δuv=[1000010000100001]uv
ηuv=[1000010000100001]uv
guv=ηuv2Φδuv
guv=[(1+2Φ)000012Φ000012Φ000012Φ]uv
guv=[11+2Φ0000112Φ0000112Φ0000112Φ]uv

Γabc=12(gab,c+gac,bgbc,a)

Γabc=12((ηab2Φδab),c+(ηac2Φδac),b(ηbc2Φδbc),a)

Γabc=12((2Φ[1000010000100001]ab+[1000010000100001]ab),c+(2Φ[1000010000100001]ac+[1000010000100001]ac),b(2Φ[1000010000100001]bc+[1000010000100001]bc),a)

Γabc=12([[2Φ,t2Φ,x2Φ,y2Φ,z000000000000]ca[00002Φ,t2Φ,x2Φ,y2Φ,z00000000]ca[000000002Φ,t2Φ,x2Φ,y2Φ,z0000]ca[0000000000002Φ,t2Φ,x2Φ,y2Φ,z]ca]b[ca]+[[2Φ,t2Φ,x2Φ,y2Φ,z000000000000]bc[00002Φ,t2Φ,x2Φ,y2Φ,z00000000]bc[000000002Φ,t2Φ,x2Φ,y2Φ,z0000]bc[0000000000002Φ,t2Φ,x2Φ,y2Φ,z]bc]a[bc]+[[2Φ,t2Φ,x2Φ,y2Φ,z000000000000]cb[00002Φ,t2Φ,x2Φ,y2Φ,z00000000]cb[000000002Φ,t2Φ,x2Φ,y2Φ,z0000]cb[0000000000002Φ,t2Φ,x2Φ,y2Φ,z]cb]a[cb])

Γabc=[[Φ,tΦ,xΦ,yΦ,zΦ,xΦ,t00Φ,y0Φ,t0Φ,z00Φ,t]ca[Φ,xΦ,t00Φ,tΦ,xΦ,yΦ,z0Φ,yΦ,x00Φ,z0Φ,x]ca[Φ,y0Φ,t00Φ,yΦ,x0Φ,tΦ,xΦ,yΦ,z00Φ,zΦ,y]ca[Φ,z00Φ,t0Φ,z0Φ,x00Φ,zΦ,yΦ,tΦ,xΦ,yΦ,z]ca]b[ca]

Γabc=gadΓdbc

Γabc=[[Φ,t1+2ΦΦ,x1+2ΦΦ,y1+2ΦΦ,z1+2ΦΦ,x1+2ΦΦ,t1+2Φ00Φ,y1+2Φ0Φ,t1+2Φ0Φ,z1+2Φ00Φ,t1+2Φ][Φ,x12ΦΦ,t12Φ00Φ,t12ΦΦ,x12ΦΦ,y12ΦΦ,z12Φ0Φ,y12ΦΦ,x12Φ00Φ,z12Φ0Φ,x12Φ][Φ,y12Φ0Φ,t12Φ00Φ,y12ΦΦ,x12Φ0Φ,t12ΦΦ,x12ΦΦ,y12ΦΦ,z12Φ00Φ,z12ΦΦ,y12Φ][Φ,z12Φ00Φ,t12Φ0Φ,z12Φ0Φ,x12Φ00Φ,z12ΦΦ,y12ΦΦ,t12ΦΦ,x12ΦΦ,y12ΦΦ,z12Φ]]a[bc]


let Φ ~ 0, but keep Φ to find:
Γabc=[[Φ,tΦ,xΦ,yΦ,zΦ,xΦ,t00Φ,y0Φ,t0Φ,z00Φ,t][Φ,xΦ,t00Φ,tΦ,xΦ,yΦ,z0Φ,yΦ,x00Φ,z0Φ,x][Φ,y0Φ,t00Φ,yΦ,x0Φ,tΦ,xΦ,yΦ,z00Φ,zΦ,y][Φ,z00Φ,t0Φ,z0Φ,x00Φ,zΦ,yΦ,tΦ,xΦ,yΦ,z]]a[bc]
guv=[1000010000100001]uv
guv=[1000010000100001]uv

