${{{ \eta} _I} _J} = {\overset{I\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{matrix} \right]}}$
${{{ \eta} ^I} ^J} = {\overset{I\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{matrix} \right]}}$
${{{ \hat{\gamma}} _i} _j} = {\overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & {r}^{2} & 0 \\ 0 & 0 & {{{r}^{2}}} {{{\sin\left( theta\right)}^{2}}}\end{matrix} \right]}}$
${\hat{\gamma}} = {{{{r}^{4}}} {{{\sin\left( theta\right)}^{2}}}}$
${{{{ \hat{\Gamma}} _i} _j} _k} = {\overset{i\downarrow[{j\downarrow k\rightarrow}]}{\left[ \begin{matrix} \overset{j\downarrow k\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & -{r} & 0 \\ 0 & 0 & -{{{r}} {{{\sin\left( theta\right)}^{2}}}}\end{matrix} \right]} \\ \overset{j\downarrow k\rightarrow}{\left[ \begin{matrix} 0 & r & 0 \\ r & 0 & 0 \\ 0 & 0 & -{{{{r}^{2}}} {{\sin\left( theta\right)}} {{\cos\left( theta\right)}}}\end{matrix} \right]} \\ \overset{j\downarrow k\rightarrow}{\left[ \begin{matrix} 0 & 0 & {{r}} {{{\sin\left( theta\right)}^{2}}} \\ 0 & 0 & {{{r}^{2}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ {{r}} {{{\sin\left( theta\right)}^{2}}} & {{{r}^{2}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}}$
${{{{ \hat{\Gamma}} _I} _J} _K} = {\overset{I\downarrow[{J\downarrow K\rightarrow}]}{\left[ \begin{matrix} \overset{J\downarrow K\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & -{\frac{1}{r}} & 0 \\ 0 & 0 & -{\frac{1}{r}}\end{matrix} \right]} \\ \overset{J\downarrow K\rightarrow}{\left[ \begin{matrix} 0 & \frac{1}{r} & 0 \\ \frac{1}{r} & 0 & 0 \\ 0 & 0 & -{\frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}}}\end{matrix} \right]} \\ \overset{J\downarrow K\rightarrow}{\left[ \begin{matrix} 0 & 0 & \frac{1}{r} \\ 0 & 0 & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} \\ \frac{1}{r} & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} & 0\end{matrix} \right]}\end{matrix} \right]}}$
${{{{ \hat{\Gamma}} ^I} _J} _K} = {\overset{I\downarrow[{J\downarrow K\rightarrow}]}{\left[ \begin{matrix} \overset{J\downarrow K\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & -{\frac{1}{r}} & 0 \\ 0 & 0 & -{\frac{1}{r}}\end{matrix} \right]} \\ \overset{J\downarrow K\rightarrow}{\left[ \begin{matrix} 0 & \frac{1}{r} & 0 \\ \frac{1}{r} & 0 & 0 \\ 0 & 0 & -{\frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}}}\end{matrix} \right]} \\ \overset{J\downarrow K\rightarrow}{\left[ \begin{matrix} 0 & 0 & \frac{1}{r} \\ 0 & 0 & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} \\ \frac{1}{r} & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} & 0\end{matrix} \right]}\end{matrix} \right]}}$
${{ \hat{\Gamma}} ^I} = {\overset{I\downarrow}{\left[ \begin{matrix} -{{\frac{1}{r}}{\left({{{gammaBar_UU.yy}} + {{gammaBar_UU.zz}}}\right)}} \\ \frac{{-{{{{gammaBar_UU.zz}}} \cdot {{\cos\left( theta\right)}}}} + {{{2}} {{{gammaBar_UU.xy}}} \cdot {{\sin\left( theta\right)}}}}{{{r}} {{\sin\left( theta\right)}}} \\ \frac{{{2}} {{\left({{{{{gammaBar_UU.xz}}} \cdot {{\sin\left( theta\right)}}} + {{{{gammaBar_UU.yz}}} \cdot {{\cos\left( theta\right)}}}}\right)}}}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}}$
${{ \hat{\gamma}} _{,i}} = {\overset{i\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}}$
variable: $\alpha$
