${{{ g} _t} _t} = { {-{{\Lambda}^{2}}} {{\left({{1}{-{\frac{0}{r}}}}\right)}}}$;
${{{ g} _r} _r} = {\frac{{\Lambda}^{2}}{{1}{-{\frac{0}{r}}}}}$;
${{{ g} _{\theta}} _{\theta}} = {{{{\Lambda}^{2}}} {{{r}^{2}}}}$;
${{{ g} _{\phi}} _{\phi}} = {\frac{{{{r}^{2}}} {{{\sin\left( \theta\right)}^{2}}}}{{\Lambda}^{2}}}$
${{{ g} ^t} ^t} = {-{\frac{1}{{\Lambda}^{2}}}}$;
${{{ g} ^r} ^r} = {\frac{1}{{\Lambda}^{2}}}$;
${{{ g} ^{\theta}} ^{\theta}} = {\frac{1}{{{{\Lambda}^{2}}} {{{r}^{2}}}}}$;
${{{ g} ^{\phi}} ^{\phi}} = {\frac{{\Lambda}^{2}}{{{{r}^{2}}} {{\left({{1}{-{\cos\left( \theta\right)}}}\right)}} {{\left({{1} + {\cos\left( \theta\right)}}\right)}}}}$
${{{{ \Gamma} ^t} _t} _t} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial t}}}$;
${{{{ \Gamma} ^t} _t} _r} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial r}}}$;
${{{{ \Gamma} ^t} _t} _{\theta}} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial \theta}}}$;
${{{{ \Gamma} ^t} _t} _{\phi}} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial \phi}}}$;
${{{{ \Gamma} ^t} _r} _t} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial r}}}$;
${{{{ \Gamma} ^t} _r} _r} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial t}}}$;
${{{{ \Gamma} ^t} _{\theta}} _t} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial \theta}}}$;
${{{{ \Gamma} ^t} _{\theta}} _{\theta}} = {{\frac{1}{\Lambda}} {{{{r}^{2}}} {{\frac{\partial \Lambda}{\partial t}}}}}$;
${{{{ \Gamma} ^t} _{\phi}} _t} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial \phi}}}$;
${{{{ \Gamma} ^t} _{\phi}} _{\phi}} = {\frac{{{\frac{\partial \Lambda}{\partial t}}} {{\left({{-{{r}^{2}}} + {{{{r}^{2}}} {{{\cos\left( \theta\right)}^{2}}}}}\right)}}}{{\Lambda}^{5}}}$;
${{{{ \Gamma} ^r} _t} _t} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial r}}}$;
${{{{ \Gamma} ^r} _t} _r} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial t}}}$;
${{{{ \Gamma} ^r} _r} _t} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial t}}}$;
${{{{ \Gamma} ^r} _r} _r} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial r}}}$;
${{{{ \Gamma} ^r} _r} _{\theta}} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial \theta}}}$;
${{{{ \Gamma} ^r} _r} _{\phi}} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial \phi}}}$;
${{{{ \Gamma} ^r} _{\theta}} _r} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial \theta}}}$;
${{{{ \Gamma} ^r} _{\theta}} _{\theta}} = {-{{\frac{1}{\Lambda}} {{{r}} {{\left({{\Lambda} + {{{r}} {{\frac{\partial \Lambda}{\partial r}}}}}\right)}}}}}$;
${{{{ \Gamma} ^r} _{\phi}} _r} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial \phi}}}$;
${{{{ \Gamma} ^r} _{\phi}} _{\phi}} = {\frac{{-{{{r}} {{{\Lambda}^{2}}}}} + {{{r}} {{{\Lambda}^{2}}} {{{\cos\left( \theta\right)}^{2}}}} + {{{\Lambda}} \cdot {{{r}^{2}}} {{\frac{\partial \Lambda}{\partial r}}}}{-{{{\Lambda}} \cdot {{{r}^{2}}} {{{\cos\left( \theta\right)}^{2}}} {{\frac{\partial \Lambda}{\partial r}}}}}}{{\Lambda}^{6}}}$;
${{{{ \Gamma} ^{\theta}} _t} _t} = {\frac{\frac{\partial \Lambda}{\partial \theta}}{{{\Lambda}} \cdot {{{r}^{2}}}}}$;
${{{{ \Gamma} ^{\theta}} _t} _{\theta}} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial t}}}$;
