${{r}^{2}} = {{{x}^{2}} + {{y}^{2}} + {{z}^{2}}}$
${{{2}} {{r}} {{\partial_ {{x}}\left( r\right)}}} = {{{2}} {{x}}}$
${\partial_ {{x}}\left( r\right)} = {{\frac{1}{r}} {x}}$
${{{2}} {{r}} {{\partial_ {{y}}\left( r\right)}}} = {{{2}} {{y}}}$
${\partial_ {{y}}\left( r\right)} = {{\frac{1}{r}} {y}}$
${{{2}} {{r}} {{\partial_ {{z}}\left( r\right)}}} = {{{2}} {{z}}}$
${\partial_ {{z}}\left( r\right)} = {{\frac{1}{r}} {z}}$
${H} = {{\frac{1}{r}} {M}}$
${{{ \eta} _u} _v} = {\overset{u\downarrow v\rightarrow}{\left[ \begin{matrix} -{1} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{matrix} \right]}}$
${{{ \eta} ^u} ^v} = {\overset{u\downarrow v\rightarrow}{\left[ \begin{matrix} -{1} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{matrix} \right]}}$
${{ l} ^u} = {{{{ l} _v}} {{{{ \eta} ^u} ^v}}}$
${{ l} ^u} = {\overset{u\downarrow}{\left[ \begin{matrix} -{1} \\ {\frac{1}{r}} {x} \\ {\frac{1}{r}} {y} \\ {\frac{1}{r}} {z}\end{matrix} \right]}}$
${{{ g} _u} _v} = {{{{ \eta} _u} _v} + {{{2}} {{H}} {{{ l} _u}} {{{ l} _v}}}}$
${{{ g} _u} _v} = {\overset{u\downarrow v\rightarrow}{\left[ \begin{matrix} {\frac{1}{r}}{\left({{-{r}} + {{{2}} {{M}}}}\right)} & \frac{{{2}} {{M}} {{x}}}{{r}^{2}} & \frac{{{2}} {{M}} {{y}}}{{r}^{2}} & \frac{{{2}} {{M}} {{z}}}{{r}^{2}} \\ \frac{{{2}} {{M}} {{x}}}{{r}^{2}} & \frac{{{r}^{3}} + {{{2}} {{M}} {{{x}^{2}}}}}{{r}^{3}} & \frac{{{2}} {{M}} {{x}} {{y}}}{{r}^{3}} & \frac{{{2}} {{M}} {{x}} {{z}}}{{r}^{3}} \\ \frac{{{2}} {{M}} {{y}}}{{r}^{2}} & \frac{{{2}} {{M}} {{x}} {{y}}}{{r}^{3}} & \frac{{{r}^{3}} + {{{2}} {{M}} {{{y}^{2}}}}}{{r}^{3}} & \frac{{{2}} {{M}} {{y}} {{z}}}{{r}^{3}} \\ \frac{{{2}} {{M}} {{z}}}{{r}^{2}} & \frac{{{2}} {{M}} {{x}} {{z}}}{{r}^{3}} & \frac{{{2}} {{M}} {{y}} {{z}}}{{r}^{3}} & \frac{{{r}^{3}} + {{{2}} {{M}} {{{z}^{2}}}}}{{r}^{3}}\end{matrix} \right]}}$
${{{ g} ^u} ^v} = {{{{ \eta} ^u} ^v} - {{{2}} {{H}} {{{ l} ^u}} {{{ l} ^v}}}}$
${{{ g} ^u} ^v} = {\overset{u\downarrow v\rightarrow}{\left[ \begin{matrix} -{{\frac{1}{r}}{\left({{{{2}} {{M}}} + {r}}\right)}} & \frac{{{2}} {{M}} {{x}}}{{r}^{2}} & \frac{{{2}} {{M}} {{y}}}{{r}^{2}} & \frac{{{2}} {{M}} {{z}}}{{r}^{2}} \\ \frac{{{2}} {{M}} {{x}}}{{r}^{2}} & \frac{{{r}^{3}} - {{{2}} {{M}} {{{x}^{2}}}}}{{r}^{3}} & -{\frac{{{2}} {{M}} {{x}} {{y}}}{{r}^{3}}} & -{\frac{{{2}} {{M}} {{x}} {{z}}}{{r}^{3}}} \\ \frac{{{2}} {{M}} {{y}}}{{r}^{2}} & -{\frac{{{2}} {{M}} {{x}} {{y}}}{{r}^{3}}} & \frac{{{r}^{3}} - {{{2}} {{M}} {{{y}^{2}}}}}{{r}^{3}} & -{\frac{{{2}} {{M}} {{y}} {{z}}}{{r}^{3}}} \\ \frac{{{2}} {{M}} {{z}}}{{r}^{2}} & -{\frac{{{2}} {{M}} {{x}} {{z}}}{{r}^{3}}} & -{\frac{{{2}} {{M}} {{y}} {{z}}}{{r}^{3}}} & \frac{{{r}^{3}} - {{{2}} {{M}} {{{z}^{2}}}}}{{r}^{3}}\end{matrix} \right]}}$
${{{{ g} _u} _v} _{,w}} = {\overset{u\downarrow[{v\downarrow w\rightarrow}]}{\left[ \begin{matrix} \overset{v\downarrow w\rightarrow}{\left[ \begin{matrix} 0 & -{\frac{{{2}} {{M}} {{x}}}{{r}^{3}}} & -{\frac{{{2}} {{M}} {{y}}}{{r}^{3}}} & -{\frac{{{2}} {{M}} {{z}}}{{r}^{3}}} \\ 0 & \frac{{{2}} {{M}} {{\left({{{r}^{2}} - {{{2}} {{{x}^{2}}}}}\right)}}}{{r}^{4}} & -{\frac{{{4}} {{M}} {{x}} {{y}}}{{r}^{4}}} & -{\frac{{{4}} {{M}} {{x}} {{z}}}{{r}^{4}}} \\ 0 & -{\frac{{{4}} {{M}} {{x}} {{y}}}{{r}^{4}}} & \frac{{{2}} {{M}} {{\left({{{r}^{2}} - {{{2}} {{{y}^{2}}}}}\right)}}}{{r}^{4}} & -{\frac{{{4}} {{M}} {{y}} {{z}}}{{r}^{4}}} \\ 0 & -{\frac{{{4}} {{M}} {{x}} {{z}}}{{r}^{4}}} & -{\frac{{{4}} {{M}} {{y}} {{z}}}{{r}^{4}}} & \frac{{{2}} {{M}} {{\left({{{r}^{2}} - {{{2}} {{{z}^{2}}}}}\right)}}}{{r}^{4}}\end{matrix} \right]} \\ \overset{v\downarrow w\rightarrow}{\left[ \begin{matrix} 0 & \frac{{{2}} {{M}} {{\left({{{r}^{2}} - {{{2}} {{{x}^{2}}}}}\right)}}}{{r}^{4}} & -{\frac{{{4}} {{M}} {{x}} {{y}}}{{r}^{4}}} & -{\frac{{{4}} {{M}} {{x}} {{z}}}{{r}^{4}}} \\ 0 & \frac{{{2}} {{M}} {{x}} {{\left({{-{{{3}} {{{x}^{2}}}}} + {{{2}} {{{r}^{2}}}}}\right)}}}{{r}^{5}} & -{\frac{{{6}} {{M}} {{y}} {{{x}^{2}}}}{{r}^{5}}} & -{\frac{{{6}} {{M}} {{z}} {{{x}^{2}}}}{{r}^{5}}} \\ 0 & \frac{{{2}} {{M}} {{y}} {{\left({{{r}^{2}} - {{{3}} {{{x}^{2}}}}}\right)}}}{{r}^{5}} & \frac{{{2}} {{M}} {{x}} {{\left({{{r}^{2}} - {{{3}} {{{y}^{2}}}}}\right)}}}{{r}^{5}} & -{\frac{{{6}} {{M}} {{x}} {{y}} {{z}}}{{r}^{5}}} \\ 0 & \frac{{{2}} {{M}} {{z}} {{\left({{{r}^{2}} - {{{3}} {{{x}^{2}}}}}\right)}}}{{r}^{5}} & -{\frac{{{6}} {{M}} {{x}} {{y}} {{z}}}{{r}^{5}}} & \frac{{{2}} {{M}} {{x}} {{\left({{{r}^{2}} - {{{3}} {{{z}^{2}}}}}\right)}}}{{r}^{5}}\end{matrix} \right]} \\ \overset{v\downarrow w\rightarrow}{\left[ \begin{matrix} 0 & -{\frac{{{4}} {{M}} {{x}} {{y}}}{{r}^{4}}} & \frac{{{2}} {{M}} {{\left({{{r}^{2}} - {{{2}} {{{y}^{2}}}}}\right)}}}{{r}^{4}} & -{\frac{{{4}} {{M}} {{y}} {{z}}}{{r}^{4}}} \\ 0 & \frac{{{2}} {{M}} {{y}} {{\left({{{r}^{2}} - {{{3}} {{{x}^{2}}}}}\right)}}}{{r}^{5}} & \frac{{{2}} {{M}} {{x}} {{\left({{{r}^{2}} - {{{3}} {{{y}^{2}}}}}\right)}}}{{r}^{5}} & -{\frac{{{6}} {{M}} {{x}} {{y}} {{z}}}{{r}^{5}}} \\ 0 & -{\frac{{{6}} {{M}} {{x}} {{{y}^{2}}}}{{r}^{5}}} & \frac{{{2}} {{M}} {{y}} {{\left({{-{{{3}} {{{y}^{2}}}}} + {{{2}} {{{r}^{2}}}}}\right)}}}{{r}^{5}} & -{\frac{{{6}} {{M}} {{z}} {{{y}^{2}}}}{{r}^{5}}} \\ 0 & -{\frac{{{6}} {{M}} {{x}} {{y}} {{z}}}{{r}^{5}}} & \frac{{{2}} {{M}} {{z}} {{\left({{{r}^{2}} - {{{3}} {{{y}^{2}}}}}\right)}}}{{r}^{5}} & \frac{{{2}} {{M}} {{y}} {{\left({{{r}^{2}} - {{{3}} {{{z}^{2}}}}}\right)}}}{{r}^{5}}\end{matrix} \right]} \\ \overset{v\downarrow w\rightarrow}{\left[ \begin{matrix} 0 & -{\frac{{{4}} {{M}} {{x}} {{z}}}{{r}^{4}}} & -{\frac{{{4}} {{M}} {{y}} {{z}}}{{r}^{4}}} & \frac{{{2}} {{M}} {{\left({{{r}^{2}} - {{{2}} {{{z}^{2}}}}}\right)}}}{{r}^{4}} \\ 0 & \frac{{{2}} {{M}} {{z}} {{\left({{{r}^{2}} - {{{3}} {{{x}^{2}}}}}\right)}}}{{r}^{5}} & -{\frac{{{6}} {{M}} {{x}} {{y}} {{z}}}{{r}^{5}}} & \frac{{{2}} {{M}} {{x}} {{\left({{{r}^{2}} - {{{3}} {{{z}^{2}}}}}\right)}}}{{r}^{5}} \\ 0 & -{\frac{{{6}} {{M}} {{x}} {{y}} {{z}}}{{r}^{5}}} & \frac{{{2}} {{M}} {{z}} {{\left({{{r}^{2}} - {{{3}} {{{y}^{2}}}}}\right)}}}{{r}^{5}} & \frac{{{2}} {{M}} {{y}} {{\left({{{r}^{2}} - {{{3}} {{{z}^{2}}}}}\right)}}}{{r}^{5}} \\ 0 & -{\frac{{{6}} {{M}} {{x}} {{{z}^{2}}}}{{r}^{5}}} & -{\frac{{{6}} {{M}} {{y}} {{{z}^{2}}}}{{r}^{5}}} & \frac{{{2}} {{M}} {{z}} {{\left({{-{{{3}} {{{z}^{2}}}}} + {{{2}} {{{r}^{2}}}}}\right)}}}{{r}^{5}}\end{matrix} \right]}\end{matrix} \right]}}$
