _2}} {{{{ V} _7} _4}}} = {\left[\begin{array}{c} \frac{{-{7}} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{-{9}} + {\sqrt{5}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _7} _5}$
${{{{{ T} _2}} {{{{ V} _7} _5}}} = {\left[\begin{array}{c} -{\frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{-{7}} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{-{9}} + {\sqrt{5}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _7} _6}$
${{{{{ T} _2}} {{{{ V} _7} _6}}} = {\left[\begin{array}{c} \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{-{9}} + {\sqrt{5}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _7} _7}$
${{{{{ T} _4}} {{{{ V} _7} _7}}} = {\left[\begin{array}{c} -{\frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}}\\ -{\frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{-{9}} + {\sqrt{5}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _7} _8}$
${{{{{ T} _2}} {{{{ V} _7} _8}}} = {\left[\begin{array}{c} \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ -{\frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{-{9}} + {\sqrt{5}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _7} _9}$
${{{{{ T} _2}} {{{{ V} _7} _9}}} = {\left[\begin{array}{c} \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{-{9}} + {\sqrt{5}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _8} _0}$
${{{{{ T} _2}} {{{{ V} _8} _0}}} = {\left[\begin{array}{c} -{\frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{-{9}} + {\sqrt{5}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _8} _1}$
${{{{{ T} _3}} {{{{ V} _8} _1}}} = {\left[\begin{array}{c} \frac{{-{9}} + {\sqrt{5}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _8} _2}$
${{{{{ T} _2}} {{{{ V} _8} _2}}} = {\left[\begin{array}{c} -{\frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{-{9}} + {\sqrt{5}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _8} _3}$
${{{{{ T} _2}} {{{{ V} _8} _3}}} = {\left[\begin{array}{c} \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\\ -{\frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _8} _4}$
${{{{{ T} _2}} {{{{ V} _8} _4}}} = {\left[\begin{array}{c} \frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _8} _5}$
${{{{{ T} _3}} {{{{ V} _8} _5}}} = {\left[\begin{array}{c} \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\\ -{\frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _8} _6}$
${{{{{ T} _2}} {{{{ V} _8} _6}}} = {\left[\begin{array}{c} \frac{{-{9}} + {\sqrt{5}}}{{{4}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}\\ -{\frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _8} _7}$
${{{{{ T} _2}} {{{{ V} _8} _7}}} = {\left[\begin{array}{c} -{\frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{-{9}} + {\sqrt{5}}}{{{4}} {{\sqrt{5}}}}\\ -{\frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _8} _8}$
${{{{{ T} _2}} {{{{ V} _8} _8}}} = {\left[\begin{array}{c} \frac{{9}{-{\sqrt{5}}}}{{{4}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{1} + {{{3}} {{\sqrt{5}}}}}\right)}}}{{{4}} {{\sqrt{5}}}}}\\ -{\frac{{1} + {{{3}} {{\sqrt{5}}}}}{{{4}} {{\sqrt{5}}}}}\\ \frac{{7}{-{{{3}} {{\sqrt{5}}}}}}{{{4}} {{\sqrt{5}}}}\end{array}\right]}} = {{{ V} _8} _9}$
${{{{{ T} _5}} {{{{ V} _8} _9}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{-{17}} + {{{19}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{40}}{\left({{9}{-{{{11}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\end{array}\right]}} = {{{ V} _9} _0}$
${{{{{ T} _2}} {{{{ V} _9} _0}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{-{17}} + {{{19}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{9}{-{{{11}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\end{array}\right]}} = {{{ V} _9} _1}$
${{{{{ T} _2}} {{{{ V} _9} _1}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{9}{-{{{11}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\end{array}\right]}} = {{{ V} _9} _2}$
${{{{{ T} _2}} {{{{ V} _9} _2}}} = {\left[\begin{array}{c} -{{\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}}{\left({{9}{-{{{11}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\end{array}\right]}} = {{{ V} _9} _3}$
${{{{{ T} _3}} {{{{ V} _9} _3}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{9}{-{{{11}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\end{array}\right]}} = {{{ V} _9} _4}$
${{{{{ T} _2}} {{{{ V} _9} _4}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{-{17}} + {{{19}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{9}{-{{{11}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\end{array}\right]}} = {{{ V} _9} _5}$
${{{{{ T} _2}} {{{{ V} _9} _5}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{-{17}} + {{{19}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\end{array}\right]}} = {{{ V} _9} _6}$
${{{{{ T} _2}} {{{{ V} _9} _6}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\end{array}\right]}} = {{{ V} _9} _7}$
${{{{{ T} _3}} {{{{ V} _9} _7}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{-{17}} + {{{19}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\end{array}\right]}} = {{{ V} _9} _8}$
${{{{{ T} _2}} {{{{ V} _9} _8}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{9}{-{{{11}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{-{17}} + {{{19}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\end{array}\right]}} = {{{ V} _9} _9}$
${{{{{ T} _2}} {{{{ V} _9} _9}}} = {\left[\begin{array}{c} -{{\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{40}}{\left({{9}{-{{{11}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}}{\left({{-{17}} + {{{19}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\end{array}\right]}} = {{{{ V} _1} _0} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _0} _0}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{40}}{\left({{-{17}} + {{{19}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\end{array}\right]}} = {{{{ V} _1} _0} _1}$
${{{{{ T} _4}} {{{{{ V} _1} _0} _1}}} = {\left[\begin{array}{c} {\frac{1}{40}} {{{3}} {{\left({{-{7}} + {\sqrt{5}}}\right)}}}\\ -{{\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{40}}{\left({{-{17}} + {{{19}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _0} _2}$
${{{{{ T} _2}} {{{{{ V} _1} _0} _2}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{-{7}} + {\sqrt{5}}}\right)}}}\\ {\frac{1}{40}}{\left({{-{17}} + {{{19}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _0} _3}$
${{{{{ T} _2}} {{{{{ V} _1} _0} _3}}} = {\left[\begin{array}{c} {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{-{17}} + {{{19}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _0} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _0} _4}}} = {\left[\begin{array}{c} -{{\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\\ {\frac{1}{40}}{\left({{-{17}} + {{{19}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _0} _5}$
${{{{{ T} _3}} {{{{{ V} _1} _0} _5}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{-{17}} + {{{19}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _0} _6}$
${{{{{ T} _2}} {{{{{ V} _1} _0} _6}}} = {\left[\begin{array}{c} {\frac{1}{40}} {{{3}} {{\left({{-{7}} + {\sqrt{5}}}\right)}}}\\ {\frac{1}{40}}{\left({{-{17}} + {{{19}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _0} _7}$
${{{{{ T} _2}} {{{{{ V} _1} _0} _7}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{-{7}} + {\sqrt{5}}}\right)}}}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _0} _8}$
${{{{{ T} _2}} {{{{{ V} _1} _0} _8}}} = {\left[\begin{array}{c} {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\\ {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _0} _9}$
${{{{{ T} _3}} {{{{{ V} _1} _0} _9}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{-{7}} + {\sqrt{5}}}\right)}}}\\ {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _1} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _1} _0}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{-{17}} + {{{19}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{-{7}} + {\sqrt{5}}}\right)}}}\\ {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _1} _1}$
${{{{{ T} _2}} {{{{{ V} _1} _1} _1}}} = {\left[\begin{array}{c} -{{\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{40}}{\left({{-{17}} + {{{19}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{-{7}} + {\sqrt{5}}}\right)}}}\\ {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _1} _2}$
${{{{{ T} _2}} {{{{{ V} _1} _1} _2}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{40}} {{{3}} {{\left({{-{7}} + {\sqrt{5}}}\right)}}}\\ {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _1} _3}$
${{{{{ T} _4}} {{{{{ V} _1} _1} _3}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{9}{-{{{11}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{40}} {{{3}} {{\left({{-{7}} + {\sqrt{5}}}\right)}}}\\ {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _1} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _1} _4}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{9}{-{{{11}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{-{7}} + {\sqrt{5}}}\right)}}}\\ {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _1} _5}$
${{{{{ T} _2}} {{{{{ V} _1} _1} _5}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{-{7}} + {\sqrt{5}}}\right)}}}\\ {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _1} _6}$
${{{{{ T} _2}} {{{{{ V} _1} _1} _6}}} = {\left[\begin{array}{c} -{{\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{-{7}} + {\sqrt{5}}}\right)}}}\\ {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _1} _7}$
${{{{{ T} _3}} {{{{{ V} _1} _1} _7}}} = {\left[\begin{array}{c} {\frac{1}{40}} {{{3}} {{\left({{-{7}} + {\sqrt{5}}}\right)}}}\\ {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _1} _8}$
${{{{{ T} _2}} {{{{{ V} _1} _1} _8}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{9}{-{{{11}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{-{7}} + {\sqrt{5}}}\right)}}}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _1} _9}$
${{{{{ T} _2}} {{{{{ V} _1} _1} _9}}} = {\left[\begin{array}{c} {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\\ {\frac{1}{40}}{\left({{9}{-{{{11}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _2} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _2} _0}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{-{9}} + {{{11}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _2} _1}$
${{{{{ T} _3}} {{{{{ V} _1} _2} _1}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\\ {\frac{1}{40}}{\left({{9}{-{{{11}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _2} _2}$
${{{{{ T} _2}} {{{{{ V} _1} _2} _2}}} = {\left[\begin{array}{c} {\frac{1}{40}} {{{3}} {{\left({{-{7}} + {\sqrt{5}}}\right)}}}\\ {\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}}{\left({{9}{-{{{11}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _2} _3}$
${{{{{ T} _2}} {{{{{ V} _1} _2} _3}}} = {\left[\begin{array}{c} -{{\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{40}} {{{3}} {{\left({{-{7}} + {\sqrt{5}}}\right)}}}\\ {\frac{1}{40}}{\left({{9}{-{{{11}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _2} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _2} _4}}} = {\left[\begin{array}{c} {\frac{1}{40}} {{{3}} {{\left({{7}{-{\sqrt{5}}}}\right)}}}\\ -{{\frac{1}{40}}{\left({{97} + {{{5}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{40}}{\left({{9}{-{{{11}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}}{\left({{17}{-{{{19}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _2} _5}$
${{{{{ T} _5}} {{{{{ V} _1} _2} _5}}} = {\left[\begin{array}{c} \frac{{-{13}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ -{{\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}}\\ \frac{{-{11}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _2} _6}$
${{{{{ T} _2}} {{{{{ V} _1} _2} _6}}} = {\left[\begin{array}{c} {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{-{13}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{-{11}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _2} _7}$
${{{{{ T} _2}} {{{{{ V} _1} _2} _7}}} = {\left[\begin{array}{c} \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{-{11}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _2} _8}$
${{{{{ T} _2}} {{{{{ V} _1} _2} _8}}} = {\left[\begin{array}{c} -{{\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}}\\ \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{-{11}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _2} _9}$
${{{{{ T} _3}} {{{{{ V} _1} _2} _9}}} = {\left[\begin{array}{c} \frac{{-{11}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _3} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _3} _0}}} = {\left[\begin{array}{c} \frac{{-{13}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{-{11}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _3} _1}$
${{{{{ T} _2}} {{{{{ V} _1} _3} _1}}} = {\left[\begin{array}{c} \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{-{13}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _3} _2}$
${{{{{ T} _2}} {{{{{ V} _1} _3} _2}}} = {\left[\begin{array}{c} \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _3} _3}$
${{{{{ T} _3}} {{{{{ V} _1} _3} _3}}} = {\left[\begin{array}{c} {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{-{13}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _3} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _3} _4}}} = {\left[\begin{array}{c} \frac{{-{11}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{-{13}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _3} _5}$