eqn:${{ \alpha} _{,t}} = {{{{{ \alpha} _{,i}}} {{{ \beta} ^I}} {{{{ e} ^i} _I}}} + {{{-1}} {{K}} {{f}} {{{\alpha}^{2}}}}}$
new eqn: ${{dt_alpha}} = {{{{-1}} {{f}} {{{U->alpha}^{2}}} {{U->K}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _i}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^I}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}}}}$

double tmp1 = 1. / r; double dt_alpha = U->beta_U.z * partial_alpha_l.z * 1. / sin(theta) * tmp1 + -1. * U->K * f * U->alpha * U->alpha + U->beta_U.x * partial_alpha_l.x + U->beta_U.y * partial_alpha_l.y * tmp1;


variable: $\beta$
eqn:${{{ \beta} ^I} _{,t}} = {{ B} ^I}$
new eqn: ${{ \overset{i\downarrow}{\left[ \begin{matrix} {dt_beta_U.x} \\ {dt_beta_U.y} \\ {dt_beta_U.z}\end{matrix} \right]}} ^I} = {{ \overset{i\downarrow}{\left[ \begin{matrix} {U->B_U.x} \\ {U->B_U.y} \\ {U->B_U.z}\end{matrix} \right]}} ^I}$

double dt_beta_U.x = U->B_U.x; double dt_beta_U.y = U->B_U.y; double dt_beta_U.z = U->B_U.z;


variable: $B$
eqn:${{{ B} ^I} _{,t}} = {{{{-1}} {{\eta}} \cdot {{{ B} ^I}}} + {{{3}} \cdot {{\frac{1}{4}}} {{{{ \bar{\Lambda}} ^I} _{,t}}}}}$
new eqn: ${{ \overset{i\downarrow}{\left[ \begin{matrix} {dt_B_U.x} \\ {dt_B_U.y} \\ {dt_B_U.z}\end{matrix} \right]}} ^I} = {{{{3}} \cdot {{\frac{1}{4}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {dt_LambdaBar_U.x} \\ {dt_LambdaBar_U.y} \\ {dt_LambdaBar_U.z}\end{matrix} \right]}} ^I}}} + {{{-1}} {{\eta}} \cdot {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->B_U.x} \\ {U->B_U.y} \\ {U->B_U.z}\end{matrix} \right]}} ^I}}}}$

double tmp1 = 1. / 4.; double dt_B_U.x = -1. * U->B_U.x * \eta + 3. * dt_LambdaBar_U.x * tmp1; double dt_B_U.y = -1. * U->B_U.y * \eta + 3. * dt_LambdaBar_U.y * tmp1; double dt_B_U.z = -1. * U->B_U.z * \eta + 3. * dt_LambdaBar_U.z * tmp1;


variable: $W$
eqn:${{ W} _{,t}} = {{{{\frac{1}{3}}} {{K}} {{W}} {{\alpha}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{W}} {{{{ \beta} ^I} _{,i}}} {{{{ e} ^i} _I}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{W}} {{{ \beta} ^I}} {{{{{ e} ^i} _I} _{,i}}}} + {{{{ W} _{,i}}} {{{ \beta} ^I}} {{{{ e} ^i} _I}}} + {{{-1}} \cdot {{\frac{1}{6}}} {{W}} {{{ \bar{\gamma}} _{,i}}} {{{ \beta} ^I}} {{{{ e} ^i} _I}} {{\frac{1}{\bar{\gamma}}}}}}$
new eqn: ${{dt_W}} = {{{{-1}} \cdot {{\frac{1}{6}}} {{W}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _i}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^I}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}} {{\frac{1}{{det_gammaBar}}}}} + {{{\frac{1}{3}}} {{W}} {{U->alpha}} \cdot {{U->K}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{W}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^I}} {{{{{ \overset{i\downarrow[{I\downarrow i\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow i\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow i\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow i\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^i} _I} _i}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{W}} {{{{ \overset{I\downarrow i\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^I} _i}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {partial_W_l.x} \\ {partial_W_l.y} \\ {partial_W_l.z}\end{matrix} \right]}} _i}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^I}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}}}}$