${{{{ \Gamma} _a} _b} _c} = {\overset{a\downarrow[{b\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{v\downarrow w\rightarrow}{\left[ \begin{matrix} 0 & -{\frac{{{M}} {{x}}}{{r}^{3}}} & -{\frac{{{M}} {{y}}}{{r}^{3}}} & -{\frac{{{M}} {{z}}}{{r}^{3}}} \\ -{\frac{{{M}} {{x}}}{{r}^{3}}} & \frac{{{2}} {{M}} {{\left({{{r}^{2}} - {{{2}} {{{x}^{2}}}}}\right)}}}{{r}^{4}} & -{\frac{{{4}} {{M}} {{x}} {{y}}}{{r}^{4}}} & -{\frac{{{4}} {{M}} {{x}} {{z}}}{{r}^{4}}} \\ -{\frac{{{M}} {{y}}}{{r}^{3}}} & -{\frac{{{4}} {{M}} {{x}} {{y}}}{{r}^{4}}} & \frac{{{2}} {{M}} {{\left({{{r}^{2}} - {{{2}} {{{y}^{2}}}}}\right)}}}{{r}^{4}} & -{\frac{{{4}} {{M}} {{y}} {{z}}}{{r}^{4}}} \\ -{\frac{{{M}} {{z}}}{{r}^{3}}} & -{\frac{{{4}} {{M}} {{x}} {{z}}}{{r}^{4}}} & -{\frac{{{4}} {{M}} {{y}} {{z}}}{{r}^{4}}} & \frac{{{2}} {{M}} {{\left({{{r}^{2}} - {{{2}} {{{z}^{2}}}}}\right)}}}{{r}^{4}}\end{matrix} \right]} \\ \overset{v\downarrow w\rightarrow}{\left[ \begin{matrix} \frac{{{M}} {{x}}}{{r}^{3}} & 0 & 0 & 0 \\ 0 & \frac{{{M}} {{x}} {{\left({{-{{{3}} {{{x}^{2}}}}} + {{{2}} {{{r}^{2}}}}}\right)}}}{{r}^{5}} & -{\frac{{{3}} {{M}} {{y}} {{{x}^{2}}}}{{r}^{5}}} & -{\frac{{{3}} {{M}} {{z}} {{{x}^{2}}}}{{r}^{5}}} \\ 0 & -{\frac{{{3}} {{M}} {{y}} {{{x}^{2}}}}{{r}^{5}}} & \frac{{{M}} {{x}} {{\left({{{{2}} {{{r}^{2}}}} - {{{3}} {{{y}^{2}}}}}\right)}}}{{r}^{5}} & -{\frac{{{3}} {{M}} {{x}} {{y}} {{z}}}{{r}^{5}}} \\ 0 & -{\frac{{{3}} {{M}} {{z}} {{{x}^{2}}}}{{r}^{5}}} & -{\frac{{{3}} {{M}} {{x}} {{y}} {{z}}}{{r}^{5}}} & \frac{{{M}} {{x}} {{\left({{{{2}} {{{r}^{2}}}} - {{{3}} {{{z}^{2}}}}}\right)}}}{{r}^{5}}\end{matrix} \right]} \\ \overset{v\downarrow w\rightarrow}{\left[ \begin{matrix} \frac{{{M}} {{y}}}{{r}^{3}} & 0 & 0 & 0 \\ 0 & \frac{{{M}} {{y}} {{\left({{{{2}} {{{r}^{2}}}} - {{{3}} {{{x}^{2}}}}}\right)}}}{{r}^{5}} & -{\frac{{{3}} {{M}} {{x}} {{{y}^{2}}}}{{r}^{5}}} & -{\frac{{{3}} {{M}} {{x}} {{y}} {{z}}}{{r}^{5}}} \\ 0 & -{\frac{{{3}} {{M}} {{x}} {{{y}^{2}}}}{{r}^{5}}} & \frac{{{M}} {{y}} {{\left({{-{{{3}} {{{y}^{2}}}}} + {{{2}} {{{r}^{2}}}}}\right)}}}{{r}^{5}} & -{\frac{{{3}} {{M}} {{z}} {{{y}^{2}}}}{{r}^{5}}} \\ 0 & -{\frac{{{3}} {{M}} {{x}} {{y}} {{z}}}{{r}^{5}}} & -{\frac{{{3}} {{M}} {{z}} {{{y}^{2}}}}{{r}^{5}}} & \frac{{{M}} {{y}} {{\left({{{{2}} {{{r}^{2}}}} - {{{3}} {{{z}^{2}}}}}\right)}}}{{r}^{5}}\end{matrix} \right]} \\ \overset{v\downarrow w\rightarrow}{\left[ \begin{matrix} \frac{{{M}} {{z}}}{{r}^{3}} & 0 & 0 & 0 \\ 0 & \frac{{{M}} {{z}} {{\left({{{{2}} {{{r}^{2}}}} - {{{3}} {{{x}^{2}}}}}\right)}}}{{r}^{5}} & -{\frac{{{3}} {{M}} {{x}} {{y}} {{z}}}{{r}^{5}}} & -{\frac{{{3}} {{M}} {{x}} {{{z}^{2}}}}{{r}^{5}}} \\ 0 & -{\frac{{{3}} {{M}} {{x}} {{y}} {{z}}}{{r}^{5}}} & \frac{{{M}} {{z}} {{\left({{{{2}} {{{r}^{2}}}} - {{{3}} {{{y}^{2}}}}}\right)}}}{{r}^{5}} & -{\frac{{{3}} {{M}} {{y}} {{{z}^{2}}}}{{r}^{5}}} \\ 0 & -{\frac{{{3}} {{M}} {{x}} {{{z}^{2}}}}{{r}^{5}}} & -{\frac{{{3}} {{M}} {{y}} {{{z}^{2}}}}{{r}^{5}}} & \frac{{{M}} {{z}} {{\left({{-{{{3}} {{{z}^{2}}}}} + {{{2}} {{{r}^{2}}}}}\right)}}}{{r}^{5}}\end{matrix} \right]}\end{matrix} \right]}}$