${{{{{ T} _2}} {{{{{ V} _1} _3} _5}}} = {\left[\begin{array}{c} -{{\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}}\\ \frac{{-{11}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{-{13}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _3} _6}$
${{{{{ T} _2}} {{{{{ V} _1} _3} _6}}} = {\left[\begin{array}{c} \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\\ -{{\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}}\\ \frac{{-{13}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _1} _3} _7}$
${{{{{ T} _4}} {{{{{ V} _1} _3} _7}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{21}{-{{{2}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}}\\ \frac{{-{13}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _3} _8}$
${{{{{ T} _2}} {{{{{ V} _1} _3} _8}}} = {\left[\begin{array}{c} {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{40}}{\left({{21}{-{{{2}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}\\ \frac{{-{13}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _3} _9}$
${{{{{ T} _2}} {{{{{ V} _1} _3} _9}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{-{13}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _4} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _4} _0}}} = {\left[\begin{array}{c} -{{\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\\ \frac{{-{13}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _4} _1}$
${{{{{ T} _3}} {{{{{ V} _1} _4} _1}}} = {\left[\begin{array}{c} \frac{{-{13}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _4} _2}$
${{{{{ T} _2}} {{{{{ V} _1} _4} _2}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{21}{-{{{2}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}\\ \frac{{-{13}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _4} _3}$
${{{{{ T} _2}} {{{{{ V} _1} _4} _3}}} = {\left[\begin{array}{c} \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}}{\left({{21}{-{{{2}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _4} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _4} _4}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\\ \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _4} _5}$
${{{{{ T} _3}} {{{{{ V} _1} _4} _5}}} = {\left[\begin{array}{c} {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}}{\left({{21}{-{{{2}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}\\ \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _4} _6}$
${{{{{ T} _2}} {{{{{ V} _1} _4} _6}}} = {\left[\begin{array}{c} \frac{{-{13}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{40}}{\left({{21}{-{{{2}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}\\ \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _4} _7}$
${{{{{ T} _2}} {{{{{ V} _1} _4} _7}}} = {\left[\begin{array}{c} -{{\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}}\\ \frac{{-{13}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}}{\left({{21}{-{{{2}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}\\ \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _4} _8}$
${{{{{ T} _2}} {{{{{ V} _1} _4} _8}}} = {\left[\begin{array}{c} \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\\ -{{\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{40}}{\left({{21}{-{{{2}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}\\ \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _4} _9}$
${{{{{ T} _4}} {{{{{ V} _1} _4} _9}}} = {\left[\begin{array}{c} \frac{{-{11}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ -{{\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{40}}{\left({{21}{-{{{2}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}\\ \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _5} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _5} _0}}} = {\left[\begin{array}{c} {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{-{11}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}}{\left({{21}{-{{{2}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}\\ \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _5} _1}$
${{{{{ T} _2}} {{{{{ V} _1} _5} _1}}} = {\left[\begin{array}{c} \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{40}}{\left({{21}{-{{{2}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}\\ \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _5} _2}$
${{{{{ T} _2}} {{{{{ V} _1} _5} _2}}} = {\left[\begin{array}{c} -{{\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}}\\ \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}}{\left({{21}{-{{{2}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}\\ \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _5} _3}$
${{{{{ T} _3}} {{{{{ V} _1} _5} _3}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{21}{-{{{2}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}\\ \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _5} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _5} _4}}} = {\left[\begin{array}{c} \frac{{-{11}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}}{\left({{21}{-{{{2}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _5} _5}$
${{{{{ T} _2}} {{{{{ V} _1} _5} _5}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\\ \frac{{-{11}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _5} _6}$
${{{{{ T} _2}} {{{{{ V} _1} _5} _6}}} = {\left[\begin{array}{c} \frac{{11}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\\ {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _5} _7}$
${{{{{ T} _3}} {{{{{ V} _1} _5} _7}}} = {\left[\begin{array}{c} {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\\ \frac{{-{11}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _5} _8}$
${{{{{ T} _2}} {{{{{ V} _1} _5} _8}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{21}{-{{{2}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{-{11}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _5} _9}$
${{{{{ T} _2}} {{{{{ V} _1} _5} _9}}} = {\left[\begin{array}{c} -{{\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{40}}{\left({{21}{-{{{2}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}\\ \frac{{-{11}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _6} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _6} _0}}} = {\left[\begin{array}{c} {\frac{1}{40}}{\left({{-{21}} + {{{2}} \cdot {{5}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{40}} {{{3}} {{\left({{26} + {{{5}} {{\sqrt{5}}}}}\right)}}}}\\ \frac{{-{11}} + {{{8}} {{\sqrt{5}}}}}{{{8}} {{\sqrt{5}}}}\\ \frac{{13}{-{{{8}} {{\sqrt{5}}}}}}{{{8}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _6} _1}$
${{{{{ T} _5}} {{{{{ V} _1} _6} _1}}} = {\left[\begin{array}{c} \frac{{353}{-{{{113}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _6} _2}$
${{{{{ T} _2}} {{{{{ V} _1} _6} _2}}} = {\left[\begin{array}{c} \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{353}{-{{{113}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _6} _3}$
${{{{{ T} _2}} {{{{{ V} _1} _6} _3}}} = {\left[\begin{array}{c} \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _6} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _6} _4}}} = {\left[\begin{array}{c} -{\frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _6} _5}$
${{{{{ T} _3}} {{{{{ V} _1} _6} _5}}} = {\left[\begin{array}{c} \frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _6} _6}$
${{{{{ T} _2}} {{{{{ V} _1} _6} _6}}} = {\left[\begin{array}{c} \frac{{353}{-{{{113}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _6} _7}$
${{{{{ T} _2}} {{{{{ V} _1} _6} _7}}} = {\left[\begin{array}{c} -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{353}{-{{{113}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _6} _8}$
${{{{{ T} _2}} {{{{{ V} _1} _6} _8}}} = {\left[\begin{array}{c} \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _6} _9}$
${{{{{ T} _3}} {{{{{ V} _1} _6} _9}}} = {\left[\begin{array}{c} \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{353}{-{{{113}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _7} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _7} _0}}} = {\left[\begin{array}{c} \frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{353}{-{{{113}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _7} _1}$
${{{{{ T} _2}} {{{{{ V} _1} _7} _1}}} = {\left[\begin{array}{c} -{\frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{353}{-{{{113}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _7} _2}$
${{{{{ T} _2}} {{{{{ V} _1} _7} _2}}} = {\left[\begin{array}{c} -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ -{\frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{353}{-{{{113}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _7} _3}$
${{{{{ T} _4}} {{{{{ V} _1} _7} _3}}} = {\left[\begin{array}{c} \frac{{-{381}} + {{{13}} \cdot {{5}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{353}{-{{{113}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _1} _7} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _7} _4}}} = {\left[\begin{array}{c} \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{381}} + {{{13}} \cdot {{5}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{353}{-{{{113}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _1} _7} _5}$
${{{{{ T} _2}} {{{{{ V} _1} _7} _5}}} = {\left[\begin{array}{c} \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{353}{-{{{113}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _1} _7} _6}$
${{{{{ T} _2}} {{{{{ V} _1} _7} _6}}} = {\left[\begin{array}{c} -{\frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{353}{-{{{113}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _1} _7} _7}$
${{{{{ T} _3}} {{{{{ V} _1} _7} _7}}} = {\left[\begin{array}{c} \frac{{353}{-{{{113}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _1} _7} _8}$
${{{{{ T} _2}} {{{{{ V} _1} _7} _8}}} = {\left[\begin{array}{c} \frac{{-{381}} + {{{13}} \cdot {{5}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{353}{-{{{113}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _1} _7} _9}$
${{{{{ T} _2}} {{{{{ V} _1} _7} _9}}} = {\left[\begin{array}{c} \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{381}} + {{{13}} \cdot {{5}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _1} _8} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _8} _0}}} = {\left[\begin{array}{c} \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _1} _8} _1}$
${{{{{ T} _3}} {{{{{ V} _1} _8} _1}}} = {\left[\begin{array}{c} \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{381}} + {{{13}} \cdot {{5}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _1} _8} _2}$
${{{{{ T} _2}} {{{{{ V} _1} _8} _2}}} = {\left[\begin{array}{c} \frac{{353}{-{{{113}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{381}} + {{{13}} \cdot {{5}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _1} _8} _3}$
${{{{{ T} _2}} {{{{{ V} _1} _8} _3}}} = {\left[\begin{array}{c} -{\frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{353}{-{{{113}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{381}} + {{{13}} \cdot {{5}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _1} _8} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _8} _4}}} = {\left[\begin{array}{c} \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{-{381}} + {{{13}} \cdot {{5}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _1} _8} _5}$
${{{{{ T} _4}} {{{{{ V} _1} _8} _5}}} = {\left[\begin{array}{c} \frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{-{381}} + {{{13}} \cdot {{5}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _8} _6}$
${{{{{ T} _2}} {{{{{ V} _1} _8} _6}}} = {\left[\begin{array}{c} \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{381}} + {{{13}} \cdot {{5}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _8} _7}$
${{{{{ T} _2}} {{{{{ V} _1} _8} _7}}} = {\left[\begin{array}{c} -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{381}} + {{{13}} \cdot {{5}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _8} _8}$
${{{{{ T} _2}} {{{{{ V} _1} _8} _8}}} = {\left[\begin{array}{c} -{\frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{-{381}} + {{{13}} \cdot {{5}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _8} _9}$
${{{{{ T} _3}} {{{{{ V} _1} _8} _9}}} = {\left[\begin{array}{c} \frac{{-{381}} + {{{13}} \cdot {{5}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _9} _0}$
${{{{{ T} _2}} {{{{{ V} _1} _9} _0}}} = {\left[\begin{array}{c} \frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{381}} + {{{13}} \cdot {{5}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _9} _1}$
${{{{{ T} _2}} {{{{{ V} _1} _9} _1}}} = {\left[\begin{array}{c} \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _9} _2}$
${{{{{ T} _2}} {{{{{ V} _1} _9} _2}}} = {\left[\begin{array}{c} -{\frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _9} _3}$
${{{{{ T} _3}} {{{{{ V} _1} _9} _3}}} = {\left[\begin{array}{c} \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _9} _4}$
${{{{{ T} _2}} {{{{{ V} _1} _9} _4}}} = {\left[\begin{array}{c} \frac{{-{381}} + {{{13}} \cdot {{5}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _9} _5}$
${{{{{ T} _2}} {{{{{ V} _1} _9} _5}}} = {\left[\begin{array}{c} -{\frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{-{381}} + {{{13}} \cdot {{5}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _9} _6}$
${{{{{ T} _2}} {{{{{ V} _1} _9} _6}}} = {\left[\begin{array}{c} \frac{{381}{-{{{13}} \cdot {{5}} {{\sqrt{5}}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{147} + {{{341}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{199} + {{{73}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{353}} + {{{113}} {{\sqrt{5}}}}}{{{32}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _9} _7}$
${{{{{ T} _5}} {{{{{ V} _1} _9} _7}}} = {\left[\begin{array}{c} \frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{-{509}} + {{{671}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _9} _8}$
