${{{ g} _a} _b} = {\overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} -{{\alpha}^{2}} & 0 & 0 & 0 \\ 0 & \frac{1}{{\alpha}^{2}} & 0 & 0 \\ 0 & 0 & {r}^{2} & 0 \\ 0 & 0 & 0 & {\left({{{r}} {{\sin\left( \theta\right)}}}\right)}^{2}\end{matrix} \right]}}$
${{{ g} ^a} ^b} = {\overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} \frac{-1}{{\alpha}^{2}} & 0 & 0 & 0 \\ 0 & {\alpha}^{2} & 0 & 0 \\ 0 & 0 & {r}^{-2} & 0 \\ 0 & 0 & 0 & {\left({{{r}} {{\sin\left( \theta\right)}}}\right)}^{-2}\end{matrix} \right]}}$
resting gravity:
${{{{ \Gamma} ^u} _t} _t} = {\overset{u\downarrow}{\left[ \begin{matrix} 0 \\ {{{\alpha}^{3}}} {{\frac{\partial \alpha}{\partial r}}} \\ 0 \\ 0\end{matrix} \right]}}$
${{{ G} _a} _b} = {\overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} \frac{{{{\alpha}^{2}}} {{\left({{{1} - {{\alpha}^{2}}} - {{{2}} {{\alpha}} \cdot {{r}} {{\frac{\partial \alpha}{\partial r}}}}}\right)}}}{{r}^{2}} & 0 & 0 & 0 \\ 0 & \frac{{-{1}} + {{{2}} {{\alpha}} \cdot {{r}} {{\frac{\partial \alpha}{\partial r}}}} + {{\alpha}^{2}}}{{{{\alpha}^{2}}} {{{r}^{2}}}} & 0 & 0 \\ 0 & 0 & {{{{r}^{2}}} {{{\frac{\partial \alpha}{\partial r}}^{2}}}} + {{{\alpha}} \cdot {{{r}^{2}}} {{\frac{\partial^ 2 \alpha}{\partial r^ 2}}}} + {{{2}} {{\alpha}} \cdot {{r}} {{\frac{\partial \alpha}{\partial r}}}} & 0 \\ 0 & 0 & 0 & {{{{{r}^{2}}} {{{\frac{\partial \alpha}{\partial r}}^{2}}}} - {{{{r}^{2}}} {{{\cos\left( \theta\right)}^{2}}} {{{\frac{\partial \alpha}{\partial r}}^{2}}}}} + {{{{\alpha}} \cdot {{{r}^{2}}} {{\frac{\partial^ 2 \alpha}{\partial r^ 2}}}} - {{{\alpha}} \cdot {{{r}^{2}}} {{{\cos\left( \theta\right)}^{2}}} {{\frac{\partial^ 2 \alpha}{\partial r^ 2}}}}} + {{{{2}} {{\alpha}} \cdot {{r}} {{\frac{\partial \alpha}{\partial r}}}} - {{{2}} {{\alpha}} \cdot {{r}} {{{\cos\left( \theta\right)}^{2}}} {{\frac{\partial \alpha}{\partial r}}}}}\end{matrix} \right]}}$
${{{ T} _a} _b} = {\overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} \rho & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{matrix} \right]}}$
${\frac{{{{\alpha}^{2}}} {{\left({{{1} - {{\alpha}^{2}}} - {{{2}} {{\alpha}} \cdot {{r}} {{\frac{\partial \alpha}{\partial r}}}}}\right)}}}{{r}^{2}}} = {{{8}} {{\rho}} \cdot {{\pi}}}$
${\frac{{-{1}} + {{{2}} {{\alpha}} \cdot {{r}} {{\frac{\partial \alpha}{\partial r}}}} + {{\alpha}^{2}}}{{{{\alpha}^{2}}} {{{r}^{2}}}}} = {0}$
${{{{{r}^{2}}} {{{\frac{\partial \alpha}{\partial r}}^{2}}}} + {{{\alpha}} \cdot {{{r}^{2}}} {{\frac{\partial^ 2 \alpha}{\partial r^ 2}}}} + {{{2}} {{\alpha}} \cdot {{r}} {{\frac{\partial \alpha}{\partial r}}}}} = {0}$
${{{{{{r}^{2}}} {{{\frac{\partial \alpha}{\partial r}}^{2}}}} - {{{{r}^{2}}} {{{\cos\left( \theta\right)}^{2}}} {{{\frac{\partial \alpha}{\partial r}}^{2}}}}} + {{{{\alpha}} \cdot {{{r}^{2}}} {{\frac{\partial^ 2 \alpha}{\partial r^ 2}}}} - {{{\alpha}} \cdot {{{r}^{2}}} {{{\cos\left( \theta\right)}^{2}}} {{\frac{\partial^ 2 \alpha}{\partial r^ 2}}}}} + {{{{2}} {{\alpha}} \cdot {{r}} {{\frac{\partial \alpha}{\partial r}}}} - {{{2}} {{\alpha}} \cdot {{r}} {{{\cos\left( \theta\right)}^{2}}} {{\frac{\partial \alpha}{\partial r}}}}}} = {0}$
solutions using explicit integration backwards
solutions using explicit integration forwards