${{{{ \Gamma} ^a} _b} _c} = {\overset{a\downarrow[{b\downarrow c\rightarrow}]}{\left[ \begin{matrix} \left[ \begin{matrix} \frac{{{2}} {{{M}^{2}}}}{{r}^{3}} & \frac{{{M}} {{x}} {{\left({{r} + {{{2}} {{M}}}}\right)}}}{{r}^{4}} & \frac{{{M}} {{y}} {{\left({{r} + {{{2}} {{M}}}}\right)}}}{{r}^{4}} & \frac{{{M}} {{z}} {{\left({{r} + {{{2}} {{M}}}}\right)}}}{{r}^{4}} \\ \frac{{{M}} {{x}} {{\left({{r} + {{{2}} {{M}}}}\right)}}}{{r}^{4}} & \frac{{{2}} {{\left({{{{{{M}^{2}}} {{{x}^{2}}}} - {{{M}} {{{r}^{3}}}}} + {{{2}} {{M}} {{r}} {{{x}^{2}}}}}\right)}}}{{r}^{5}} & \frac{{{2}} {{x}} {{y}} {{\left({{{{2}} {{M}} {{{r}^{3}}}} + {{{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{7}} & \frac{{{2}} {{x}} {{z}} {{\left({{{{2}} {{M}} {{{r}^{3}}}} + {{{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{7}} \\ \frac{{{M}} {{y}} {{\left({{r} + {{{2}} {{M}}}}\right)}}}{{r}^{4}} & \frac{{{2}} {{x}} {{y}} {{\left({{{{2}} {{M}} {{{r}^{3}}}} + {{{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{7}} & \frac{{{2}} {{\left({{{{{{M}^{2}}} {{{r}^{2}}} {{{y}^{2}}}} - {{{M}} {{{r}^{5}}}}} + {{{2}} {{M}} {{{r}^{3}}} {{{y}^{2}}}}}\right)}}}{{r}^{7}} & \frac{{{2}} {{y}} {{z}} {{\left({{{{2}} {{M}} {{{r}^{3}}}} + {{{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{7}} \\ \frac{{{M}} {{z}} {{\left({{r} + {{{2}} {{M}}}}\right)}}}{{r}^{4}} & \frac{{{2}} {{x}} {{z}} {{\left({{{{2}} {{M}} {{{r}^{3}}}} + {{{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{7}} & \frac{{{2}} {{y}} {{z}} {{\left({{{{2}} {{M}} {{{r}^{3}}}} + {{{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{7}} & \frac{{{2}} {{\left({{{{{{M}^{2}}} {{{r}^{2}}} {{{z}^{2}}}} - {{{M}} {{{r}^{5}}}}} + {{{2}} {{M}} {{{r}^{3}}} {{{z}^{2}}}}}\right)}}}{{r}^{7}}\end{matrix} \right] \\ \left[ \begin{matrix} \frac{{{x}} {{\left({{{{M}} {{{r}^{3}}}} - {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{6}} & -{\frac{{{2}} {{{M}^{2}}} {{{x}^{2}}}}{{r}^{5}}} & -{\frac{{{2}} {{x}} {{y}} {{{M}^{2}}}}{{r}^{5}}} & -{\frac{{{2}} {{x}} {{z}} {{{M}^{2}}}}{{r}^{5}}} \\ -{\frac{{{2}} {{{M}^{2}}} {{{x}^{2}}}}{{r}^{5}}} & \frac{{{M}} {{x}} {{\left({{{-{{{3}} {{r}} {{{x}^{2}}}}} - {{{2}} {{M}} {{{x}^{2}}}}} + {{{2}} {{{r}^{3}}}}}\right)}}}{{r}^{6}} & \frac{{{{{{{14}} {{{M}^{2}}} {{{r}^{2}}} {{{y}^{3}}}} - {{{6}} {{{M}^{2}}} {{{y}^{5}}}}} - {{{12}} {{{M}^{2}}} {{{y}^{3}}} {{{z}^{2}}}}} - {{{3}} {{M}} {{y}} {{{r}^{5}}}}} + {{{3}} {{M}} {{{r}^{3}}} {{{y}^{3}}}} + {{{{3}} {{M}} {{y}} {{{r}^{3}}} {{{z}^{2}}}} - {{{8}} {{y}} {{{M}^{2}}} {{{r}^{4}}}}} + {{{{14}} {{y}} {{{M}^{2}}} {{{r}^{2}}} {{{z}^{2}}}} - {{{6}} {{y}} {{{M}^{2}}} {{{z}^{4}}}}} + {{{6}} {{y}} {{{M}^{2}}} {{{x}^{4}}}}}{{r}^{8}} & \frac{{{{{{{14}} {{{M}^{2}}} {{{r}^{2}}} {{{z}^{3}}}} - {{{12}} {{{M}^{2}}} {{{y}^{2}}} {{{z}^{3}}}}} - {{{6}} {{{M}^{2}}} {{{z}^{5}}}}} - {{{3}} {{M}} {{z}} {{{r}^{5}}}}} + {{{3}} {{M}} {{z}} {{{r}^{3}}} {{{y}^{2}}}} + {{{{3}} {{M}} {{{r}^{3}}} {{{z}^{3}}}} - {{{8}} {{z}} {{{M}^{2}}} {{{r}^{4}}}}} + {{{{14}} {{z}} {{{M}^{2}}} {{{r}^{2}}} {{{y}^{2}}}} - {{{6}} {{z}} {{{M}^{2}}} {{{y}^{4}}}}} + {{{6}} {{z}} {{{M}^{2}}} {{{x}^{4}}}}}{{r}^{8}} \\ -{\frac{{{2}} {{x}} {{y}} {{{M}^{2}}}}{{r}^{5}}} & \frac{{{{{{{14}} {{{M}^{2}}} {{{r}^{2}}} {{{y}^{3}}}} - {{{6}} {{{M}^{2}}} {{{y}^{5}}}}} - {{{12}} {{{M}^{2}}} {{{y}^{3}}} {{{z}^{2}}}}} - {{{3}} {{M}} {{y}} {{{r}^{5}}}}} + {{{3}} {{M}} {{{r}^{3}}} {{{y}^{3}}}} + {{{{3}} {{M}} {{y}} {{{r}^{3}}} {{{z}^{2}}}} - {{{8}} {{y}} {{{M}^{2}}} {{{r}^{4}}}}} + {{{{14}} {{y}} {{{M}^{2}}} {{{r}^{2}}} {{{z}^{2}}}} - {{{6}} {{y}} {{{M}^{2}}} {{{z}^{4}}}}} + {{{6}} {{y}} {{{M}^{2}}} {{{x}^{4}}}}}{{r}^{8}} & \frac{{{x}} {{\left({{{{{2}} {{M}} {{{r}^{5}}}} - {{{3}} {{M}} {{{r}^{3}}} {{{y}^{2}}}}} - {{{2}} {{{M}^{2}}} {{{r}^{2}}} {{{y}^{2}}}}}\right)}}}{{r}^{8}} & -{\frac{{{x}} {{y}} {{z}} {{\left({{{{3}} {{M}} {{{r}^{3}}}} + {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{8}}} \\ -{\frac{{{2}} {{x}} {{z}} {{{M}^{2}}}}{{r}^{5}}} & \frac{{{{{{{14}} {{{M}^{2}}} {{{r}^{2}}} {{{z}^{3}}}} - {{{12}} {{{M}^{2}}} {{{y}^{2}}} {{{z}^{3}}}}} - {{{6}} {{{M}^{2}}} {{{z}^{5}}}}} - {{{3}} {{M}} {{z}} {{{r}^{5}}}}} + {{{3}} {{M}} {{z}} {{{r}^{3}}} {{{y}^{2}}}} + {{{{3}} {{M}} {{{r}^{3}}} {{{z}^{3}}}} - {{{8}} {{z}} {{{M}^{2}}} {{{r}^{4}}}}} + {{{{14}} {{z}} {{{M}^{2}}} {{{r}^{2}}} {{{y}^{2}}}} - {{{6}} {{z}} {{{M}^{2}}} {{{y}^{4}}}}} + {{{6}} {{z}} {{{M}^{2}}} {{{x}^{4}}}}}{{r}^{8}} & -{\frac{{{x}} {{y}} {{z}} {{\left({{{{3}} {{M}} {{{r}^{3}}}} + {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{8}}} & \frac{{{x}} {{\left({{{{{2}} {{M}} {{{r}^{5}}}} - {{{3}} {{M}} {{{r}^{3}}} {{{z}^{2}}}}} - {{{2}} {{{M}^{2}}} {{{r}^{2}}} {{{z}^{2}}}}}\right)}}}{{r}^{8}}\end{matrix} \right] \\ \left[ \begin{matrix} \frac{{{y}} {{\left({{{{M}} {{{r}^{3}}}} - {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{6}} & -{\frac{{{2}} {{x}} {{y}} {{{M}^{2}}}}{{r}^{5}}} & -{\frac{{{2}} {{{M}^{2}}} {{{y}^{2}}}}{{r}^{5}}} & -{\frac{{{2}} {{y}} {{z}} {{{M}^{2}}}}{{r}^{5}}} \\ -{\frac{{{2}} {{x}} {{y}} {{{M}^{2}}}}{{r}^{5}}} & \frac{{{y}} {{\left({{-{{{3}} {{M}} {{r}} {{{x}^{2}}}}} + {{{{2}} {{M}} {{{r}^{3}}}} - {{{2}} {{{M}^{2}}} {{{x}^{2}}}}}}\right)}}}{{r}^{6}} & -{\frac{{{x}} {{{y}^{2}}} {{\left({{{{3}} {{M}} {{{r}^{3}}}} + {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{8}}} & -{\frac{{{x}} {{y}} {{z}} {{\left({{{{3}} {{M}} {{{r}^{3}}}} + {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{8}}} \\ -{\frac{{{2}} {{{M}^{2}}} {{{y}^{2}}}}{{r}^{5}}} & -{\frac{{{x}} {{{y}^{2}}} {{\left({{{{3}} {{M}} {{{r}^{3}}}} + {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{8}}} & \frac{{{-{{{2}} {{{M}^{2}}} {{{r}^{2}}} {{{y}^{3}}}}} - {{{3}} {{M}} {{{r}^{3}}} {{{y}^{3}}}}} + {{{2}} {{M}} {{y}} {{{r}^{5}}}}}{{r}^{8}} & -{\frac{{{z}} {{{y}^{2}}} {{\left({{{{3}} {{M}} {{{r}^{3}}}} + {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{8}}} \\ -{\frac{{{2}} {{y}} {{z}} {{{M}^{2}}}}{{r}^{5}}} & -{\frac{{{x}} {{y}} {{z}} {{\left({{{{3}} {{M}} {{{r}^{3}}}} + {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{8}}} & -{\frac{{{z}} {{{y}^{2}}} {{\left({{{{3}} {{M}} {{{r}^{3}}}} + {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{8}}} & \frac{{{y}} {{\left({{{{{2}} {{M}} {{{r}^{5}}}} - {{{3}} {{M}} {{{r}^{3}}} {{{z}^{2}}}}} - {{{2}} {{{M}^{2}}} {{{r}^{2}}} {{{z}^{2}}}}}\right)}}}{{r}^{8}}\end{matrix} \right] \\ \left[ \begin{matrix} \frac{{{z}} {{\left({{{{M}} {{{r}^{3}}}} - {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{6}} & -{\frac{{{2}} {{x}} {{z}} {{{M}^{2}}}}{{r}^{5}}} & -{\frac{{{2}} {{y}} {{z}} {{{M}^{2}}}}{{r}^{5}}} & -{\frac{{{2}} {{{M}^{2}}} {{{z}^{2}}}}{{r}^{5}}} \\ -{\frac{{{2}} {{x}} {{z}} {{{M}^{2}}}}{{r}^{5}}} & \frac{{{z}} {{\left({{-{{{3}} {{M}} {{r}} {{{x}^{2}}}}} + {{{{2}} {{M}} {{{r}^{3}}}} - {{{2}} {{{M}^{2}}} {{{x}^{2}}}}}}\right)}}}{{r}^{6}} & -{\frac{{{x}} {{y}} {{z}} {{\left({{{{3}} {{M}} {{{r}^{3}}}} + {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{8}}} & -{\frac{{{x}} {{{z}^{2}}} {{\left({{{{3}} {{M}} {{{r}^{3}}}} + {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{8}}} \\ -{\frac{{{2}} {{y}} {{z}} {{{M}^{2}}}}{{r}^{5}}} & -{\frac{{{x}} {{y}} {{z}} {{\left({{{{3}} {{M}} {{{r}^{3}}}} + {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{8}}} & \frac{{{z}} {{\left({{{{{2}} {{M}} {{{r}^{5}}}} - {{{3}} {{M}} {{{r}^{3}}} {{{y}^{2}}}}} - {{{2}} {{{M}^{2}}} {{{r}^{2}}} {{{y}^{2}}}}}\right)}}}{{r}^{8}} & -{\frac{{{y}} {{{z}^{2}}} {{\left({{{{3}} {{M}} {{{r}^{3}}}} + {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{8}}} \\ -{\frac{{{2}} {{{M}^{2}}} {{{z}^{2}}}}{{r}^{5}}} & -{\frac{{{x}} {{{z}^{2}}} {{\left({{{{3}} {{M}} {{{r}^{3}}}} + {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{8}}} & -{\frac{{{y}} {{{z}^{2}}} {{\left({{{{3}} {{M}} {{{r}^{3}}}} + {{{2}} {{{M}^{2}}} {{{r}^{2}}}}}\right)}}}{{r}^{8}}} & \frac{{{-{{{2}} {{{M}^{2}}} {{{r}^{2}}} {{{z}^{3}}}}} - {{{3}} {{M}} {{{r}^{3}}} {{{z}^{3}}}}} + {{{2}} {{M}} {{z}} {{{r}^{5}}}}}{{r}^{8}}\end{matrix} \right]\end{matrix} \right]}}$
${\ddot{x}} = {\overset{u\downarrow}{\left[ \begin{matrix} \frac{{{2}} {{\left({{{{{{{{{{{{{-{{{{M}^{2}}} {{{{\dot{x}^t}}^{2}}} {{{r}^{4}}}}} - {{{{M}^{2}}} {{{{\dot{x}^x}}^{2}}} {{{r}^{2}}} {{{x}^{2}}}}} - {{{{M}^{2}}} {{{{\dot{x}^y}}^{2}}} {{{r}^{2}}} {{{y}^{2}}}}} - {{{{M}^{2}}} {{{{\dot{x}^z}}^{2}}} {{{r}^{2}}} {{{z}^{2}}}}} - {{{2}} {{M}} {{{{\dot{x}^x}}^{2}}} {{{r}^{3}}} {{{x}^{2}}}}} - {{{2}} {{M}} {{{{\dot{x}^y}}^{2}}} {{{r}^{3}}} {{{y}^{2}}}}} - {{{2}} {{M}} {{{{\dot{x}^z}}^{2}}} {{{r}^{3}}} {{{z}^{2}}}}} - {{{M}} {{{\dot{x}^t}}} \cdot {{{\dot{x}^x}}} \cdot {{x}} {{{r}^{4}}}}} - {{{M}} {{{\dot{x}^t}}} \cdot {{{\dot{x}^y}}} \cdot {{y}} {{{r}^{4}}}}} - {{{M}} {{{\dot{x}^t}}} \cdot {{{\dot{x}^z}}} \cdot {{z}} {{{r}^{4}}}}} - {{{4}} {{M}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^y}}} \cdot {{x}} {{y}} {{{r}^{3}}}}} - {{{4}} {{M}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^z}}} \cdot {{x}} {{z}} {{{r}^{3}}}}} + {{{{M}} {{{{\dot{x}^x}}^{2}}} {{{r}^{5}}}} - {{{4}} {{M}} {{{\dot{x}^y}}} \cdot {{{\dot{x}^z}}} \cdot {{y}} {{z}} {{{r}^{3}}}}} + {{{M}} {{{{\dot{x}^y}}^{2}}} {{{r}^{5}}}} + {{{{{{{{{M}} {{{{\dot{x}^z}}^{2}}} {{{r}^{5}}}} - {{{2}} {{{\dot{x}^t}}} \cdot {{{\dot{x}^x}}} \cdot {{x}} {{{M}^{2}}} {{{r}^{3}}}}} - {{{2}} {{{\dot{x}^t}}} \cdot {{{\dot{x}^y}}} \cdot {{y}} {{{M}^{2}}} {{{r}^{3}}}}} - {{{2}} {{{\dot{x}^t}}} \cdot {{{\dot{x}^z}}} \cdot {{z}} {{{M}^{2}}} {{{r}^{3}}}}} - {{{2}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^y}}} \cdot {{x}} {{y}} {{{M}^{2}}} {{{r}^{2}}}}} - {{{2}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^z}}} \cdot {{x}} {{z}} {{{M}^{2}}} {{{r}^{2}}}}} - {{{2}} {{{\dot{x}^y}}} \cdot {{{\dot{x}^z}}} \cdot {{y}} {{z}} {{{M}^{2}}} {{{r}^{2}}}}}}\right)}}}{{r}^{7}} \\ \frac{{-{{{M}} {{x}} {{{{\dot{x}^t}}^{2}}} {{{r}^{5}}}}} + {{{2}} {{x}} {{{M}^{2}}} {{{{\dot{x}^t}}^{2}}} {{{r}^{4}}}} + {{{4}} {{{\dot{x}^t}}} \cdot {{{\dot{x}^x}}} \cdot {{{M}^{2}}} {{{r}^{3}}} {{{x}^{2}}}} + {{{4}} {{{\dot{x}^t}}} \cdot {{{\dot{x}^y}}} \cdot {{x}} {{y}} {{{M}^{2}}} {{{r}^{3}}}} + {{{4}} {{{\dot{x}^t}}} \cdot {{{\dot{x}^z}}} \cdot {{x}} {{z}} {{{M}^{2}}} {{{r}^{3}}}} + {{{3}} {{M}} {{{{\dot{x}^x}}^{2}}} {{{r}^{3}}} {{{x}^{3}}}} + {{{{{2}} {{{M}^{2}}} {{{{\dot{x}^x}}^{2}}} {{{r}^{2}}} {{{x}^{3}}}} - {{{2}} {{M}} {{x}} {{{{\dot{x}^x}}^{2}}} {{{r}^{5}}}}} - {{{2}} {{M}} {{x}} {{{{\dot{x}^z}}^{2}}} {{{r}^{5}}}}} + {{{3}} {{M}} {{x}} {{{{\dot{x}^z}}^{2}}} {{{r}^{3}}} {{{z}^{2}}}} + {{{2}} {{x}} {{{M}^{2}}} {{{{\dot{x}^z}}^{2}}} {{{r}^{2}}} {{{z}^{2}}}} + {{{6}} {{M}} {{{\dot{x}^y}}} \cdot {{{\dot{x}^z}}} \cdot {{x}} {{y}} {{z}} {{{r}^{3}}}} + {{{{4}} {{{\dot{x}^y}}} \cdot {{{\dot{x}^z}}} \cdot {{x}} {{y}} {{z}} {{{M}^{2}}} {{{r}^{2}}}} - {{{2}} {{M}} {{x}} {{{{\dot{x}^y}}^{2}}} {{{r}^{5}}}}} + {{{3}} {{M}} {{x}} {{{{\dot{x}^y}}^{2}}} {{{r}^{3}}} {{{y}^{2}}}} + {{{{2}} {{x}} {{{M}^{2}}} {{{{\dot{x}^y}}^{2}}} {{{r}^{2}}} {{{y}^{2}}}} - {{{28}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^z}}} \cdot {{{M}^{2}}} {{{r}^{2}}} {{{z}^{3}}}}} + {{{24}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^z}}} \cdot {{{M}^{2}}} {{{y}^{2}}} {{{z}^{3}}}} + {{{12}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^z}}} \cdot {{{M}^{2}}} {{{z}^{5}}}} + {{{{{6}} {{M}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^z}}} \cdot {{z}} {{{r}^{5}}}} - {{{6}} {{M}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^z}}} \cdot {{z}} {{{r}^{3}}} {{{y}^{2}}}}} - {{{6}} {{M}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^z}}} \cdot {{{r}^{3}}} {{{z}^{3}}}}} + {{{{16}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^z}}} \cdot {{z}} {{{M}^{2}}} {{{r}^{4}}}} - {{{28}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^z}}} \cdot {{z}} {{{M}^{2}}} {{{r}^{2}}} {{{y}^{2}}}}} + {{{{{12}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^z}}} \cdot {{z}} {{{M}^{2}}} {{{y}^{4}}}} - {{{12}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^z}}} \cdot {{z}} {{{M}^{2}}} {{{x}^{4}}}}} - {{{28}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^y}}} \cdot {{{M}^{2}}} {{{r}^{2}}} {{{y}^{3}}}}} + {{{12}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^y}}} \cdot {{{M}^{2}}} {{{y}^{5}}}} + {{{24}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^y}}} \cdot {{{M}^{2}}} {{{y}^{3}}} {{{z}^{2}}}} + {{{{{6}} {{M}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^y}}} \cdot {{y}} {{{r}^{5}}}} - {{{6}} {{M}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^y}}} \cdot {{{r}^{3}}} {{{y}^{3}}}}} - {{{6}} {{M}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^y}}} \cdot {{y}} {{{r}^{3}}} {{{z}^{2}}}}} + {{{{16}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^y}}} \cdot {{y}} {{{M}^{2}}} {{{r}^{4}}}} - {{{28}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^y}}} \cdot {{y}} {{{M}^{2}}} {{{r}^{2}}} {{{z}^{2}}}}} + {{{{12}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^y}}} \cdot {{y}} {{{M}^{2}}} {{{z}^{4}}}} - {{{12}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^y}}} \cdot {{y}} {{{M}^{2}}} {{{x}^{4}}}}}}{{r}^{8}} \\ \frac{{-{{{M}} {{y}} {{{{\dot{x}^t}}^{2}}} {{{r}^{5}}}}} + {{{2}} {{y}} {{{M}^{2}}} {{{{\dot{x}^t}}^{2}}} {{{r}^{4}}}} + {{{4}} {{{\dot{x}^t}}} \cdot {{{\dot{x}^x}}} \cdot {{x}} {{y}} {{{M}^{2}}} {{{r}^{3}}}} + {{{4}} {{{\dot{x}^t}}} \cdot {{{\dot{x}^y}}} \cdot {{{M}^{2}}} {{{r}^{3}}} {{{y}^{2}}}} + {{{4}} {{{\dot{x}^t}}} \cdot {{{\dot{x}^z}}} \cdot {{y}} {{z}} {{{M}^{2}}} {{{r}^{3}}}} + {{{{3}} {{M}} {{y}} {{{{\dot{x}^x}}^{2}}} {{{r}^{3}}} {{{x}^{2}}}} - {{{2}} {{M}} {{y}} {{{{\dot{x}^x}}^{2}}} {{{r}^{5}}}}} + {{{{2}} {{y}} {{{M}^{2}}} {{{{\dot{x}^x}}^{2}}} {{{r}^{2}}} {{{x}^{2}}}} - {{{2}} {{M}} {{y}} {{{{\dot{x}^z}}^{2}}} {{{r}^{5}}}}} + {{{3}} {{M}} {{y}} {{{{\dot{x}^z}}^{2}}} {{{r}^{3}}} {{{z}^{2}}}} + {{{2}} {{y}} {{{M}^{2}}} {{{{\dot{x}^z}}^{2}}} {{{r}^{2}}} {{{z}^{2}}}} + {{{6}} {{M}} {{{\dot{x}^y}}} \cdot {{{\dot{x}^z}}} \cdot {{z}} {{{r}^{3}}} {{{y}^{2}}}} + {{{4}} {{{\dot{x}^y}}} \cdot {{{\dot{x}^z}}} \cdot {{z}} {{{M}^{2}}} {{{r}^{2}}} {{{y}^{2}}}} + {{{2}} {{{M}^{2}}} {{{{\dot{x}^y}}^{2}}} {{{r}^{2}}} {{{y}^{3}}}} + {{{{3}} {{M}} {{{{\dot{x}^y}}^{2}}} {{{r}^{3}}} {{{y}^{3}}}} - {{{2}} {{M}} {{y}} {{{{\dot{x}^y}}^{2}}} {{{r}^{5}}}}} + {{{6}} {{M}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^z}}} \cdot {{x}} {{y}} {{z}} {{{r}^{3}}}} + {{{4}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^z}}} \cdot {{x}} {{y}} {{z}} {{{M}^{2}}} {{{r}^{2}}}} + {{{6}} {{M}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^y}}} \cdot {{x}} {{{r}^{3}}} {{{y}^{2}}}} + {{{4}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^y}}} \cdot {{x}} {{{M}^{2}}} {{{r}^{2}}} {{{y}^{2}}}}}{{r}^{8}} \\ \frac{{-{{{M}} {{z}} {{{{\dot{x}^t}}^{2}}} {{{r}^{5}}}}} + {{{2}} {{z}} {{{M}^{2}}} {{{{\dot{x}^t}}^{2}}} {{{r}^{4}}}} + {{{4}} {{{\dot{x}^t}}} \cdot {{{\dot{x}^x}}} \cdot {{x}} {{z}} {{{M}^{2}}} {{{r}^{3}}}} + {{{4}} {{{\dot{x}^t}}} \cdot {{{\dot{x}^y}}} \cdot {{y}} {{z}} {{{M}^{2}}} {{{r}^{3}}}} + {{{4}} {{{\dot{x}^t}}} \cdot {{{\dot{x}^z}}} \cdot {{{M}^{2}}} {{{r}^{3}}} {{{z}^{2}}}} + {{{{3}} {{M}} {{z}} {{{{\dot{x}^x}}^{2}}} {{{r}^{3}}} {{{x}^{2}}}} - {{{2}} {{M}} {{z}} {{{{\dot{x}^x}}^{2}}} {{{r}^{5}}}}} + {{{2}} {{z}} {{{M}^{2}}} {{{{\dot{x}^x}}^{2}}} {{{r}^{2}}} {{{x}^{2}}}} + {{{2}} {{{M}^{2}}} {{{{\dot{x}^z}}^{2}}} {{{r}^{2}}} {{{z}^{3}}}} + {{{{3}} {{M}} {{{{\dot{x}^z}}^{2}}} {{{r}^{3}}} {{{z}^{3}}}} - {{{2}} {{M}} {{z}} {{{{\dot{x}^z}}^{2}}} {{{r}^{5}}}}} + {{{6}} {{M}} {{{\dot{x}^y}}} \cdot {{{\dot{x}^z}}} \cdot {{y}} {{{r}^{3}}} {{{z}^{2}}}} + {{{{4}} {{{\dot{x}^y}}} \cdot {{{\dot{x}^z}}} \cdot {{y}} {{{M}^{2}}} {{{r}^{2}}} {{{z}^{2}}}} - {{{2}} {{M}} {{z}} {{{{\dot{x}^y}}^{2}}} {{{r}^{5}}}}} + {{{3}} {{M}} {{z}} {{{{\dot{x}^y}}^{2}}} {{{r}^{3}}} {{{y}^{2}}}} + {{{2}} {{z}} {{{M}^{2}}} {{{{\dot{x}^y}}^{2}}} {{{r}^{2}}} {{{y}^{2}}}} + {{{6}} {{M}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^z}}} \cdot {{x}} {{{r}^{3}}} {{{z}^{2}}}} + {{{4}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^z}}} \cdot {{x}} {{{M}^{2}}} {{{r}^{2}}} {{{z}^{2}}}} + {{{6}} {{M}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^y}}} \cdot {{x}} {{y}} {{z}} {{{r}^{3}}}} + {{{4}} {{{\dot{x}^x}}} \cdot {{{\dot{x}^y}}} \cdot {{x}} {{y}} {{z}} {{{M}^{2}}} {{{r}^{2}}}}}{{r}^{8}}\end{matrix} \right]}}$