${{{{{ T} _2}} {{{{{ V} _1} _9} _8}}} = {\left[\begin{array}{c} \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{509}} + {{{671}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _1} _9} _9}$
${{{{{ T} _2}} {{{{{ V} _1} _9} _9}}} = {\left[\begin{array}{c} -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{509}} + {{{671}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _0} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _0} _0}}} = {\left[\begin{array}{c} -{\frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{-{509}} + {{{671}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _0} _1}$
${{{{{ T} _3}} {{{{{ V} _2} _0} _1}}} = {\left[\begin{array}{c} \frac{{-{509}} + {{{671}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _0} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _0} _2}}} = {\left[\begin{array}{c} \frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{509}} + {{{671}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _0} _3}$
${{{{{ T} _2}} {{{{{ V} _2} _0} _3}}} = {\left[\begin{array}{c} \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _0} _4}$
${{{{{ T} _2}} {{{{{ V} _2} _0} _4}}} = {\left[\begin{array}{c} -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _0} _5}$
${{{{{ T} _3}} {{{{{ V} _2} _0} _5}}} = {\left[\begin{array}{c} \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _0} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _0} _6}}} = {\left[\begin{array}{c} \frac{{-{509}} + {{{671}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _0} _7}$
${{{{{ T} _2}} {{{{{ V} _2} _0} _7}}} = {\left[\begin{array}{c} -{\frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{-{509}} + {{{671}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _0} _8}$
${{{{{ T} _2}} {{{{{ V} _2} _0} _8}}} = {\left[\begin{array}{c} \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _0} _9}$
${{{{{ T} _4}} {{{{{ V} _2} _0} _9}}} = {\left[\begin{array}{c} -{\frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ -{\frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _1} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _1} _0}}} = {\left[\begin{array}{c} \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _1} _1}$
${{{{{ T} _2}} {{{{{ V} _2} _1} _1}}} = {\left[\begin{array}{c} \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _1} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _1} _2}}} = {\left[\begin{array}{c} -{\frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _1} _3}$
${{{{{ T} _3}} {{{{{ V} _2} _1} _3}}} = {\left[\begin{array}{c} \frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _1} _4}$
${{{{{ T} _2}} {{{{{ V} _2} _1} _4}}} = {\left[\begin{array}{c} -{\frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _1} _5}$
${{{{{ T} _2}} {{{{{ V} _2} _1} _5}}} = {\left[\begin{array}{c} -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ -{\frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _1} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _1} _6}}} = {\left[\begin{array}{c} \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _1} _7}$
${{{{{ T} _3}} {{{{{ V} _2} _1} _7}}} = {\left[\begin{array}{c} \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ -{\frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _1} _8}$
${{{{{ T} _2}} {{{{{ V} _2} _1} _8}}} = {\left[\begin{array}{c} \frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _1} _9}$
${{{{{ T} _2}} {{{{{ V} _2} _1} _9}}} = {\left[\begin{array}{c} -{\frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _2} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _2} _0}}} = {\left[\begin{array}{c} -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ -{\frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ -{\frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _2} _2} _1}$
${{{{{ T} _4}} {{{{{ V} _2} _2} _1}}} = {\left[\begin{array}{c} \frac{{-{509}} + {{{671}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ -{\frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _2} _2} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _2} _2}}} = {\left[\begin{array}{c} \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{509}} + {{{671}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _2} _2} _3}$
${{{{{ T} _2}} {{{{{ V} _2} _2} _3}}} = {\left[\begin{array}{c} \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _2} _2} _4}$
${{{{{ T} _2}} {{{{{ V} _2} _2} _4}}} = {\left[\begin{array}{c} -{\frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _2} _2} _5}$
${{{{{ T} _3}} {{{{{ V} _2} _2} _5}}} = {\left[\begin{array}{c} -{\frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _2} _2} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _2} _6}}} = {\left[\begin{array}{c} \frac{{-{509}} + {{{671}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _2} _2} _7}$
${{{{{ T} _2}} {{{{{ V} _2} _2} _7}}} = {\left[\begin{array}{c} \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{509}} + {{{671}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _2} _2} _8}$
${{{{{ T} _2}} {{{{{ V} _2} _2} _8}}} = {\left[\begin{array}{c} \frac{{509}{-{{{671}} {{\sqrt{5}}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _2} _2} _9}$
${{{{{ T} _3}} {{{{{ V} _2} _2} _9}}} = {\left[\begin{array}{c} \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{509}} + {{{671}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _2} _3} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _3} _0}}} = {\left[\begin{array}{c} -{\frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{509}} + {{{671}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _2} _3} _1}$
${{{{{ T} _2}} {{{{{ V} _2} _3} _1}}} = {\left[\begin{array}{c} -{\frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ -{\frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{-{509}} + {{{671}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _2} _3} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _3} _2}}} = {\left[\begin{array}{c} \frac{{287} + {{{47}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{699} + {{{383}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\\ \frac{{-{509}} + {{{671}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{357} + {{{169}} {{\sqrt{5}}}}}{{{64}} \cdot {{5}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _2} _3} _3}$
${{{{{ T} _5}} {{{{{ V} _2} _3} _3}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _2} _3} _4}$
${{{{{ T} _2}} {{{{{ V} _2} _3} _4}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _2} _3} _5}$
${{{{{ T} _2}} {{{{{ V} _2} _3} _5}}} = {\left[\begin{array}{c} -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _2} _3} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _3} _6}}} = {\left[\begin{array}{c} -{{\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _2} _3} _7}$
${{{{{ T} _3}} {{{{{ V} _2} _3} _7}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _2} _3} _8}$
${{{{{ T} _2}} {{{{{ V} _2} _3} _8}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _2} _3} _9}$
${{{{{ T} _2}} {{{{{ V} _2} _3} _9}}} = {\left[\begin{array}{c} -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _2} _4} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _4} _0}}} = {\left[\begin{array}{c} -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _2} _4} _1}$
${{{{{ T} _3}} {{{{{ V} _2} _4} _1}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _2} _4} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _4} _2}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _2} _4} _3}$
${{{{{ T} _2}} {{{{{ V} _2} _4} _3}}} = {\left[\begin{array}{c} -{{\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _2} _4} _4}$
${{{{{ T} _2}} {{{{{ V} _2} _4} _4}}} = {\left[\begin{array}{c} -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _2} _4} _5}$
${{{{{ T} _4}} {{{{{ V} _2} _4} _5}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{2312}{-{{{967}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _4} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _4} _6}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{2312}{-{{{967}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _4} _7}$
${{{{{ T} _2}} {{{{{ V} _2} _4} _7}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _4} _8}$
${{{{{ T} _2}} {{{{{ V} _2} _4} _8}}} = {\left[\begin{array}{c} -{{\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _4} _9}$
${{{{{ T} _3}} {{{{{ V} _2} _4} _9}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _5} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _5} _0}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{2312}{-{{{967}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _5} _1}$
${{{{{ T} _2}} {{{{{ V} _2} _5} _1}}} = {\left[\begin{array}{c} -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{2312}{-{{{967}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _5} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _5} _2}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _5} _3}$
${{{{{ T} _3}} {{{{{ V} _2} _5} _3}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{2312}{-{{{967}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _5} _4}$
${{{{{ T} _2}} {{{{{ V} _2} _5} _4}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{2312}{-{{{967}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _5} _5}$
${{{{{ T} _2}} {{{{{ V} _2} _5} _5}}} = {\left[\begin{array}{c} -{{\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{2312}{-{{{967}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _5} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _5} _6}}} = {\left[\begin{array}{c} -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{2312}{-{{{967}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _5} _7}$
${{{{{ T} _4}} {{{{{ V} _2} _5} _7}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{2312}{-{{{967}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _5} _8}$
${{{{{ T} _2}} {{{{{ V} _2} _5} _8}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{2312}{-{{{967}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _5} _9}$
${{{{{ T} _2}} {{{{{ V} _2} _5} _9}}} = {\left[\begin{array}{c} -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{2312}{-{{{967}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _6} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _6} _0}}} = {\left[\begin{array}{c} -{{\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{2312}{-{{{967}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _6} _1}$
${{{{{ T} _3}} {{{{{ V} _2} _6} _1}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{2312}{-{{{967}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _6} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _6} _2}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{2312}{-{{{967}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _6} _3}$
${{{{{ T} _2}} {{{{{ V} _2} _6} _3}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _6} _4}$
${{{{{ T} _2}} {{{{{ V} _2} _6} _4}}} = {\left[\begin{array}{c} -{{\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _6} _5}$
${{{{{ T} _3}} {{{{{ V} _2} _6} _5}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _6} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _6} _6}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{2312}{-{{{967}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _6} _7}$
${{{{{ T} _2}} {{{{{ V} _2} _6} _7}}} = {\left[\begin{array}{c} -{{\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{2312}{-{{{967}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _6} _8}$
${{{{{ T} _2}} {{{{{ V} _2} _6} _8}}} = {\left[\begin{array}{c} {\frac{1}{1600}}{\left({{-{2312}} + {{{967}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{1711} + {{{572}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{1600}}{\left({{1457} + {{{738}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{1600}}{\left({{439} + {{{414}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _6} _9}$
${{{{{ T} _5}} {{{{{ V} _2} _6} _9}}} = {\left[\begin{array}{c} {\frac{1}{6400}} {{{3}} {{\left({{-{1747}} + {{{239}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _7} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _7} _0}}} = {\left[\begin{array}{c} {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{-{1747}} + {{{239}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _7} _1}$
${{{{{ T} _2}} {{{{{ V} _2} _7} _1}}} = {\left[\begin{array}{c} {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _7} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _7} _2}}} = {\left[\begin{array}{c} -{{\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _7} _3}$
${{{{{ T} _3}} {{{{{ V} _2} _7} _3}}} = {\left[\begin{array}{c} {\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _7} _4}$
${{{{{ T} _2}} {{{{{ V} _2} _7} _4}}} = {\left[\begin{array}{c} {\frac{1}{6400}} {{{3}} {{\left({{-{1747}} + {{{239}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _7} _5}$
${{{{{ T} _2}} {{{{{ V} _2} _7} _5}}} = {\left[\begin{array}{c} -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{6400}} {{{3}} {{\left({{-{1747}} + {{{239}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _7} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _7} _6}}} = {\left[\begin{array}{c} {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _7} _7}$
${{{{{ T} _3}} {{{{{ V} _2} _7} _7}}} = {\left[\begin{array}{c} {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{6400}} {{{3}} {{\left({{-{1747}} + {{{239}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _7} _8}$