double tmp1 = sin(theta); double tmp2 = 1. / r; double tmp3 = 1. / tmp1; double tmp4 = tmp2 * tmp3; double tmp5 = 1. / 3.; double dt_W = -1. * W * r * (2. * U->beta_U.x * tmp1 + U->beta_U.y * cos(theta)) * 1. / det_gammaBar * r * r * tmp1 * tmp5 + ((U->beta_U.x * partial_W_l.x * r + U->beta_U.y * partial_W_l.y) * tmp1 + U->beta_U.z * partial_W_l.z) * tmp4 + U->K * U->alpha * W * tmp5 + -1. * W * (partial_beta_Ul[2].z + partial_beta_Ul[0].x * r * tmp1 + partial_beta_Ul[1].y * tmp1) * tmp4 * tmp5;


variable: $K$
eqn:${{ K} _{,t}} = {{{{4}} {{S}} {{\alpha}} \cdot {{\pi}}} + {{{W}} {{{ W} _{,a}}} {{{ \alpha} _{,b}}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}}} + {{{-1}} {{{{ \alpha} _{,a}} _{,b}}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{W}^{2}}}} + {{{{ \alpha} _{,a}}} {{{ \bar{\Lambda}} ^A}} {{{{ e} ^a} _A}} {{{W}^{2}}}} + {{{-1}} {{{ \alpha} _{,a}}} {{{ \mathcal{C}} ^A}} {{{{ e} ^a} _A}} {{{W}^{2}}}} + {{{{ \alpha} _{,a}}} {{{ \hat{\Gamma}} ^A}} {{{{ e} ^a} _A}} {{{W}^{2}}}} + {{{{ K} _{,a}}} {{{ \beta} ^A}} {{{{ e} ^a} _A}}} + {{{-1}} {{{ \beta} ^F}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^B} ^D}} {{{{ \bar{\gamma}} ^C} ^E}} {{{{ e} ^e} _E}} {{{{{ \bar{\gamma}} _F} _D} _{,e}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^C} ^E}} {{{{ e} ^a} _A}} {{{{ e} ^e} _E}} {{{{{ e} _a} ^B} _{,e}}}} + {{{-1}} {{{ \beta} ^F}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^B} ^D}} {{{{ \bar{\gamma}} ^C} ^E}} {{{{ \bar{\gamma}} _F} _G}} {{{{ e} ^d} _D}} {{{{ e} ^e} _E}} {{{{{ e} _d} ^G} _{,e}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^B} ^D}} {{{{ \bar{\gamma}} ^C} ^G}} {{{{ e} ^a} _A}} {{{{{ \bar{\gamma}} _D} _G} _{,a}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^B} ^D}} {{{{ e} ^a} _A}} {{{{ e} ^d} _D}} {{{{{ e} _d} ^C} _{,a}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{A}} _G} _C}} {{{{ \bar{\gamma}} ^C} ^E}} {{{{ e} ^a} _A}} {{{{ e} ^e} _E}} {{{{{ e} _e} ^G} _{,a}}}} + {{{{ \beta} ^F}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^B} ^D}} {{{{ \bar{\gamma}} ^C} ^E}} {{{{ e} ^d} _D}} {{{{{ \bar{\gamma}} _F} _E} _{,d}}}} + {{{{ \beta} ^A}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^B} ^D}} {{{{ e} ^a} _A}} {{{{ e} ^d} _D}} {{{{{ e} _a} ^C} _{,d}}}} + {{{{ \beta} ^A}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^B} ^D}} {{{{ \bar{\gamma}} ^C} ^E}} {{{{ \bar{\gamma}} _A} _G}} {{{{ e} ^d} _D}} {{{{ e} ^e} _E}} {{{{{ e} _e} ^G} _{,d}}}} + {{{{ \beta} ^A}} {{{{ \bar{\gamma}} ^D} ^C}} {{{{ e} ^a} _A}} {{{{{ \bar{A}} _D} _C} _{,a}}}} + {{{{ \beta} ^A}} {{{{ \bar{A}} _D} _C}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{{ e} _b} ^D} _{,a}}}} + {{{{ \beta} ^A}} {{{{ \bar{A}} _B} _E}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{{ e} _c} ^E} _{,a}}}} + {{{\alpha}} \cdot {{{K}^{2}}}} + {{{-12}} {{\alpha}} \cdot {{\pi}} \cdot {{\rho}}} + {{{\alpha}} \cdot {{{{ R} _A} _B}} {{{{ \bar{\gamma}} ^A} ^B}} {{{W}^{2}}}}}$