${{{{ \Gamma} ^{\theta}} _r} _r} = {-{\frac{\frac{\partial \Lambda}{\partial \theta}}{{{\Lambda}} \cdot {{{r}^{2}}}}}}$;
${{{{ \Gamma} ^{\theta}} _r} _{\theta}} = {\frac{{\Lambda} + {{{r}} {{\frac{\partial \Lambda}{\partial r}}}}}{{{\Lambda}} \cdot {{r}}}}$;
${{{{ \Gamma} ^{\theta}} _{\theta}} _t} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial t}}}$;
${{{{ \Gamma} ^{\theta}} _{\theta}} _r} = {\frac{{\Lambda} + {{{r}} {{\frac{\partial \Lambda}{\partial r}}}}}{{{\Lambda}} \cdot {{r}}}}$;
${{{{ \Gamma} ^{\theta}} _{\theta}} _{\theta}} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial \theta}}}$;
${{{{ \Gamma} ^{\theta}} _{\theta}} _{\phi}} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial \phi}}}$;
${{{{ \Gamma} ^{\theta}} _{\phi}} _{\theta}} = {{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial \phi}}}$;
${{{{ \Gamma} ^{\theta}} _{\phi}} _{\phi}} = {\frac{{{\sin\left( \theta\right)}} {{\left({{{{\frac{\partial \Lambda}{\partial \theta}}} {{\sin\left( \theta\right)}}}{-{{{\Lambda}} \cdot {{\cos\left( \theta\right)}}}}}\right)}}}{{\Lambda}^{5}}}$;
${{{{ \Gamma} ^{\phi}} _t} _t} = {\frac{{{{\Lambda}^{3}}} {{\frac{\partial \Lambda}{\partial \phi}}}}{{{{r}^{2}}} {{\left({{1} + {\cos\left( \theta\right)}}\right)}} {{\left({{1}{-{\cos\left( \theta\right)}}}\right)}}}}$;
${{{{ \Gamma} ^{\phi}} _t} _{\phi}} = {-{{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial t}}}}$;
${{{{ \Gamma} ^{\phi}} _r} _r} = {-{\frac{{{{\Lambda}^{3}}} {{\frac{\partial \Lambda}{\partial \phi}}}}{{{{r}^{2}}} {{\left({{1} + {\cos\left( \theta\right)}}\right)}} {{\left({{1}{-{\cos\left( \theta\right)}}}\right)}}}}}$;
${{{{ \Gamma} ^{\phi}} _r} _{\phi}} = {\frac{{{{r}} {{{\Lambda}^{2}}}}{-{{{r}} {{{\Lambda}^{2}}} {{{\cos\left( \theta\right)}^{2}}}}}{-{{{\Lambda}} \cdot {{{r}^{2}}} {{\frac{\partial \Lambda}{\partial r}}}}} + {{{\Lambda}} \cdot {{{r}^{2}}} {{{\cos\left( \theta\right)}^{2}}} {{\frac{\partial \Lambda}{\partial r}}}}}{{{{\Lambda}^{2}}} {{{r}^{2}}} {{{\sin\left( \theta\right)}^{2}}}}}$;
${{{{ \Gamma} ^{\phi}} _{\theta}} _{\theta}} = {-{\frac{{{{\Lambda}^{3}}} {{\frac{\partial \Lambda}{\partial \phi}}}}{{\sin\left( \theta\right)}^{2}}}}$;
${{{{ \Gamma} ^{\phi}} _{\theta}} _{\phi}} = {\frac{{{{\Lambda}} \cdot {{\cos\left( \theta\right)}}}{-{{{\sin\left( \theta\right)}} {{\frac{\partial \Lambda}{\partial \theta}}}}}}{{{\Lambda}} \cdot {{\sin\left( \theta\right)}}}}$;
${{{{ \Gamma} ^{\phi}} _{\phi}} _t} = {-{{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial t}}}}$;
${{{{ \Gamma} ^{\phi}} _{\phi}} _r} = {\frac{{{{r}} {{{\Lambda}^{2}}}}{-{{{r}} {{{\Lambda}^{2}}} {{{\cos\left( \theta\right)}^{2}}}}}{-{{{\Lambda}} \cdot {{{r}^{2}}} {{\frac{\partial \Lambda}{\partial r}}}}} + {{{\Lambda}} \cdot {{{r}^{2}}} {{{\cos\left( \theta\right)}^{2}}} {{\frac{\partial \Lambda}{\partial r}}}}}{{{{\Lambda}^{2}}} {{{r}^{2}}} {{{\sin\left( \theta\right)}^{2}}}}}$;
${{{{ \Gamma} ^{\phi}} _{\phi}} _{\theta}} = {\frac{{{{\Lambda}} \cdot {{\cos\left( \theta\right)}}}{-{{{\sin\left( \theta\right)}} {{\frac{\partial \Lambda}{\partial \theta}}}}}}{{{\Lambda}} \cdot {{\sin\left( \theta\right)}}}}$;
${{{{ \Gamma} ^{\phi}} _{\phi}} _{\phi}} = {-{{\frac{1}{\Lambda}} {\frac{\partial \Lambda}{\partial \phi}}}}$