${{{{{ T} _2}} {{{{{ V} _2} _7} _8}}} = {\left[\begin{array}{c} {\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{-{1747}} + {{{239}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _7} _9}$
${{{{{ T} _2}} {{{{{ V} _2} _7} _9}}} = {\left[\begin{array}{c} -{{\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{-{1747}} + {{{239}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _8} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _8} _0}}} = {\left[\begin{array}{c} -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{6400}} {{{3}} {{\left({{-{1747}} + {{{239}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _8} _1}$
${{{{{ T} _4}} {{{{{ V} _2} _8} _1}}} = {\left[\begin{array}{c} -{{\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}}\\ -{{\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{6400}} {{{3}} {{\left({{-{1747}} + {{{239}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _8} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _8} _2}}} = {\left[\begin{array}{c} {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{6400}} {{{3}} {{\left({{-{1747}} + {{{239}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _8} _3}$
${{{{{ T} _2}} {{{{{ V} _2} _8} _3}}} = {\left[\begin{array}{c} {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{-{1747}} + {{{239}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _8} _4}$
${{{{{ T} _2}} {{{{{ V} _2} _8} _4}}} = {\left[\begin{array}{c} -{{\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}} {{{3}} {{\left({{-{1747}} + {{{239}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _8} _5}$
${{{{{ T} _3}} {{{{{ V} _2} _8} _5}}} = {\left[\begin{array}{c} {\frac{1}{6400}} {{{3}} {{\left({{-{1747}} + {{{239}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _8} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _8} _6}}} = {\left[\begin{array}{c} -{{\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{6400}} {{{3}} {{\left({{-{1747}} + {{{239}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _8} _7}$
${{{{{ T} _2}} {{{{{ V} _2} _8} _7}}} = {\left[\begin{array}{c} {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _8} _8}$
${{{{{ T} _2}} {{{{{ V} _2} _8} _8}}} = {\left[\begin{array}{c} {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _8} _9}$
${{{{{ T} _3}} {{{{{ V} _2} _8} _9}}} = {\left[\begin{array}{c} {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}}\\ -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _9} _0}$
${{{{{ T} _2}} {{{{{ V} _2} _9} _0}}} = {\left[\begin{array}{c} {\frac{1}{6400}} {{{3}} {{\left({{-{1747}} + {{{239}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}}\\ -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _9} _1}$
${{{{{ T} _2}} {{{{{ V} _2} _9} _1}}} = {\left[\begin{array}{c} -{{\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{6400}} {{{3}} {{\left({{-{1747}} + {{{239}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}}\\ -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _9} _2}$
${{{{{ T} _2}} {{{{{ V} _2} _9} _2}}} = {\left[\begin{array}{c} {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}}\\ -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _2} _9} _3}$
${{{{{ T} _4}} {{{{{ V} _2} _9} _3}}} = {\left[\begin{array}{c} {\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _9} _4}$
${{{{{ T} _2}} {{{{{ V} _2} _9} _4}}} = {\left[\begin{array}{c} {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _9} _5}$
${{{{{ T} _2}} {{{{{ V} _2} _9} _5}}} = {\left[\begin{array}{c} -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _9} _6}$
${{{{{ T} _2}} {{{{{ V} _2} _9} _6}}} = {\left[\begin{array}{c} -{{\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _9} _7}$
${{{{{ T} _3}} {{{{{ V} _2} _9} _7}}} = {\left[\begin{array}{c} -{{\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}}\\ -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _9} _8}$
${{{{{ T} _2}} {{{{{ V} _2} _9} _8}}} = {\left[\begin{array}{c} {\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _2} _9} _9}$
${{{{{ T} _2}} {{{{{ V} _2} _9} _9}}} = {\left[\begin{array}{c} {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _3} _0} _0}$
${{{{{ T} _2}} {{{{{ V} _3} _0} _0}}} = {\left[\begin{array}{c} -{{\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _3} _0} _1}$
${{{{{ T} _3}} {{{{{ V} _3} _0} _1}}} = {\left[\begin{array}{c} {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _3} _0} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _0} _2}}} = {\left[\begin{array}{c} -{{\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _3} _0} _3}$
${{{{{ T} _2}} {{{{{ V} _3} _0} _3}}} = {\left[\begin{array}{c} -{{\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _3} _0} _4}$
${{{{{ T} _2}} {{{{{ V} _3} _0} _4}}} = {\left[\begin{array}{c} {\frac{1}{6400}} {{{3}} {{\left({{257} + {{{163}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{6400}}{\left({{2837} + {{{2571}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{6400}}{\left({{13777} + {{{807}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{6400}} {{{3}} {{\left({{1747}{-{{{239}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _3} _0} _5}$
${{{{{ T} _5}} {{{{{ V} _3} _0} _5}}} = {\left[\begin{array}{c} \frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{29657}} + {{{4991}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _0} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _0} _6}}} = {\left[\begin{array}{c} \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _0} _7}$
${{{{{ T} _2}} {{{{{ V} _3} _0} _7}}} = {\left[\begin{array}{c} -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _0} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _0} _8}}} = {\left[\begin{array}{c} \frac{{-{29657}} + {{{4991}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _0} _9}$
${{{{{ T} _3}} {{{{{ V} _3} _0} _9}}} = {\left[\begin{array}{c} \frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _1} _0}$
${{{{{ T} _2}} {{{{{ V} _3} _1} _0}}} = {\left[\begin{array}{c} \frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _1} _1}$
${{{{{ T} _2}} {{{{{ V} _3} _1} _1}}} = {\left[\begin{array}{c} -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _1} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _1} _2}}} = {\left[\begin{array}{c} -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _1} _3}$
${{{{{ T} _3}} {{{{{ V} _3} _1} _3}}} = {\left[\begin{array}{c} \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _1} _4}$
${{{{{ T} _2}} {{{{{ V} _3} _1} _4}}} = {\left[\begin{array}{c} \frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _1} _5}$
${{{{{ T} _2}} {{{{{ V} _3} _1} _5}}} = {\left[\begin{array}{c} \frac{{-{29657}} + {{{4991}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _1} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _1} _6}}} = {\left[\begin{array}{c} -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{-{29657}} + {{{4991}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _1} _7}$
${{{{{ T} _4}} {{{{{ V} _3} _1} _7}}} = {\left[\begin{array}{c} \frac{{-{37361}} + {{{10171}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{29657}} + {{{4991}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _1} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _1} _8}}} = {\left[\begin{array}{c} \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{37361}} + {{{10171}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _1} _9}$
${{{{{ T} _2}} {{{{{ V} _3} _1} _9}}} = {\left[\begin{array}{c} \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _2} _0}$
${{{{{ T} _2}} {{{{{ V} _3} _2} _0}}} = {\left[\begin{array}{c} \frac{{-{29657}} + {{{4991}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _2} _1}$
${{{{{ T} _3}} {{{{{ V} _3} _2} _1}}} = {\left[\begin{array}{c} \frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _2} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _2} _2}}} = {\left[\begin{array}{c} \frac{{-{37361}} + {{{10171}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _2} _3}$
${{{{{ T} _2}} {{{{{ V} _3} _2} _3}}} = {\left[\begin{array}{c} -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{-{37361}} + {{{10171}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _2} _4}$
${{{{{ T} _2}} {{{{{ V} _3} _2} _4}}} = {\left[\begin{array}{c} \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _2} _5}$
${{{{{ T} _3}} {{{{{ V} _3} _2} _5}}} = {\left[\begin{array}{c} \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{-{37361}} + {{{10171}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _2} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _2} _6}}} = {\left[\begin{array}{c} \frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{37361}} + {{{10171}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _2} _7}$
${{{{{ T} _2}} {{{{{ V} _3} _2} _7}}} = {\left[\begin{array}{c} \frac{{-{29657}} + {{{4991}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{37361}} + {{{10171}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _2} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _2} _8}}} = {\left[\begin{array}{c} -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{-{29657}} + {{{4991}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{37361}} + {{{10171}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _2} _9}$
${{{{{ T} _4}} {{{{{ V} _3} _2} _9}}} = {\left[\begin{array}{c} \frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{29657}} + {{{4991}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{37361}} + {{{10171}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _3} _0}$
${{{{{ T} _2}} {{{{{ V} _3} _3} _0}}} = {\left[\begin{array}{c} \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{37361}} + {{{10171}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _3} _1}$
${{{{{ T} _2}} {{{{{ V} _3} _3} _1}}} = {\left[\begin{array}{c} -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{37361}} + {{{10171}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _3} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _3} _2}}} = {\left[\begin{array}{c} \frac{{-{29657}} + {{{4991}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{-{37361}} + {{{10171}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _3} _3}$
${{{{{ T} _3}} {{{{{ V} _3} _3} _3}}} = {\left[\begin{array}{c} \frac{{-{37361}} + {{{10171}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _3} _4}$
${{{{{ T} _2}} {{{{{ V} _3} _3} _4}}} = {\left[\begin{array}{c} \frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{37361}} + {{{10171}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _3} _5}$
${{{{{ T} _2}} {{{{{ V} _3} _3} _5}}} = {\left[\begin{array}{c} \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _3} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _3} _6}}} = {\left[\begin{array}{c} -{\frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _3} _7}$
${{{{{ T} _3}} {{{{{ V} _3} _3} _7}}} = {\left[\begin{array}{c} \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _3} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _3} _8}}} = {\left[\begin{array}{c} \frac{{-{37361}} + {{{10171}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{29657}{-{{{4991}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _3} _9}$
${{{{{ T} _2}} {{{{{ V} _3} _3} _9}}} = {\left[\begin{array}{c} \frac{{-{29657}} + {{{4991}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{37361}} + {{{10171}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _4} _0}$
${{{{{ T} _2}} {{{{{ V} _3} _4} _0}}} = {\left[\begin{array}{c} \frac{{37361}{-{{{10171}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{29657}} + {{{4991}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{8003} + {{{7171}} {{\sqrt{5}}}}}\right)}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{943} + {{{12207}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _4} _1}$
${{{{{ T} _5}} {{{{{ V} _3} _4} _1}}} = {\left[\begin{array}{c} \frac{{51043}{-{{{9348}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{646}{-{{{71}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ \frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _4} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _4} _2}}} = {\left[\begin{array}{c} {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{51043}{-{{{9348}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _4} _3}$
${{{{{ T} _2}} {{{{{ V} _3} _4} _3}}} = {\left[\begin{array}{c} \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _4} _4}$
${{{{{ T} _2}} {{{{{ V} _3} _4} _4}}} = {\left[\begin{array}{c} {\frac{1}{12800}} {{{9}} {{\left({{646}{-{{{71}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _4} _5}$
${{{{{ T} _3}} {{{{{ V} _3} _4} _5}}} = {\left[\begin{array}{c} \frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _4} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _4} _6}}} = {\left[\begin{array}{c} \frac{{51043}{-{{{9348}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _4} _7}$
${{{{{ T} _2}} {{{{{ V} _3} _4} _7}}} = {\left[\begin{array}{c} -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{51043}{-{{{9348}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _4} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _4} _8}}} = {\left[\begin{array}{c} \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _4} _9}$
${{{{{ T} _3}} {{{{{ V} _3} _4} _9}}} = {\left[\begin{array}{c} {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{51043}{-{{{9348}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _5} _0}$
${{{{{ T} _2}} {{{{{ V} _3} _5} _0}}} = {\left[\begin{array}{c} \frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{51043}{-{{{9348}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _5} _1}$