let Φ,t=0 to find:
Γabc=[[0Φ,xΦ,yΦ,zΦ,x000Φ,y000Φ,z000][Φ,x0000Φ,xΦ,yΦ,z0Φ,yΦ,x00Φ,z0Φ,x][Φ,y0000Φ,yΦ,x00Φ,xΦ,yΦ,z00Φ,zΦ,y][Φ,z0000Φ,z0Φ,x00Φ,zΦ,y0Φ,xΦ,yΦ,z]]a[bc]

let
ua=[utuxuyuz]a

matter stress-energy tensor:
Tab=(ρ+P)uaub+Pgab

Tab=(ρ+P)[utuxuyuz]a[utuxuyuz]b+P[1000010000100001]ab
Tab=[P+Put2+ρut2utux(P+ρ)utuy(P+ρ)utuz(P+ρ)utux(P+ρ)P+Pux2+ρux2uxuy(P+ρ)uxuz(P+ρ)utuy(P+ρ)uxuy(P+ρ)P+Puy2+ρuy2uyuz(P+ρ)utuz(P+ρ)uxuz(P+ρ)uyuz(P+ρ)P+Puz2+ρuz2]ab


T=0
P,t+ut2P,t+ut2ρ,t+Putux,x+Putuy,y+Putuz,z+Puxut,x+Puyut,y+Puzut,z+ρutux,x+ρutuy,y+ρutuz,z+ρuxut,x+ρuyut,y+ρuzut,z+utuxP,x+utuxρ,x+utuyP,y+utuyρ,y+utuzP,z+utuzρ,z+2Putut,t+2ρutut,t2PutuxΦ,x2PutuyΦ,y2PutuzΦ,z2ρutuxΦ,x2ρutuyΦ,y2ρutuzΦ,z=0
P,x+ux2P,x+ux2ρ,x+Putux,t+Puxut,t+Puxuy,y+Puxuz,z+Puyux,y+Puzux,zPut2Φ,xPuy2Φ,xPuz2Φ,x+ρutux,t+ρuxut,t+ρuxuy,y+ρuxuz,z+ρuyux,y+ρuzux,zρut2Φ,xρuy2Φ,xρuz2Φ,x+utuxP,t+utuxρ,t+uxuyP,y+uxuyρ,y+uxuzP,z+uxuzρ,z4PΦ,x+2Puxux,x+2ρuxux,x3Pux2Φ,x3ρux2Φ,x2PuxuyΦ,y2PuxuzΦ,z2ρuxuyΦ,y2ρuxuzΦ,z=0
P,y+uy2P,y+uy2ρ,y+Putuy,t+Puxuy,x+Puyut,t+Puyux,x+Puyuz,z+Puzuy,zPut2Φ,yPux2Φ,yPuz2Φ,y+ρutuy,t+ρuxuy,x+ρuyut,t+ρuyux,x+ρuyuz,z+ρuzuy,zρut2Φ,yρux2Φ,yρuz2Φ,y+utuyP,t+utuyρ,t+uxuyP,x+uxuyρ,x+uyuzP,z+uyuzρ,z4PΦ,y+2Puyuy,y+2ρuyuy,y3Puy2Φ,y3ρuy2Φ,y2PuxuyΦ,x2PuyuzΦ,z2ρuxuyΦ,x2ρuyuzΦ,z=0
P,z+uz2P,z+uz2ρ,z+Putuz,t+Puxuz,x+Puyuz,y+Puzut,t+Puzux,x+Puzuy,yPut2Φ,zPux2Φ,zPuy2Φ,z+ρutuz,t+ρuxuz,x+ρuyuz,y+ρuzut,t+ρuzux,x+ρuzuy,yρut2Φ,zρux2Φ,zρuy2Φ,z+utuzP,t+utuzρ,t+uxuzP,x+uxuzρ,x+uyuzP,y+uyuzρ,y4PΦ,z+2Puzuz,z+2ρuzuz,z3Puz2Φ,z3ρuz2Φ,z2PuxuzΦ,x2PuyuzΦ,y2ρuxuzΦ,x2ρuyuzΦ,y=0

