From 2012 Petrova, "Finite Volume Methods- Powerful Means of Engineering Design"

ϕ¯=1Δtt0t0+Δtϕdt= Reynolds averaging over time.

ϕ~=1ρ¯1Δtt0t0+Δt(ρϕ)dt= Favre averaging.


variables:
ni = flux surface normal, in units of [1]
ρ¯ = Reynolds-averaged density, in units of kgm3
v~i = Favre-averaged velocity, in units of 1sm
m¯i=ρ¯v~i =ρvi= Reynolds-averaged momentum, in units of kgm2s
k = turbulent kinetic energy, in units of m2s2
ω = specific turbulent dissipation rate, in units of ???
T~ = Favre-averaged temperature, in units of K
Cv = constant-volume heat capacity, in units of Ks2m2
Cp = constant-pressure heat capacity, in units of Ks2m2
R = specific heat constant, in units of m2Ks2
R=CpCv
γ = heat capacity ratio, unitless
γ=1CvCp
P¯=ρ¯RT~ = Reynolds-averaged pressure, in units of kgms2
P = P¯+23ρ¯k = 13ρ¯(2k+3RT~) = static pressure, in units of kgms2
cs=1Cv1ρ¯CvP|n|2+PR|n|2Rρ¯v~cv~dncnd = speed of sound in units of 1sm
gij = metric tensor, in units of [1]
(v~)2=v~kv~lgkl = Favre-averaged velocity, norm squared, in units of m2s2

e~kin=12v~kv~lgkl = Favre-averaged specific kinetic energy, in units of m2s2

e~int = CvT~ = Cv(3P2ρ¯k)3Rρ¯ = Favre-averaged specific internal energy, in units of m2s2

e~total=e~int+e~kin = Favre-averaged densitized total energy, in units of kgms2
e~total=CvP1R1ρ¯+12(v~)2+213Cvk1R

Conservative and primitive variables:
WI=[ρ¯v~iPkω]
UI=[ρ¯ρ¯v~iρ¯e~totalρ¯kρ¯ω]
Partial of conservative quantities wrt primitives:
UIWJ=[ρ¯ρ¯ρ¯v~jρ¯Pρ¯kρ¯ωρ¯(ρ¯v~i)v~j(ρ¯v~i)P(ρ¯v~i)k(ρ¯v~i)ω(ρ¯v~i)ρ¯(ρ¯e~total)v~j(ρ¯e~total)P(ρ¯e~total)k(ρ¯e~total)ω(ρ¯e~total)ρ¯(ρ¯k)v~j(ρ¯k)P(ρ¯k)k(ρ¯k)ω(ρ¯k)ρ¯(ρ¯ω)v~j(ρ¯ω)P(ρ¯ω)k(ρ¯ω)ω(ρ¯ω)]
UIWJ=[ρ¯ρ¯ρ¯v~jρ¯Pρ¯kρ¯ωρ¯(ρ¯v~i)v~j(ρ¯v~i)P(ρ¯v~i)k(ρ¯v~i)ω(ρ¯v~i)ρ¯(ρ¯(12v~kv~lgkl+Cv(3P2ρ¯k)3Rρ¯))v~j(ρ¯(12v~kv~lgkl+Cv(3P2ρ¯k)3Rρ¯))P(ρ¯(12v~kv~lgkl+Cv(3P2ρ¯k)3Rρ¯))k(ρ¯(12v~kv~lgkl+Cv(3P2ρ¯k)3Rρ¯))ω(ρ¯(12v~kv~lgkl+Cv(3P2ρ¯k)3Rρ¯))ρ¯(ρ¯k)v~j(ρ¯k)P(ρ¯k)k(ρ¯k)ω(ρ¯k)ρ¯(ρ¯ω)v~j(ρ¯ω)P(ρ¯ω)k(ρ¯ω)ω(ρ¯ω)]
UIWJ=[10000v~iρ¯δij000213Cvk1R+12(v~)2ρ¯v~jCv1R213Cvρ¯1R0k00ρ¯0ω000ρ¯]
Expanded:
UIWJ=[1000000v~xρ¯00000v~y0ρ¯0000v~z00ρ¯0003(v~)2R4Cvk6Rρ¯v~xρ¯v~yρ¯v~z1RCv2Cvρ¯3R0k0000ρ¯0ω00000ρ¯]
(v~)2=v~xv~x+v~yv~y+v~zv~z
WIUJ=[10000001ρ¯v~x1ρ¯000001ρ¯v~y01ρ¯00001ρ¯v~z001ρ¯000R(v~)22Cv1CvRv~x1CvRv~y1CvRv~z1CvR2301ρ¯k00001ρ¯01ρ¯ω000001ρ¯]
WIUJ=[100001ρ¯(v~i)1ρ¯δij000121CvR(v~)21CvRv~j1CvR2301ρ¯(k)001ρ¯01ρ¯(ω)0001ρ¯]