${{{{{ T} _2}} {{{{{ V} _3} _5} _1}}} = {\left[\begin{array}{c} {\frac{1}{12800}} {{{9}} {{\left({{646}{-{{{71}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ \frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{51043}{-{{{9348}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _5} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _5} _2}}} = {\left[\begin{array}{c} -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{646}{-{{{71}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ \frac{{51043}{-{{{9348}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _5} _3}$
${{{{{ T} _4}} {{{{{ V} _3} _5} _3}}} = {\left[\begin{array}{c} \frac{{-{1494}} + {{{1237}} {{\sqrt{5}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{646}{-{{{71}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ \frac{{51043}{-{{{9348}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _5} _4}$
${{{{{ T} _2}} {{{{{ V} _3} _5} _4}}} = {\left[\begin{array}{c} {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{-{1494}} + {{{1237}} {{\sqrt{5}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{51043}{-{{{9348}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _5} _5}$
${{{{{ T} _2}} {{{{{ V} _3} _5} _5}}} = {\left[\begin{array}{c} \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{51043}{-{{{9348}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _5} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _5} _6}}} = {\left[\begin{array}{c} {\frac{1}{12800}} {{{9}} {{\left({{646}{-{{{71}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{51043}{-{{{9348}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _5} _7}$
${{{{{ T} _3}} {{{{{ V} _3} _5} _7}}} = {\left[\begin{array}{c} \frac{{51043}{-{{{9348}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _5} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _5} _8}}} = {\left[\begin{array}{c} \frac{{-{1494}} + {{{1237}} {{\sqrt{5}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{51043}{-{{{9348}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _5} _9}$
${{{{{ T} _2}} {{{{{ V} _3} _5} _9}}} = {\left[\begin{array}{c} \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{1494}} + {{{1237}} {{\sqrt{5}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _6} _0}$
${{{{{ T} _2}} {{{{{ V} _3} _6} _0}}} = {\left[\begin{array}{c} \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _6} _1}$
${{{{{ T} _3}} {{{{{ V} _3} _6} _1}}} = {\left[\begin{array}{c} {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{1494}} + {{{1237}} {{\sqrt{5}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _6} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _6} _2}}} = {\left[\begin{array}{c} \frac{{51043}{-{{{9348}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{-{1494}} + {{{1237}} {{\sqrt{5}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _6} _3}$
${{{{{ T} _2}} {{{{{ V} _3} _6} _3}}} = {\left[\begin{array}{c} {\frac{1}{12800}} {{{9}} {{\left({{646}{-{{{71}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ \frac{{51043}{-{{{9348}} {{\sqrt{5}}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{1494}} + {{{1237}} {{\sqrt{5}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _6} _4}$
${{{{{ T} _2}} {{{{{ V} _3} _6} _4}}} = {\left[\begin{array}{c} \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{646}{-{{{71}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ \frac{{-{1494}} + {{{1237}} {{\sqrt{5}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _3} _6} _5}$
${{{{{ T} _4}} {{{{{ V} _3} _6} _5}}} = {\left[\begin{array}{c} \frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{646}{-{{{71}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ \frac{{-{1494}} + {{{1237}} {{\sqrt{5}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _6} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _6} _6}}} = {\left[\begin{array}{c} {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{1494}} + {{{1237}} {{\sqrt{5}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _6} _7}$
${{{{{ T} _2}} {{{{{ V} _3} _6} _7}}} = {\left[\begin{array}{c} -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{-{1494}} + {{{1237}} {{\sqrt{5}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _6} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _6} _8}}} = {\left[\begin{array}{c} {\frac{1}{12800}} {{{9}} {{\left({{646}{-{{{71}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{-{1494}} + {{{1237}} {{\sqrt{5}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _6} _9}$
${{{{{ T} _3}} {{{{{ V} _3} _6} _9}}} = {\left[\begin{array}{c} \frac{{-{1494}} + {{{1237}} {{\sqrt{5}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _7} _0}$
${{{{{ T} _2}} {{{{{ V} _3} _7} _0}}} = {\left[\begin{array}{c} \frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{1494}} + {{{1237}} {{\sqrt{5}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _7} _1}$
${{{{{ T} _2}} {{{{{ V} _3} _7} _1}}} = {\left[\begin{array}{c} \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _7} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _7} _2}}} = {\left[\begin{array}{c} -{\frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\\ \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _7} _3}$
${{{{{ T} _3}} {{{{{ V} _3} _7} _3}}} = {\left[\begin{array}{c} {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _7} _4}$
${{{{{ T} _2}} {{{{{ V} _3} _7} _4}}} = {\left[\begin{array}{c} \frac{{-{1494}} + {{{1237}} {{\sqrt{5}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{-{646}} + {{{71}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ \frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _7} _5}$
${{{{{ T} _2}} {{{{{ V} _3} _7} _5}}} = {\left[\begin{array}{c} {\frac{1}{12800}} {{{9}} {{\left({{646}{-{{{71}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ \frac{{-{1494}} + {{{1237}} {{\sqrt{5}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ \frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _7} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _7} _6}}} = {\left[\begin{array}{c} \frac{{1494}{-{{{1237}} {{\sqrt{5}}}}}}{{{512}} \cdot {{5}} {{\sqrt{5}}}}\\ {\frac{1}{12800}} {{{9}} {{\left({{646}{-{{{71}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ \frac{{41989} + {{{14676}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\\ \frac{{-{51043}} + {{{9348}} {{\sqrt{5}}}}}{{{512}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _3} _7} _7}$
${{{{{ T} _5}} {{{{{ V} _3} _7} _7}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{119323}{-{{{13631}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}}{\left({{359303}{-{{{107411}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\end{array}\right]}} = {{{{ V} _3} _7} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _7} _8}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{119323}{-{{{13631}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\end{array}\right]}} = {{{{ V} _3} _7} _9}$
${{{{{ T} _2}} {{{{{ V} _3} _7} _9}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\end{array}\right]}} = {{{{ V} _3} _8} _0}$
${{{{{ T} _2}} {{{{{ V} _3} _8} _0}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{359303}{-{{{107411}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\end{array}\right]}} = {{{{ V} _3} _8} _1}$
${{{{{ T} _3}} {{{{{ V} _3} _8} _1}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\end{array}\right]}} = {{{{ V} _3} _8} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _8} _2}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{119323}{-{{{13631}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\end{array}\right]}} = {{{{ V} _3} _8} _3}$
${{{{{ T} _2}} {{{{{ V} _3} _8} _3}}} = {\left[\begin{array}{c} -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{256000}}{\left({{119323}{-{{{13631}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\end{array}\right]}} = {{{{ V} _3} _8} _4}$
${{{{{ T} _2}} {{{{{ V} _3} _8} _4}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\end{array}\right]}} = {{{{ V} _3} _8} _5}$
${{{{{ T} _3}} {{{{{ V} _3} _8} _5}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{256000}}{\left({{119323}{-{{{13631}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\end{array}\right]}} = {{{{ V} _3} _8} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _8} _6}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{119323}{-{{{13631}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\end{array}\right]}} = {{{{ V} _3} _8} _7}$
${{{{{ T} _2}} {{{{{ V} _3} _8} _7}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{359303}{-{{{107411}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{119323}{-{{{13631}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\end{array}\right]}} = {{{{ V} _3} _8} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _8} _8}}} = {\left[\begin{array}{c} -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{256000}}{\left({{359303}{-{{{107411}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}}{\left({{119323}{-{{{13631}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\end{array}\right]}} = {{{{ V} _3} _8} _9}$
${{{{{ T} _4}} {{{{{ V} _3} _8} _9}}} = {\left[\begin{array}{c} {\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{256000}}{\left({{359303}{-{{{107411}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}}{\left({{119323}{-{{{13631}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _3} _9} _0}$
${{{{{ T} _2}} {{{{{ V} _3} _9} _0}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{256000}}{\left({{119323}{-{{{13631}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _3} _9} _1}$
${{{{{ T} _2}} {{{{{ V} _3} _9} _1}}} = {\left[\begin{array}{c} -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{119323}{-{{{13631}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _3} _9} _2}$
${{{{{ T} _2}} {{{{{ V} _3} _9} _2}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{359303}{-{{{107411}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{256000}}{\left({{119323}{-{{{13631}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _3} _9} _3}$
${{{{{ T} _3}} {{{{{ V} _3} _9} _3}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{119323}{-{{{13631}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _3} _9} _4}$
${{{{{ T} _2}} {{{{{ V} _3} _9} _4}}} = {\left[\begin{array}{c} {\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{256000}}{\left({{119323}{-{{{13631}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _3} _9} _5}$
${{{{{ T} _2}} {{{{{ V} _3} _9} _5}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _3} _9} _6}$
${{{{{ T} _2}} {{{{{ V} _3} _9} _6}}} = {\left[\begin{array}{c} -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _3} _9} _7}$
${{{{{ T} _3}} {{{{{ V} _3} _9} _7}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _3} _9} _8}$
${{{{{ T} _2}} {{{{{ V} _3} _9} _8}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{119323}{-{{{13631}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _3} _9} _9}$
${{{{{ T} _2}} {{{{{ V} _3} _9} _9}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{359303}{-{{{107411}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}}{\left({{119323}{-{{{13631}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _4} _0} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _0} _0}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{359303}{-{{{107411}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _4} _0} _1}$
${{{{{ T} _4}} {{{{{ V} _4} _0} _1}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{359303}{-{{{107411}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _0} _2}$
${{{{{ T} _2}} {{{{{ V} _4} _0} _2}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _0} _3}$
${{{{{ T} _2}} {{{{{ V} _4} _0} _3}}} = {\left[\begin{array}{c} -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _0} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _0} _4}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{359303}{-{{{107411}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _0} _5}$
${{{{{ T} _3}} {{{{{ V} _4} _0} _5}}} = {\left[\begin{array}{c} {\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _0} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _0} _6}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _0} _7}$
${{{{{ T} _2}} {{{{{ V} _4} _0} _7}}} = {\left[\begin{array}{c} -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _0} _8}$
${{{{{ T} _2}} {{{{{ V} _4} _0} _8}}} = {\left[\begin{array}{c} -{{\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _0} _9}$
${{{{{ T} _3}} {{{{{ V} _4} _0} _9}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _1} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _1} _0}}} = {\left[\begin{array}{c} {\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{256000}}{\left({{-{359303}} + {{{107411}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _1} _1}$
${{{{{ T} _2}} {{{{{ V} _4} _1} _1}}} = {\left[\begin{array}{c} {\frac{1}{256000}}{\left({{359303}{-{{{107411}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _1} _2}$
${{{{{ T} _2}} {{{{{ V} _4} _1} _2}}} = {\left[\begin{array}{c} -{{\frac{1}{256000}} {{{3}} {{\left({{8343} + {{{797}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}}\\ {\frac{1}{256000}}{\left({{359303}{-{{{107411}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{256000}}{\left({{542109} + {{{73639}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{256000}}{\left({{-{119323}} + {{{13631}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _1} _3}$