low velocity relativistic approximations:
ut=1

T=0 becomes:
ρ,t+Pux,x+Puy,y+Puz,z+ρux,x+ρuy,y+ρuz,z+uxP,x+uxρ,x+uyP,y+uyρ,y+uzP,z+uzρ,z2PuxΦ,x2PuyΦ,y2PuzΦ,z2ρuxΦ,x2ρuyΦ,y2ρuzΦ,z=0
P,x+Pux,t+ρux,tρΦ,x+uxP,t+uxρ,t+ux2P,x+ux2ρ,x5PΦ,x+Puxuy,y+Puxuz,z+Puyux,y+Puzux,zPuy2Φ,xPuz2Φ,x+ρuxuy,y+ρuxuz,z+ρuyux,y+ρuzux,zρuy2Φ,xρuz2Φ,x+uxuyP,y+uxuyρ,y+uxuzP,z+uxuzρ,z+2Puxux,x+2ρuxux,x3Pux2Φ,x3ρux2Φ,x2PuxuyΦ,y2PuxuzΦ,z2ρuxuyΦ,y2ρuxuzΦ,z=0
P,y+Puy,t+ρuy,tρΦ,y+uyP,t+uyρ,t+uy2P,y+uy2ρ,y5PΦ,y+Puxuy,x+Puyux,x+Puyuz,z+Puzuy,zPux2Φ,yPuz2Φ,y+ρuxuy,x+ρuyux,x+ρuyuz,z+ρuzuy,zρux2Φ,yρuz2Φ,y+uxuyP,x+uxuyρ,x+uyuzP,z+uyuzρ,z+2Puyuy,y+2ρuyuy,y3Puy2Φ,y3ρuy2Φ,y2PuxuyΦ,x2PuyuzΦ,z2ρuxuyΦ,x2ρuyuzΦ,z=0
P,z+Puz,t+ρuz,tρΦ,z+uzP,t+uzρ,t+uz2P,z+uz2ρ,z5PΦ,z+Puxuz,x+Puyuz,y+Puzux,x+Puzuy,yPux2Φ,zPuy2Φ,z+ρuxuz,x+ρuyuz,y+ρuzux,x+ρuzuy,yρux2Φ,zρuy2Φ,z+uxuzP,x+uxuzρ,x+uyuzP,y+uyuzρ,y+2Puzuz,z+2ρuzuz,z3Puz2Φ,z3ρuz2Φ,z2PuxuzΦ,x2PuyuzΦ,y2ρuxuzΦ,x2ρuyuzΦ,y=0
Pux,x+Puy,y+Puz,z+uxP,x+uyP,y+uzP,z=0

first equation in terms of tρ
ρ,t=ρux,xρuy,yρuz,zuxρ,xuyρ,yuzρ,z+2PuxΦ,x+2PuyΦ,y+2PuzΦ,z+2ρuxΦ,x+2ρuyΦ,y+2ρuzΦ,z

spatial equations neglect P,t, (Puj),j, P, and Φ,iuj and substitutes the definition of tρ

T=0 becomes:
ρ,t+ρux,x+ρuy,y+ρuz,z+uxρ,x+uyρ,y+uzρ,z2PuxΦ,x2PuyΦ,y2PuzΦ,z2ρuxΦ,x2ρuyΦ,y2ρuzΦ,z=0
P,x+ρux,tρΦ,x+ρuxux,x+ρuyux,y+ρuzux,z=0
P,y+ρuy,tρΦ,y+ρuxuy,x+ρuyuy,y+ρuzuy,z=0
P,z+ρuz,tρΦ,z+ρuxuz,x+ρuyuz,y+ρuzuz,z=0