Flux:
FI=[ρ¯v~jnjρ¯v~iv~jnj+niPv~jnj(ρ¯e~total+P)ρ¯v~jnjkρ¯v~jnjω]
FI=[ρ¯v~jnjPni+ρ¯v~iv~jnjCvPv~jnj1R+Pv~jnj+12(v~)2ρ¯v~jnj+213Cvρ¯kv~jnj1Rρ¯kv~jnjρ¯ωv~jnj]

Flux derivative wrt primitive variables:
FIWJ=[ρ¯(ρ¯v~knk)v~j(ρ¯v~knk)P(ρ¯v~knk)k(ρ¯v~knk)ω(ρ¯v~knk)ρ¯(Pni+ρ¯v~iv~knk)v~j(Pni+ρ¯v~iv~knk)P(Pni+ρ¯v~iv~knk)k(Pni+ρ¯v~iv~knk)ω(Pni+ρ¯v~iv~knk)ρ¯(CvPv~knk1R+Pv~knk+12(v~)2ρ¯v~knk+213Cvρ¯kv~knk1R)v~j(CvPv~knk1R+Pv~knk+12(v~)2ρ¯v~knk+213Cvρ¯kv~knk1R)P(CvPv~knk1R+Pv~knk+12(v~)2ρ¯v~knk+213Cvρ¯kv~knk1R)k(CvPv~knk1R+Pv~knk+12(v~)2ρ¯v~knk+213Cvρ¯kv~knk1R)ω(CvPv~knk1R+Pv~knk+12(v~)2ρ¯v~knk+213Cvρ¯kv~knk1R)ρ¯(ρ¯kv~knk)v~j(ρ¯kv~knk)P(ρ¯kv~knk)k(ρ¯kv~knk)ω(ρ¯kv~knk)ρ¯(ρ¯ωv~knk)v~j(ρ¯ωv~knk)P(ρ¯ωv~knk)k(ρ¯ωv~knk)ω(ρ¯ωv~knk)]
FIWJ=[v~knkρ¯nj000v~iv~knkρ¯v~inj+ρ¯v~knkδijni0012(v~)2v~knk+213Cvkv~knk1RCvPnj1R+Pnj+12(v~)2ρ¯nj+213Cvρ¯knj1RCvv~knk1R+v~knk213Cvρ¯v~knk1R0kv~knkρ¯knj0ρ¯v~knk0ωv~knkρ¯ωnj00ρ¯v~knk]
FIWJ=[v~anaρ¯nj000v~av~inaρ¯v~inj+ρ¯v~anaδijni0012(v~)2v~ana+213Cvkv~ana1RCvPnj1R+Pnj+12(v~)2ρ¯nj+213Cvρ¯knj1RCvv~ana1R+v~ana213Cvρ¯v~ana1R0kv~anaρ¯knj0ρ¯v~ana0ωv~anaρ¯ωnj00ρ¯v~ana]
FIWJ=[v~anaρ¯nj000v~av~inaρ¯v~inj+ρ¯v~anaδijni0012(v~)2v~ana+213Cvkv~ana1RCvPnj1R+Pnj+12(v~)2ρ¯nj+213Cvρ¯knj1RCvv~ana1R+v~ana213Cvρ¯v~ana1R0kv~anaρ¯knj0ρ¯v~ana0ωv~anaρ¯ωnj00ρ¯v~ana]
FIWJ=[v~anaρ¯nj000v~av~inaρ¯v~inj+ρ¯v~anaδijni00213Cvkv~ana1R+12v~av~bv~bnaCvPnj1R+Pnj+213Cvρ¯knj1R+12ρ¯v~av~anjCvv~ana1R+v~ana213Cvρ¯v~ana1R0kv~anaρ¯knj0ρ¯v~ana0ωv~anaρ¯ωnj00ρ¯v~ana]

Flux derivative wrt conserved variables:
FIUJ=FIWLWLUJ
FIUJ=[v~anaρ¯nk000v~av~inaρ¯v~ink+ρ¯v~anaδikni00213Cvkv~ana1R+12v~av~bv~bnaCvPnk1R+Pnk+213Cvρ¯knk1R+12ρ¯v~av~ankCvv~ana1R+v~ana213Cvρ¯v~ana1R0kv~anaρ¯knk0ρ¯v~ana0ωv~anaρ¯ωnk00ρ¯v~ana][100001ρ¯(v~k)1ρ¯δkj000121CvR(v~)21CvRv~j1CvR2301ρ¯(k)001ρ¯01ρ¯(ω)0001ρ¯]
FIUJ=[v~ana+1v~knknkδkj00012(v~)2Rni1Cv+1v~iv~knk+v~av~ina+1v~av~knaδik1Rv~jni1Cv+v~inkδkj+v~anaδikδkjRni1Cv213ni01CvPv~knk1R1ρ¯+12(v~)2Rv~ana1Cv+213Cvkv~knk1R+1Pv~knk1ρ¯+12(v~)2v~ana+112v~av~av~knk+12v~av~bv~bnaCvPnkδkj1R1ρ¯+213Cvknkδkj1R+Pnkδkj1ρ¯+1Rv~av~jna1Cv+1v~av~jna+12v~av~ankδkjv~ana+Rv~ana1Cv213v~ana01kv~knkknkδkj0v~ana01ωv~knkωnkδkj00v~ana]
FIUJ=[0nj00012(v~)2Rni1Cv+1v~av~inav~inj+1Rv~jni1Cv+v~anaδijRni1Cv213ni01CvPv~ana1R1ρ¯+12(v~)2Rv~ana1Cv+213Cvkv~ana1R+1Pv~ana1ρ¯+12(v~)2v~ana+112v~av~av~bnb+12v~av~bv~bnaCvPnj1R1ρ¯+213Cvknj1R+Pnj1ρ¯+1Rv~av~jna1Cv+12v~av~anj+1v~av~jnav~ana+Rv~ana1Cv213v~ana01kv~anaknj0v~ana01ωv~anaωnj00v~ana]