${{{{{ T} _5}} {{{{{ V} _4} _1} _3}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{-{72427}} + {{{150493}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{232079}{-{{{13473}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _1} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _1} _4}}} = {\left[\begin{array}{c} {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{-{72427}} + {{{150493}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _1} _5}$
${{{{{ T} _2}} {{{{{ V} _4} _1} _5}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _1} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _1} _6}}} = {\left[\begin{array}{c} {\frac{1}{512000}} {{{3}} {{\left({{232079}{-{{{13473}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _1} _7}$
${{{{{ T} _3}} {{{{{ V} _4} _1} _7}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _1} _8}$
${{{{{ T} _2}} {{{{{ V} _4} _1} _8}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{-{72427}} + {{{150493}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _1} _9}$
${{{{{ T} _2}} {{{{{ V} _4} _1} _9}}} = {\left[\begin{array}{c} -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{512000}}{\left({{-{72427}} + {{{150493}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _2} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _2} _0}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _2} _1}$
${{{{{ T} _3}} {{{{{ V} _4} _2} _1}}} = {\left[\begin{array}{c} {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{512000}}{\left({{-{72427}} + {{{150493}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _2} _2}$
${{{{{ T} _2}} {{{{{ V} _4} _2} _2}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{-{72427}} + {{{150493}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _2} _3}$
${{{{{ T} _2}} {{{{{ V} _4} _2} _3}}} = {\left[\begin{array}{c} {\frac{1}{512000}} {{{3}} {{\left({{232079}{-{{{13473}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{-{72427}} + {{{150493}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _2} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _2} _4}}} = {\left[\begin{array}{c} -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{512000}} {{{3}} {{\left({{232079}{-{{{13473}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{-{72427}} + {{{150493}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _2} _5}$
${{{{{ T} _4}} {{{{{ V} _4} _2} _5}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{256941}{-{{{179159}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{232079}{-{{{13473}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{-{72427}} + {{{150493}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _4} _2} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _2} _6}}} = {\left[\begin{array}{c} {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{256941}{-{{{179159}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}}{\left({{-{72427}} + {{{150493}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _4} _2} _7}$
${{{{{ T} _2}} {{{{{ V} _4} _2} _7}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{-{72427}} + {{{150493}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _4} _2} _8}$
${{{{{ T} _2}} {{{{{ V} _4} _2} _8}}} = {\left[\begin{array}{c} {\frac{1}{512000}} {{{3}} {{\left({{232079}{-{{{13473}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{-{72427}} + {{{150493}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _4} _2} _9}$
${{{{{ T} _3}} {{{{{ V} _4} _2} _9}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{-{72427}} + {{{150493}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _4} _3} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _3} _0}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{256941}{-{{{179159}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}}{\left({{-{72427}} + {{{150493}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _4} _3} _1}$
${{{{{ T} _2}} {{{{{ V} _4} _3} _1}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}}{\left({{256941}{-{{{179159}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _4} _3} _2}$
${{{{{ T} _2}} {{{{{ V} _4} _3} _2}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _4} _3} _3}$
${{{{{ T} _3}} {{{{{ V} _4} _3} _3}}} = {\left[\begin{array}{c} {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}}{\left({{256941}{-{{{179159}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _4} _3} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _3} _4}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{-{72427}} + {{{150493}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{256941}{-{{{179159}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _4} _3} _5}$
${{{{{ T} _2}} {{{{{ V} _4} _3} _5}}} = {\left[\begin{array}{c} {\frac{1}{512000}} {{{3}} {{\left({{232079}{-{{{13473}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{-{72427}} + {{{150493}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{256941}{-{{{179159}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _4} _3} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _3} _6}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{232079}{-{{{13473}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{256941}{-{{{179159}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _4} _3} _7}$
${{{{{ T} _4}} {{{{{ V} _4} _3} _7}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{232079}{-{{{13473}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{256941}{-{{{179159}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _3} _8}$
${{{{{ T} _2}} {{{{{ V} _4} _3} _8}}} = {\left[\begin{array}{c} {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{256941}{-{{{179159}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _3} _9}$
${{{{{ T} _2}} {{{{{ V} _4} _3} _9}}} = {\left[\begin{array}{c} -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{256941}{-{{{179159}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _4} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _4} _0}}} = {\left[\begin{array}{c} {\frac{1}{512000}} {{{3}} {{\left({{232079}{-{{{13473}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{512000}}{\left({{256941}{-{{{179159}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _4} _1}$
${{{{{ T} _3}} {{{{{ V} _4} _4} _1}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{256941}{-{{{179159}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _4} _2}$
${{{{{ T} _2}} {{{{{ V} _4} _4} _2}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{256941}{-{{{179159}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _4} _3}$
${{{{{ T} _2}} {{{{{ V} _4} _4} _3}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _4} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _4} _4}}} = {\left[\begin{array}{c} -{{\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _4} _5}$
${{{{{ T} _3}} {{{{{ V} _4} _4} _5}}} = {\left[\begin{array}{c} {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _4} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _4} _6}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{256941}{-{{{179159}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{-{232079}} + {{{13473}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _4} _7}$
${{{{{ T} _2}} {{{{{ V} _4} _4} _7}}} = {\left[\begin{array}{c} {\frac{1}{512000}} {{{3}} {{\left({{232079}{-{{{13473}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{256941}{-{{{179159}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _4} _8}$
${{{{{ T} _2}} {{{{{ V} _4} _4} _8}}} = {\left[\begin{array}{c} {\frac{1}{512000}}{\left({{-{256941}} + {{{179159}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}} {{{3}} {{\left({{232079}{-{{{13473}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{512000}}{\left({{171539} + {{{495947}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{512000}}{\left({{72427}{-{{{150493}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _4} _4} _9}$
${{{{{ T} _5}} {{{{{ V} _4} _4} _9}}} = {\left[\begin{array}{c} \frac{{928954}{-{{{3493}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{168936}} + {{{189937}} \cdot {{5}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _5} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _5} _0}}} = {\left[\begin{array}{c} \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{928954}{-{{{3493}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _5} _1}$
${{{{{ T} _2}} {{{{{ V} _4} _5} _1}}} = {\left[\begin{array}{c} \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _5} _2}$
${{{{{ T} _2}} {{{{{ V} _4} _5} _2}}} = {\left[\begin{array}{c} \frac{{-{168936}} + {{{189937}} \cdot {{5}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _5} _3}$
${{{{{ T} _3}} {{{{{ V} _4} _5} _3}}} = {\left[\begin{array}{c} \frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _5} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _5} _4}}} = {\left[\begin{array}{c} \frac{{928954}{-{{{3493}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _5} _5}$
${{{{{ T} _2}} {{{{{ V} _4} _5} _5}}} = {\left[\begin{array}{c} -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ \frac{{928954}{-{{{3493}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _5} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _5} _6}}} = {\left[\begin{array}{c} \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _5} _7}$
${{{{{ T} _3}} {{{{{ V} _4} _5} _7}}} = {\left[\begin{array}{c} \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ \frac{{928954}{-{{{3493}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _5} _8}$
${{{{{ T} _2}} {{{{{ V} _4} _5} _8}}} = {\left[\begin{array}{c} \frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{928954}{-{{{3493}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _5} _9}$
${{{{{ T} _2}} {{{{{ V} _4} _5} _9}}} = {\left[\begin{array}{c} \frac{{-{168936}} + {{{189937}} \cdot {{5}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{928954}{-{{{3493}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _6} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _6} _0}}} = {\left[\begin{array}{c} -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ \frac{{-{168936}} + {{{189937}} \cdot {{5}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{928954}{-{{{3493}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _6} _1}$
${{{{{ T} _4}} {{{{{ V} _4} _6} _1}}} = {\left[\begin{array}{c} \frac{{1146177}{-{{{368516}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{168936}} + {{{189937}} \cdot {{5}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{928954}{-{{{3493}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _6} _2}$
${{{{{ T} _2}} {{{{{ V} _4} _6} _2}}} = {\left[\begin{array}{c} \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{1146177}{-{{{368516}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{928954}{-{{{3493}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _6} _3}$
${{{{{ T} _2}} {{{{{ V} _4} _6} _3}}} = {\left[\begin{array}{c} \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{928954}{-{{{3493}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _6} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _6} _4}}} = {\left[\begin{array}{c} \frac{{-{168936}} + {{{189937}} \cdot {{5}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{928954}{-{{{3493}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _6} _5}$
${{{{{ T} _3}} {{{{{ V} _4} _6} _5}}} = {\left[\begin{array}{c} \frac{{928954}{-{{{3493}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _6} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _6} _6}}} = {\left[\begin{array}{c} \frac{{1146177}{-{{{368516}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{928954}{-{{{3493}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _6} _7}$
${{{{{ T} _2}} {{{{{ V} _4} _6} _7}}} = {\left[\begin{array}{c} \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{1146177}{-{{{368516}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _6} _8}$
${{{{{ T} _2}} {{{{{ V} _4} _6} _8}}} = {\left[\begin{array}{c} \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _6} _9}$
${{{{{ T} _3}} {{{{{ V} _4} _6} _9}}} = {\left[\begin{array}{c} \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{1146177}{-{{{368516}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _7} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _7} _0}}} = {\left[\begin{array}{c} \frac{{928954}{-{{{3493}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{1146177}{-{{{368516}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _7} _1}$
${{{{{ T} _2}} {{{{{ V} _4} _7} _1}}} = {\left[\begin{array}{c} \frac{{-{168936}} + {{{189937}} \cdot {{5}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{928954}{-{{{3493}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{1146177}{-{{{368516}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _7} _2}$
${{{{{ T} _2}} {{{{{ V} _4} _7} _2}}} = {\left[\begin{array}{c} \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{168936}} + {{{189937}} \cdot {{5}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{1146177}{-{{{368516}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _7} _3}$
${{{{{ T} _4}} {{{{{ V} _4} _7} _3}}} = {\left[\begin{array}{c} \frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{168936}} + {{{189937}} \cdot {{5}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{1146177}{-{{{368516}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _7} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _7} _4}}} = {\left[\begin{array}{c} \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{1146177}{-{{{368516}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _7} _5}$
${{{{{ T} _2}} {{{{{ V} _4} _7} _5}}} = {\left[\begin{array}{c} -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{1146177}{-{{{368516}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _7} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _7} _6}}} = {\left[\begin{array}{c} \frac{{-{168936}} + {{{189937}} \cdot {{5}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ \frac{{1146177}{-{{{368516}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _7} _7}$
${{{{{ T} _3}} {{{{{ V} _4} _7} _7}}} = {\left[\begin{array}{c} \frac{{1146177}{-{{{368516}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _7} _8}$
${{{{{ T} _2}} {{{{{ V} _4} _7} _8}}} = {\left[\begin{array}{c} \frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{1146177}{-{{{368516}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _7} _9}$
${{{{{ T} _2}} {{{{{ V} _4} _7} _9}}} = {\left[\begin{array}{c} \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _8} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _8} _0}}} = {\left[\begin{array}{c} -{\frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _8} _1}$
${{{{{ T} _3}} {{{{{ V} _4} _8} _1}}} = {\left[\begin{array}{c} \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _8} _2}$
${{{{{ T} _2}} {{{{{ V} _4} _8} _2}}} = {\left[\begin{array}{c} \frac{{1146177}{-{{{368516}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{168936}{-{{{189937}} \cdot {{5}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _8} _3}$
${{{{{ T} _2}} {{{{{ V} _4} _8} _3}}} = {\left[\begin{array}{c} \frac{{-{168936}} + {{{189937}} \cdot {{5}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{1146177}{-{{{368516}} {{\sqrt{5}}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _8} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _8} _4}}} = {\left[\begin{array}{c} \frac{{-{1146177}} + {{{368516}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{168936}} + {{{189937}} \cdot {{5}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{851942} + {{{687917}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{-{928954}} + {{{3493}} {{\sqrt{5}}}}}{{{4096}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\end{array}\right]}} = {{{{ V} _4} _8} _5}$
${{{{{ T} _5}} {{{{{ V} _4} _8} _5}}} = {\left[\begin{array}{c} {\frac{1}{2048000}}{\left({{1566919}{-{{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}}\right)}\\ \frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ {\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}\\ -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _8} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _8} _6}}} = {\left[\begin{array}{c} -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ {\frac{1}{2048000}}{\left({{1566919}{-{{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}\\ -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _8} _7}$
${{{{{ T} _2}} {{{{{ V} _4} _8} _7}}} = {\left[\begin{array}{c} {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ {\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}\\ -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _8} _8}$
${{{{{ T} _2}} {{{{{ V} _4} _8} _8}}} = {\left[\begin{array}{c} \frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}\\ -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _8} _9}$
${{{{{ T} _3}} {{{{{ V} _4} _8} _9}}} = {\left[\begin{array}{c} {\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _9} _0}$
${{{{{ T} _2}} {{{{{ V} _4} _9} _0}}} = {\left[\begin{array}{c} {\frac{1}{2048000}}{\left({{1566919}{-{{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _9} _1}$
${{{{{ T} _2}} {{{{{ V} _4} _9} _1}}} = {\left[\begin{array}{c} -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{2048000}}{\left({{1566919}{-{{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}}\right)}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _9} _2}$
${{{{{ T} _2}} {{{{{ V} _4} _9} _2}}} = {\left[\begin{array}{c} {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _9} _3}$
${{{{{ T} _3}} {{{{{ V} _4} _9} _3}}} = {\left[\begin{array}{c} -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{2048000}}{\left({{1566919}{-{{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}}\right)}\\ -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _9} _4}$
${{{{{ T} _2}} {{{{{ V} _4} _9} _4}}} = {\left[\begin{array}{c} {\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ {\frac{1}{2048000}}{\left({{1566919}{-{{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}}\right)}\\ -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _9} _5}$
${{{{{ T} _2}} {{{{{ V} _4} _9} _5}}} = {\left[\begin{array}{c} \frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ {\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{2048000}}{\left({{1566919}{-{{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}}\right)}\\ -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _9} _6}$
${{{{{ T} _2}} {{{{{ V} _4} _9} _6}}} = {\left[\begin{array}{c} -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\\ \frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ {\frac{1}{2048000}}{\left({{1566919}{-{{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}}\right)}\\ -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _4} _9} _7}$
${{{{{ T} _4}} {{{{{ V} _4} _9} _7}}} = {\left[\begin{array}{c} \frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ {\frac{1}{2048000}}{\left({{1566919}{-{{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _4} _9} _8}$
${{{{{ T} _2}} {{{{{ V} _4} _9} _8}}} = {\left[\begin{array}{c} -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ \frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ {\frac{1}{2048000}}{\left({{1566919}{-{{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _4} _9} _9}$
${{{{{ T} _2}} {{{{{ V} _4} _9} _9}}} = {\left[\begin{array}{c} -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ {\frac{1}{2048000}}{\left({{1566919}{-{{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _0} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _0} _0}}} = {\left[\begin{array}{c} \frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ {\frac{1}{2048000}}{\left({{1566919}{-{{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _0} _1}$
${{{{{ T} _3}} {{{{{ V} _5} _0} _1}}} = {\left[\begin{array}{c} {\frac{1}{2048000}}{\left({{1566919}{-{{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}}\right)}\\ -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _0} _2}$
${{{{{ T} _2}} {{{{{ V} _5} _0} _2}}} = {\left[\begin{array}{c} \frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ {\frac{1}{2048000}}{\left({{1566919}{-{{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}}\right)}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _0} _3}$
${{{{{ T} _2}} {{{{{ V} _5} _0} _3}}} = {\left[\begin{array}{c} {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\\ \frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _0} _4}$
${{{{{ T} _2}} {{{{{ V} _5} _0} _4}}} = {\left[\begin{array}{c} -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _0} _5}$
${{{{{ T} _3}} {{{{{ V} _5} _0} _5}}} = {\left[\begin{array}{c} -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\\ \frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _0} _6}$
${{{{{ T} _2}} {{{{{ V} _5} _0} _6}}} = {\left[\begin{array}{c} {\frac{1}{2048000}}{\left({{1566919}{-{{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}}\right)}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ \frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _0} _7}$
${{{{{ T} _2}} {{{{{ V} _5} _0} _7}}} = {\left[\begin{array}{c} \frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ {\frac{1}{2048000}}{\left({{1566919}{-{{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}}\right)}\\ \frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _0} _8}$
${{{{{ T} _2}} {{{{{ V} _5} _0} _8}}} = {\left[\begin{array}{c} {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\\ \frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _0} _9}$
${{{{{ T} _4}} {{{{{ V} _5} _0} _9}}} = {\left[\begin{array}{c} {\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}\\ \frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _1} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _1} _0}}} = {\left[\begin{array}{c} -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ {\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}\\ \frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _1} _1}$
${{{{{ T} _2}} {{{{{ V} _5} _1} _1}}} = {\left[\begin{array}{c} -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ \frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _1} _2}$
${{{{{ T} _2}} {{{{{ V} _5} _1} _2}}} = {\left[\begin{array}{c} \frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\\ \frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _1} _3}$
${{{{{ T} _3}} {{{{{ V} _5} _1} _3}}} = {\left[\begin{array}{c} \frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _1} _4}$
${{{{{ T} _2}} {{{{{ V} _5} _1} _4}}} = {\left[\begin{array}{c} {\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}\\ \frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _1} _5}$
${{{{{ T} _2}} {{{{{ V} _5} _1} _5}}} = {\left[\begin{array}{c} -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ {\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _1} _6}$
${{{{{ T} _2}} {{{{{ V} _5} _1} _6}}} = {\left[\begin{array}{c} -{{\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}}\\ -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _1} _7}$
${{{{{ T} _3}} {{{{{ V} _5} _1} _7}}} = {\left[\begin{array}{c} -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ {\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _1} _8}$
${{{{{ T} _2}} {{{{{ V} _5} _1} _8}}} = {\left[\begin{array}{c} \frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ -{\frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ {\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _1} _9}$
${{{{{ T} _2}} {{{{{ V} _5} _1} _9}}} = {\left[\begin{array}{c} \frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ \frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ {\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _2} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _2} _0}}} = {\left[\begin{array}{c} -{\frac{{191827} + {{{9521}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}}\\ \frac{{700089} + {{{778319}} \cdot {{5}} {{\sqrt{5}}}}}{{{16384}} \cdot {{{5}^{3}}} {{\sqrt{5}}}}\\ {\frac{1}{2048000}}{\left({{264593} + {{{1568663}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{2048000}}{\left({{-{1566919}} + {{{25671}} \cdot {{{5}^{2}}} {{\sqrt{5}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _2} _1}$
${{{{{ T} _5}} {{{{{ V} _5} _2} _1}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{-{17220397}} + {{{5905767}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{-{288251}} + {{{12450513}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _2} _2}$
${{{{{ T} _2}} {{{{{ V} _5} _2} _2}}} = {\left[\begin{array}{c} -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{-{17220397}} + {{{5905767}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{-{288251}} + {{{12450513}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _2} _3}$
${{{{{ T} _2}} {{{{{ V} _5} _2} _3}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{-{288251}} + {{{12450513}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _2} _4}$
${{{{{ T} _2}} {{{{{ V} _5} _2} _4}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{-{288251}} + {{{12450513}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _2} _5}$
${{{{{ T} _3}} {{{{{ V} _5} _2} _5}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{-{288251}} + {{{12450513}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _2} _6}$
${{{{{ T} _2}} {{{{{ V} _5} _2} _6}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{-{17220397}} + {{{5905767}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{-{288251}} + {{{12450513}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _2} _7}$
${{{{{ T} _2}} {{{{{ V} _5} _2} _7}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{-{17220397}} + {{{5905767}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _2} _8}$
${{{{{ T} _2}} {{{{{ V} _5} _2} _8}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _2} _9}$
${{{{{ T} _3}} {{{{{ V} _5} _2} _9}}} = {\left[\begin{array}{c} -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{-{17220397}} + {{{5905767}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _3} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _3} _0}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{-{288251}} + {{{12450513}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{-{17220397}} + {{{5905767}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _3} _1}$
${{{{{ T} _2}} {{{{{ V} _5} _3} _1}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{-{288251}} + {{{12450513}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{-{17220397}} + {{{5905767}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _3} _2}$
${{{{{ T} _2}} {{{{{ V} _5} _3} _2}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{-{17220397}} + {{{5905767}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _3} _3}$
${{{{{ T} _4}} {{{{{ V} _5} _3} _3}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{11}} {{\left({{-{1651171}} + {{{153217}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{-{17220397}} + {{{5905767}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _3} _4}$
${{{{{ T} _2}} {{{{{ V} _5} _3} _4}}} = {\left[\begin{array}{c} -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{11}} {{\left({{-{1651171}} + {{{153217}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{-{17220397}} + {{{5905767}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _3} _5}$