Acoustic matrix:
AIJ+v~nδIJ=WIUKFKWJ
AIJ+v~nδIJ=[100001ρ¯(v~i)1ρ¯δik000121CvR(v~)21CvRv~k1CvR2301ρ¯(k)001ρ¯01ρ¯(ω)0001ρ¯][v~anaρ¯nj000v~av~knaρ¯v~knj+ρ¯v~anaδkjnk00213Cvkv~ana1R+12v~av~bv~bnaCvPnj1R+Pnj+213Cvρ¯knj1R+12ρ¯v~av~anjCvv~ana1R+v~ana213Cvρ¯v~ana1R0kv~anaρ¯knj0ρ¯v~ana0ωv~anaρ¯ωnj00ρ¯v~ana]
AIJ+v~nδIJ=[v~anaρ¯nj0001v~av~ina1ρ¯+v~av~knaδik1ρ¯1v~inj+v~knjδik+v~anaδikδkjnkδik1ρ¯0012(v~)2Rv~ana1Cv+12Rv~av~bv~bna1Cv+1Rv~av~kv~kna1CvPnj+PRnj1Cv+12(v~)2Rρ¯nj1Cv+12Rρ¯v~av~anj1Cv+1Rρ¯v~kv~knj1Cv+1Rρ¯v~av~knaδkj1Cvv~ana+Rv~ana1Cv+1Rv~knk1Cv00000v~ana00000v~ana]
AIJ+v~nδIJ=[v~nρ¯nj0000v~nδijni1ρ¯000Pnj+PRnj1Cv+1Rρ¯v~nv~j1Cvv~n00000v~n00000v~n]
AIJ=[0ρ¯nj000001ρ¯ni0001Cv(CvPnj+PRnjRρ¯v~nv~j)0000000000000]

cs=Pγ|n|2ρ¯γ1v~n2ρ¯
P=ρ¯(cs2+γ1v~n2)γ|n|2
Acoustic matrix, expanded:
AIJ=[0ρ¯nxρ¯nyρ¯nz00000001ρ¯nx0000001ρ¯ny0000001ρ¯nz0001Cv(CvPnx+PRnxRρ¯v~nv~x)1Cv(CvPny+PRnyRρ¯v~nv~y)1Cv(CvPnz+PRnzRρ¯v~nv~z)00000000000000000]

...in just the x-axis (using nx=1, ny=0, nz=0 )
AIJ=[0ρ¯0000000001ρ¯nx0000001ρ¯ny0000001ρ¯nz0001Cv(CvP+PRRρ¯v~nv~x)1CvRρ¯v~nv~y1CvRρ¯v~nv~z00000000000000000]

...with a Cartesian metric (using nx=1, ny=0, nz=0 )
AIJ=[0ρ¯0000000001ρ¯000000000000000001Cv(CvP+PRRρ¯v~xv~x)1CvRρ¯v~yv~x1CvRρ¯v~zv~x00000000000000000]

speed of sound in Cartesian x-axis:
cs=P+Pγ1ρ¯γ1v~x2ρ¯
using R=CpCv , Cp=Cvγ , γ1=γ1
AIJ=[0ρ¯0000000001ρ¯00000000000000000Pγρ¯γ1v~x2ρ¯γ1v~xv~yρ¯γ1v~xv~z00000000000000000]

Acoustic matrix eigen-decomposition:
AIJ=(RA)IM(ΛA)MN(LA)NJ
A charpoly: 1ρ¯λ5(Pγ+ρ¯γ1v~x2+ρ¯λ2)=0
R=[000101cs21cs200001ρ¯1csρ¯1csρ¯00v~zv~x0cs2γ1ρ¯v~uv~v000010000000001101000001000000]
Λ=[0000000000000000000000000000000000000000cs0000000cs]
L=[00000010000010000100010001cs20000ρ¯γ1v~uv~vcs2ρ¯γ1v~uv~vv~zv~xcs2000012ρ¯csρ¯γ1v~uv~v2csρ¯γ1v~uv~vv~z2csv~x1200012ρ¯csρ¯γ1v~uv~v2csρ¯γ1v~uv~vv~z2csv~x1200]
reconstructed:
A=[0ρ¯ρ¯γ1v~uv~vcs2ρ¯γ1v~uv~vv~zv~xcs200000001ρ¯00000000000000000ρ¯cs2ρ¯γ1v~uv~vρ¯γ1v~uv~vv~zv~x00000000000000000]