${{{{{ T} _2}} {{{{{ V} _5} _3} _5}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{-{17220397}} + {{{5905767}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _3} _6}$
${{{{{ T} _2}} {{{{{ V} _5} _3} _6}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{-{17220397}} + {{{5905767}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _3} _7}$
${{{{{ T} _3}} {{{{{ V} _5} _3} _7}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{-{17220397}} + {{{5905767}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _3} _8}$
${{{{{ T} _2}} {{{{{ V} _5} _3} _8}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{11}} {{\left({{-{1651171}} + {{{153217}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{-{17220397}} + {{{5905767}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _3} _9}$
${{{{{ T} _2}} {{{{{ V} _5} _3} _9}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{-{1651171}} + {{{153217}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _4} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _4} _0}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _4} _1}$
${{{{{ T} _3}} {{{{{ V} _5} _4} _1}}} = {\left[\begin{array}{c} -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{-{1651171}} + {{{153217}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _4} _2}$
${{{{{ T} _2}} {{{{{ V} _5} _4} _2}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{-{17220397}} + {{{5905767}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{11}} {{\left({{-{1651171}} + {{{153217}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _4} _3}$
${{{{{ T} _2}} {{{{{ V} _5} _4} _3}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{-{17220397}} + {{{5905767}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{-{1651171}} + {{{153217}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _4} _4}$
${{{{{ T} _2}} {{{{{ V} _5} _4} _4}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{-{1651171}} + {{{153217}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _4} _5}$
${{{{{ T} _4}} {{{{{ V} _5} _4} _5}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{-{288251}} + {{{12450513}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{-{1651171}} + {{{153217}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _4} _6}$
${{{{{ T} _2}} {{{{{ V} _5} _4} _6}}} = {\left[\begin{array}{c} -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{-{288251}} + {{{12450513}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{-{1651171}} + {{{153217}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _4} _7}$
${{{{{ T} _2}} {{{{{ V} _5} _4} _7}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{11}} {{\left({{-{1651171}} + {{{153217}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _4} _8}$
${{{{{ T} _2}} {{{{{ V} _5} _4} _8}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{-{1651171}} + {{{153217}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _4} _9}$
${{{{{ T} _3}} {{{{{ V} _5} _4} _9}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{11}} {{\left({{-{1651171}} + {{{153217}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _5} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _5} _0}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{-{288251}} + {{{12450513}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{-{1651171}} + {{{153217}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _5} _1}$
${{{{{ T} _2}} {{{{{ V} _5} _5} _1}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{-{288251}} + {{{12450513}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _5} _2}$
${{{{{ T} _2}} {{{{{ V} _5} _5} _2}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{288251}{-{{{12450513}} {{\sqrt{5}}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _5} _3}$
${{{{{ T} _3}} {{{{{ V} _5} _5} _3}}} = {\left[\begin{array}{c} -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{-{288251}} + {{{12450513}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _5} _4}$
${{{{{ T} _2}} {{{{{ V} _5} _5} _4}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{11}} {{\left({{-{1651171}} + {{{153217}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{-{288251}} + {{{12450513}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _5} _5}$
${{{{{ T} _2}} {{{{{ V} _5} _5} _5}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{11}} {{\left({{-{1651171}} + {{{153217}} \cdot {{5}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{-{288251}} + {{{12450513}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _5} _6}$
${{{{{ T} _2}} {{{{{ V} _5} _5} _6}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{11}} {{\left({{1651171}{-{{{153217}} \cdot {{5}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{33596803} + {{{7689599}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{-{288251}} + {{{12450513}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{17220397}{-{{{5905767}} {{\sqrt{5}}}}}}\right)}\end{array}\right]}} = {{{{ V} _5} _5} _7}$
${{{{{ T} _5}} {{{{{ V} _5} _5} _7}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{3}} {{\left({{8301992}{-{{{3004091}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _5} _8}$
${{{{{ T} _2}} {{{{{ V} _5} _5} _8}}} = {\left[\begin{array}{c} -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{8301992}{-{{{3004091}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _5} _9}$
${{{{{ T} _2}} {{{{{ V} _5} _5} _9}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _6} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _6} _0}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _6} _1}$
${{{{{ T} _3}} {{{{{ V} _5} _6} _1}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _6} _2}$
${{{{{ T} _2}} {{{{{ V} _5} _6} _2}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{3}} {{\left({{8301992}{-{{{3004091}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _6} _3}$
${{{{{ T} _2}} {{{{{ V} _5} _6} _3}}} = {\left[\begin{array}{c} -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{8301992}{-{{{3004091}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _6} _4}$
${{{{{ T} _2}} {{{{{ V} _5} _6} _4}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _6} _5}$
${{{{{ T} _3}} {{{{{ V} _5} _6} _5}}} = {\left[\begin{array}{c} -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{8301992}{-{{{3004091}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _6} _6}$
${{{{{ T} _2}} {{{{{ V} _5} _6} _6}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{8301992}{-{{{3004091}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _6} _7}$
${{{{{ T} _2}} {{{{{ V} _5} _6} _7}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{8301992}{-{{{3004091}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _6} _8}$
${{{{{ T} _2}} {{{{{ V} _5} _6} _8}}} = {\left[\begin{array}{c} -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{8301992}{-{{{3004091}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _6} _9}$
${{{{{ T} _4}} {{{{{ V} _5} _6} _9}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{3}} {{\left({{-{3615917}} + {{{2292698}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{8301992}{-{{{3004091}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _7} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _7} _0}}} = {\left[\begin{array}{c} -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{3615917}} + {{{2292698}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{8301992}{-{{{3004091}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _7} _1}$
${{{{{ T} _2}} {{{{{ V} _5} _7} _1}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{8301992}{-{{{3004091}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _7} _2}$
${{{{{ T} _2}} {{{{{ V} _5} _7} _2}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{8301992}{-{{{3004091}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _7} _3}$
${{{{{ T} _3}} {{{{{ V} _5} _7} _3}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{3}} {{\left({{8301992}{-{{{3004091}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _7} _4}$
${{{{{ T} _2}} {{{{{ V} _5} _7} _4}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{3}} {{\left({{-{3615917}} + {{{2292698}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{8301992}{-{{{3004091}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _7} _5}$
${{{{{ T} _2}} {{{{{ V} _5} _7} _5}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{3615917}} + {{{2292698}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _7} _6}$
${{{{{ T} _2}} {{{{{ V} _5} _7} _6}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _7} _7}$
${{{{{ T} _3}} {{{{{ V} _5} _7} _7}}} = {\left[\begin{array}{c} -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{3615917}} + {{{2292698}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _7} _8}$
${{{{{ T} _2}} {{{{{ V} _5} _7} _8}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{3}} {{\left({{8301992}{-{{{3004091}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{3615917}} + {{{2292698}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _7} _9}$
${{{{{ T} _2}} {{{{{ V} _5} _7} _9}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{8301992}{-{{{3004091}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{3615917}} + {{{2292698}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _8} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _8} _0}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{3615917}} + {{{2292698}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\end{array}\right]}} = {{{{ V} _5} _8} _1}$
${{{{{ T} _4}} {{{{{ V} _5} _8} _1}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{3615917}} + {{{2292698}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _8} _2}$
${{{{{ T} _2}} {{{{{ V} _5} _8} _2}}} = {\left[\begin{array}{c} -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{3615917}} + {{{2292698}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _8} _3}$
${{{{{ T} _2}} {{{{{ V} _5} _8} _3}}} = {\left[\begin{array}{c} -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{3615917}} + {{{2292698}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _8} _4}$
${{{{{ T} _2}} {{{{{ V} _5} _8} _4}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{3615917}} + {{{2292698}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _8} _5}$
${{{{{ T} _3}} {{{{{ V} _5} _8} _5}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{3}} {{\left({{-{3615917}} + {{{2292698}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _8} _6}$
${{{{{ T} _2}} {{{{{ V} _5} _8} _6}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{3615917}} + {{{2292698}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _8} _7}$
${{{{{ T} _2}} {{{{{ V} _5} _8} _7}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _8} _8}$
${{{{{ T} _2}} {{{{{ V} _5} _8} _8}}} = {\left[\begin{array}{c} -{{\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _8} _9}$
${{{{{ T} _3}} {{{{{ V} _5} _8} _9}}} = {\left[\begin{array}{c} -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _9} _0}$
${{{{{ T} _2}} {{{{{ V} _5} _9} _0}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{3}} {{\left({{-{3615917}} + {{{2292698}} {{\sqrt{5}}}}}\right)}}}\\ -{{\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}}\\ {\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _9} _1}$
${{{{{ T} _2}} {{{{{ V} _5} _9} _1}}} = {\left[\begin{array}{c} {\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{3615917}} + {{{2292698}} {{\sqrt{5}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _9} _2}$
${{{{{ T} _2}} {{{{{ V} _5} _9} _2}}} = {\left[\begin{array}{c} {\frac{1}{20480000}} {{{3}} {{\left({{3615917}{-{{{2292698}} {{\sqrt{5}}}}}}\right)}}}\\ {\frac{1}{20480000}}{\left({{40339898} + {{{7104261}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}}{\left({{3008888} + {{{4149753}} {{\sqrt{5}}}}}\right)}\\ {\frac{1}{20480000}} {{{3}} {{\left({{-{8301992}} + {{{3004091}} {{\sqrt{5}}}}}\right)}}}\end{array}\right]}} = {{{{ V} _5} _9} _3}$
ERROR - norms don't match. was $8$ but now is $\frac{{3} + {{{68719476736}} {{{{{5}^{8}}} {{\sqrt{5}}}}}}}{{{8589934592}} {{{{{5}^{8}}} {{\sqrt{5}}}}}}$
${{{{{ T} _5}} {{{{{ V} _5} _9} _3}}} = {\left[\begin{array}{c} \frac{{7305253}{-{{{25238037}} {{\sqrt{5}}}}}}{{{131072}} \cdot {{{5}^{4}}} {{\sqrt{5}}}}\\ \frac{{286952353} + {{{92730551}} {{\sqrt{5}}}}}{{{131072}} \cdot {{{5}^{4}}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{84785313}{-{{{35421073}} {{\sqrt{5}}}}}}\right)}}}{{{131072}} \cdot {{{5}^{4}}} {{\sqrt{5}}}}\\ -{\frac{{136405999} + {{{4426501}} {{\sqrt{5}}}}}{{{131072}} \cdot {{{5}^{4}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _5} _9} _4}$
ERROR - norms don't match. was $8$ but now is $\frac{{3} + {{{68719476736}} {{{{{5}^{8}}} {{\sqrt{5}}}}}}}{{{8589934592}} {{{{{5}^{8}}} {{\sqrt{5}}}}}}$
ERROR - norms don't match. was $8$ but now is $\frac{{1} + {{{17179869184}} {{{{{5}^{8}}} {{\sqrt{5}}}}}}}{{{2147483648}} {{{{{5}^{8}}} {{\sqrt{5}}}}}}$
${{{{{ T} _2}} {{{{{ V} _5} _9} _4}}} = {\left[\begin{array}{c} -{\frac{{286952353} + {{{92730551}} {{\sqrt{5}}}}}{{{131072}} \cdot {{{5}^{4}}} {{\sqrt{5}}}}}\\ \frac{{7305253}{-{{{25238037}} {{\sqrt{5}}}}}}{{{131072}} \cdot {{{5}^{4}}} {{\sqrt{5}}}}\\ \frac{{{3}} {{\left({{84785313}{-{{{35421073}} {{\sqrt{5}}}}}}\right)}}}{{{131072}} \cdot {{{5}^{4}}} {{\sqrt{5}}}}\\ -{\frac{{136405999} + {{{4426501}} {{\sqrt{5}}}}}{{{131072}} \cdot {{{5}^{4}}} {{\sqrt{5}}}}}\end{array}\right]}} = {{{{ V} _5} _9} _5}$
ERROR - norms don't match. was $8$ but now is $\frac{{1} + {{{17179869184}} {{{{{5}^{8}}} {{\sqrt{5}}}}}}}{{{2147483648}} {{{{{5}^{8}}} {{\sqrt{5}}}}}}$