new eqn: ${{dt_K}} = {{{{{U->K}^{2}}} {{U->alpha}}} + {{{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_K_l.x} \\ {partial_K_l.y} \\ {partial_K_l.z}\end{matrix} \right]}} _a}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}}} + {{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {R_LL.xx} & {R_LL.xy} & {R_LL.xz} \\ {R_LL.xy} & {R_LL.yy} & {R_LL.yz} \\ {R_LL.xz} & {R_LL.yz} & {R_LL.zz}\end{matrix} \right]}} _A} _B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{W}^{2}}} {{U->alpha}}} + {{{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _a}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->LambdaBar_U.x} \\ {U->LambdaBar_U.y} \\ {U->LambdaBar_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{W}^{2}}}} + {{{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _a}} {{{ \overset{A\downarrow}{\left[ \begin{matrix} -{{\frac{1}{r}}{\left({{{gammaBar_UU.yy}} + {{gammaBar_UU.zz}}}\right)}} \\ \frac{{-{{{{gammaBar_UU.zz}}} \cdot {{\cos\left( theta\right)}}}} + {{{2}} {{{gammaBar_UU.xy}}} \cdot {{\sin\left( theta\right)}}}}{{{r}} {{\sin\left( theta\right)}}} \\ \frac{{{2}} {{\left({{{{{gammaBar_UU.xz}}} \cdot {{\sin\left( theta\right)}}} + {{{{gammaBar_UU.yz}}} \cdot {{\cos\left( theta\right)}}}}\right)}}}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^A}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{W}^{2}}}} + {{{-1}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _a}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {C_U.x} \\ {C_U.y} \\ {C_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{W}^{2}}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^D} ^C}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{{ \overset{D\downarrow[{C\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_ABar_LLl[0].xx} & {partial_ABar_LLl[1].xx} & {partial_ABar_LLl[2].xx} \\ {partial_ABar_LLl[0].xy} & {partial_ABar_LLl[1].xy} & {partial_ABar_LLl[2].xy} \\ {partial_ABar_LLl[0].xz} & {partial_ABar_LLl[1].xz} & {partial_ABar_LLl[2].xz}\end{matrix} \right]} \\ \overset{C\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_ABar_LLl[0].xy} & {partial_ABar_LLl[1].xy} & {partial_ABar_LLl[2].xy} \\ {partial_ABar_LLl[0].yy} & {partial_ABar_LLl[1].yy} & {partial_ABar_LLl[2].yy} \\ {partial_ABar_LLl[0].yz} & {partial_ABar_LLl[1].yz} & {partial_ABar_LLl[2].yz}\end{matrix} \right]} \\ \overset{C\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_ABar_LLl[0].xz} & {partial_ABar_LLl[1].xz} & {partial_ABar_LLl[2].xz} \\ {partial_ABar_LLl[0].yz} & {partial_ABar_LLl[1].yz} & {partial_ABar_LLl[2].yz} \\ {partial_ABar_LLl[0].zz} & {partial_ABar_LLl[1].zz} & {partial_ABar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _D} _C} _a}}} + {{{4}} {{S}} {{U->alpha}} \cdot {{{M_PI}}}} + {{{-1}} {{{{ \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_alpha_ll.xx} & {partial2_alpha_ll.xy} & {partial2_alpha_ll.xz} \\ {partial2_alpha_ll.xy} & {partial2_alpha_ll.yy} & {partial2_alpha_ll.yz} \\ {partial2_alpha_ll.xz} & {partial2_alpha_ll.yz} & {partial2_alpha_ll.zz}\end{matrix} \right]}} _a} _b}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{W}^{2}}}} + {{{-12}} {{U->alpha}} \cdot {{U->rho}} \cdot {{{M_PI}}}} + {{{W}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_W_l.x} \\ {partial_W_l.y} \\ {partial_W_l.z}\end{matrix} \right]}} _a}} {{{ \overset{b\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _b}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^E}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{a\downarrow[{B\downarrow e\rightarrow}]}{\left[ \begin{matrix} \overset{B\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _a} ^B} _e}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _G} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^E}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{e\downarrow[{G\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{G\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _e} ^G} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^G}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{{ \overset{D\downarrow[{G\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{G\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{G\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{G\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _D} _G} _a}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^D}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{a\downarrow[{C\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _a} ^C} _d}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^D}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{d\downarrow[{C\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^C} _a}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^F}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^E}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{F\downarrow[{E\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{E\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{E\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _F} _E} _d}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^F}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^E}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{F\downarrow[{D\downarrow e\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow e\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{D\downarrow e\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{D\downarrow e\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _F} _D} _e}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{c\downarrow[{E\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^E} _a}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _D} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{{ \overset{b\downarrow[{D\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^D} _a}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _A} _G}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^E}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{e\downarrow[{G\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{G\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _e} ^G} _d}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^F}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _F} _G}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{d\downarrow[{G\downarrow e\rightarrow}]}{\left[ \begin{matrix} \overset{G\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^G} _e}}}}$

double tmp1 = sin(theta); double tmp2 = W * W; double tmp3 = tmp1 * tmp1; double tmp4 = tmp2 * tmp3; double tmp5 = r * r; double tmp6 = tmp1 * tmp2; double tmp7 = 1. / tmp5; double tmp8 = 1. / tmp3; double tmp9 = tmp7 * tmp8; double tmp10 = partial_alpha_l.y * tmp1; double tmp11 = r * tmp1; double tmp12 = partial_alpha_l.x * tmp11; double tmp13 = 1. / r; double tmp14 = 1. / tmp1; double tmp15 = tmp13 * tmp14; double tmp16 = cos(theta); double tmp17 = gammaBar_UU.xx * tmp1; double tmp18 = gammaBar_UU.xy * tmp16; double tmp19 = tmp17 + tmp18; double tmp20 = gammaBar_UU.xy * tmp1; double tmp21 = gammaBar_UU.yy * tmp16; double tmp22 = tmp20 + tmp21; double tmp23 = gammaBar_UU.xz * tmp1; double tmp24 = gammaBar_UU.yz * tmp16; double tmp25 = tmp23 + tmp24; double tmp26 = ABar_LL.yz * tmp22; double tmp27 = ABar_LL.zz * tmp25; double tmp28 = ABar_LL.xz * tmp19; double tmp29 = tmp26 + tmp27; double tmp30 = tmp28 + tmp29; double tmp31 = ABar_LL.yy * gammaBar_UU.xy; double tmp32 = ABar_LL.yz * gammaBar_UU.xz; double tmp33 = ABar_LL.xy * gammaBar_UU.xx; double tmp34 = tmp31 + tmp32; double tmp35 = tmp33 + tmp34; double tmp36 = gammaBar_UU.xz * tmp19; double tmp37 = gammaBar_UU.xx * tmp20; double tmp38 = gammaBar_LL.xz * tmp36; double tmp39 = gammaBar_LL.xy * tmp37; double tmp40 = tmp38 + tmp39; double tmp41 = gammaBar_UU.xy * gammaBar_UU.xy; double tmp42 = tmp1 * tmp41; double tmp43 = gammaBar_UU.xz * tmp22; double tmp44 = gammaBar_LL.xy * tmp42; double tmp45 = gammaBar_LL.xz * tmp43; double tmp46 = tmp44 + tmp45; double tmp47 = gammaBar_UU.yz * tmp19; double tmp48 = gammaBar_UU.yy * tmp1; double tmp49 = gammaBar_UU.xx * tmp48; double tmp50 = gammaBar_LL.xz * tmp47; double tmp51 = gammaBar_LL.xy * tmp49; double tmp52 = tmp50 + tmp51; double tmp53 = gammaBar_UU.zz * tmp19; double tmp54 = gammaBar_UU.yz * tmp1; double tmp55 = gammaBar_UU.xx * tmp54; double tmp56 = gammaBar_LL.xz * tmp53; double tmp57 = gammaBar_LL.xy * tmp55; double tmp58 = tmp56 + tmp57; double tmp59 = gammaBar_UU.yz * tmp22; double tmp60 = gammaBar_UU.xy * tmp48; double tmp61 = gammaBar_LL.xz * tmp59; double tmp62 = gammaBar_LL.xy * tmp60; double tmp63 = tmp61 + tmp62; double tmp64 = gammaBar_UU.yz * tmp25; double tmp65 = gammaBar_UU.xz * tmp48; double tmp66 = gammaBar_LL.xz * tmp64; double tmp67 = gammaBar_LL.xy * tmp65; double tmp68 = tmp66 + tmp67; double tmp69 = gammaBar_UU.zz * tmp22; double tmp70 = gammaBar_UU.xy * tmp54; double tmp71 = gammaBar_LL.xz * tmp69; double tmp72 = gammaBar_LL.xy * tmp70; double tmp73 = tmp71 + tmp72; double tmp74 = gammaBar_UU.zz * tmp25; double tmp75 = gammaBar_UU.xz * tmp54; double tmp76 = gammaBar_LL.xz * tmp74; double tmp77 = gammaBar_LL.xy * tmp75; double tmp78 = tmp76 + tmp77; double tmp79 = gammaBar_LL.xz * tmp25; double tmp80 = gammaBar_LL.xy * tmp20; double tmp81 = tmp79 + tmp80; double tmp82 = gammaBar_UU.xz * tmp81; double tmp83 = ABar_LL.zz * tmp78; double tmp84 = ABar_LL.xz * tmp82; double tmp85 = ABar_LL.yz * tmp73; double tmp86 = tmp83 + tmp84; double tmp87 = ABar_LL.yz * tmp68; double tmp88 = tmp85 + tmp86; double tmp89 = ABar_LL.yy * tmp63; double tmp90 = tmp87 + tmp88; double tmp91 = ABar_LL.xz * tmp58; double tmp92 = tmp89 + tmp90; double tmp93 = ABar_LL.xy * tmp52; double tmp94 = tmp91 + tmp92; double tmp95 = ABar_LL.xy * tmp46; double tmp96 = tmp93 + tmp94; double tmp97 = ABar_LL.xx * tmp40; double tmp98 = tmp95 + tmp96; double tmp99 = tmp97 + tmp98; double tmp100 = gammaBar_LL.yz * tmp36; double tmp101 = gammaBar_LL.yy * tmp37; double tmp102 = tmp100 + tmp101; double tmp103 = gammaBar_LL.yy * tmp42; double tmp104 = gammaBar_LL.yz * tmp43; double tmp105 = tmp103 + tmp104; double tmp106 = gammaBar_LL.yz * tmp47; double tmp107 = gammaBar_LL.yy * tmp49; double tmp108 = tmp106 + tmp107; double tmp109 = gammaBar_LL.yz * tmp53; double tmp110 = gammaBar_LL.yy * tmp55; double tmp111 = tmp109 + tmp110; double tmp112 = gammaBar_LL.yz * tmp59; double tmp113 = gammaBar_LL.yy * tmp60; double tmp114 = tmp112 + tmp113; double tmp115 = gammaBar_LL.yz * tmp64; double tmp116 = gammaBar_LL.yy * tmp65; double tmp117 = tmp115 + tmp116; double tmp118 = gammaBar_LL.yz * tmp69; double tmp119 = gammaBar_LL.yy * tmp70; double tmp120 = tmp118 + tmp119; double tmp121 = gammaBar_LL.yz * tmp74; double tmp122 = gammaBar_LL.yy * tmp75; double tmp123 = tmp121 + tmp122; double tmp124 = gammaBar_LL.yz * tmp25; double tmp125 = gammaBar_LL.yy * tmp20; double tmp126 = tmp124 + tmp125; double tmp127 = gammaBar_UU.xz * tmp126; double tmp128 = ABar_LL.zz * tmp123; double tmp129 = ABar_LL.xz * tmp127; double tmp130 = ABar_LL.yz * tmp120; double tmp131 = tmp128 + tmp129; double tmp132 = ABar_LL.yz * tmp117; double tmp133 = tmp130 + tmp131; double tmp134 = ABar_LL.yy * tmp114; double tmp135 = tmp132 + tmp133; double tmp136 = ABar_LL.xz * tmp111; double tmp137 = tmp134 + tmp135; double tmp138 = ABar_LL.xy * tmp108; double tmp139 = tmp136 + tmp137; double tmp140 = ABar_LL.xy * tmp105; double tmp141 = tmp138 + tmp139; double tmp142 = ABar_LL.xx * tmp102; double tmp143 = tmp140 + tmp141; double tmp144 = tmp142 + tmp143; double tmp145 = gammaBar_LL.zz * tmp36; double tmp146 = gammaBar_LL.yz * tmp37; double tmp147 = tmp145 + tmp146; double tmp148 = gammaBar_LL.yz * tmp42; double tmp149 = gammaBar_LL.zz * tmp43; double tmp150 = tmp148 + tmp149; double tmp151 = gammaBar_LL.zz * tmp47; double tmp152 = gammaBar_LL.yz * tmp49; double tmp153 = tmp151 + tmp152; double tmp154 = gammaBar_LL.zz * tmp53; double tmp155 = gammaBar_LL.yz * tmp55; double tmp156 = tmp154 + tmp155; double tmp157 = gammaBar_LL.zz * tmp59; double tmp158 = gammaBar_LL.yz * tmp60; double tmp159 = tmp157 + tmp158; double tmp160 = gammaBar_LL.zz * tmp64; double tmp161 = gammaBar_LL.yz * tmp65; double tmp162 = tmp160 + tmp161; double tmp163 = gammaBar_LL.zz * tmp69; double tmp164 = gammaBar_LL.yz * tmp70; double tmp165 = tmp163 + tmp164; double tmp166 = gammaBar_LL.zz * tmp74; double tmp167 = gammaBar_LL.yz * tmp75; double tmp168 = tmp166 + tmp167; double tmp169 = gammaBar_LL.zz * tmp25; double tmp170 = gammaBar_LL.yz * tmp20; double tmp171 = tmp169 + tmp170; double tmp172 = gammaBar_UU.xz * tmp171; double tmp173 = ABar_LL.zz * tmp168; double tmp174 = ABar_LL.xz * tmp172; double tmp175 = ABar_LL.yz * tmp165; double tmp176 = tmp173 + tmp174; double tmp177 = ABar_LL.yz * tmp162; double tmp178 = tmp175 + tmp176; double tmp179 = ABar_LL.yy * tmp159; double tmp180 = tmp177 + tmp178; double tmp181 = ABar_LL.xz * tmp156; double tmp182 = tmp179 + tmp180; double tmp183 = ABar_LL.xy * tmp153; double tmp184 = tmp181 + tmp182; double tmp185 = ABar_LL.xy * tmp150; double tmp186 = tmp183 + tmp184; double tmp187 = ABar_LL.xx * tmp147; double tmp188 = tmp185 + tmp186; double tmp189 = tmp187 + tmp188; double tmp190 = partial_gammaBar_LLl[1].xx * tmp1; double tmp191 = partial_gammaBar_LLl[0].xx * tmp11; double tmp192 = gammaBar_UU.xy * tmp190; double tmp193 = gammaBar_UU.xx * tmp191; double tmp194 = gammaBar_UU.xz * partial_gammaBar_LLl[2].xx; double tmp195 = tmp192 + tmp193; double tmp196 = tmp194 + tmp195; double tmp197 = partial_gammaBar_LLl[1].xy * tmp1; double tmp198 = partial_gammaBar_LLl[0].xy * tmp11; double tmp199 = gammaBar_UU.xy * tmp197; double tmp200 = gammaBar_UU.xx * tmp198; double tmp201 = gammaBar_UU.xz * partial_gammaBar_LLl[2].xy; double tmp202 = tmp199 + tmp200; double tmp203 = tmp201 + tmp202; double tmp204 = partial_gammaBar_LLl[1].xz * tmp1; double tmp205 = partial_gammaBar_LLl[0].xz * tmp11; double tmp206 = gammaBar_UU.xy * tmp204; double tmp207 = gammaBar_UU.xx * tmp205; double tmp208 = gammaBar_UU.xz * partial_gammaBar_LLl[2].xz; double tmp209 = tmp206 + tmp207; double tmp210 = tmp208 + tmp209; double tmp211 = gammaBar_UU.xy * tmp203; double tmp212 = gammaBar_UU.xz * tmp210; double tmp213 = gammaBar_UU.yy * tmp190; double tmp214 = gammaBar_UU.xy * tmp191; double tmp215 = gammaBar_UU.yz * partial_gammaBar_LLl[2].xx; double tmp216 = tmp213 + tmp214; double tmp217 = tmp215 + tmp216; double tmp218 = gammaBar_UU.yy * tmp197; double tmp219 = gammaBar_UU.xy * tmp198; double tmp220 = gammaBar_UU.yz * partial_gammaBar_LLl[2].xy; double tmp221 = tmp218 + tmp219; double tmp222 = tmp220 + tmp221; double tmp223 = gammaBar_UU.yy * tmp204; double tmp224 = gammaBar_UU.xy * tmp205; double tmp225 = gammaBar_UU.yz * partial_gammaBar_LLl[2].xz; double tmp226 = tmp223 + tmp224; double tmp227 = tmp225 + tmp226; double tmp228 = gammaBar_UU.xy * tmp222; double tmp229 = gammaBar_UU.xz * tmp227; double tmp230 = gammaBar_UU.yz * tmp190; double tmp231 = gammaBar_UU.xz * tmp191; double tmp232 = gammaBar_UU.zz * partial_gammaBar_LLl[2].xx; double tmp233 = tmp230 + tmp231; double tmp234 = tmp232 + tmp233; double tmp235 = gammaBar_UU.yz * tmp197; double tmp236 = gammaBar_UU.xz * tmp198; double tmp237 = gammaBar_UU.zz * partial_gammaBar_LLl[2].xy; double tmp238 = tmp235 + tmp236; double tmp239 = tmp237 + tmp238; double tmp240 = gammaBar_UU.yz * tmp204; double tmp241 = gammaBar_UU.xz * tmp205; double tmp242 = gammaBar_UU.zz * partial_gammaBar_LLl[2].xz; double tmp243 = tmp240 + tmp241; double tmp244 = tmp242 + tmp243; double tmp245 = gammaBar_UU.xy * tmp239; double tmp246 = gammaBar_UU.xz * tmp244; double tmp247 = partial_gammaBar_LLl[1].yy * tmp1; double tmp248 = partial_gammaBar_LLl[0].yy * tmp11; double tmp249 = gammaBar_UU.xy * tmp247; double tmp250 = gammaBar_UU.xx * tmp248; double tmp251 = gammaBar_UU.xz * partial_gammaBar_LLl[2].yy; double tmp252 = tmp249 + tmp250; double tmp253 = tmp251 + tmp252; double tmp254 = partial_gammaBar_LLl[1].yz * tmp1; double tmp255 = partial_gammaBar_LLl[0].yz * tmp11; double tmp256 = gammaBar_UU.xy * tmp254; double tmp257 = gammaBar_UU.xx * tmp255; double tmp258 = gammaBar_UU.xz * partial_gammaBar_LLl[2].yz; double tmp259 = tmp256 + tmp257; double tmp260 = tmp258 + tmp259; double tmp261 = gammaBar_UU.yy * tmp247; double tmp262 = gammaBar_UU.xy * tmp248; double tmp263 = gammaBar_UU.yz * partial_gammaBar_LLl[2].yy; double tmp264 = tmp261 + tmp262; double tmp265 = tmp263 + tmp264; double tmp266 = gammaBar_UU.yy * tmp254; double tmp267 = gammaBar_UU.xy * tmp255; double tmp268 = gammaBar_UU.yz * partial_gammaBar_LLl[2].yz; double tmp269 = tmp266 + tmp267; double tmp270 = tmp268 + tmp269; double tmp271 = gammaBar_UU.yz * tmp260; double tmp272 = gammaBar_UU.yz * tmp247; double tmp273 = gammaBar_UU.xz * tmp248; double tmp274 = gammaBar_UU.zz * partial_gammaBar_LLl[2].yy; double tmp275 = tmp272 + tmp273; double tmp276 = tmp274 + tmp275; double tmp277 = gammaBar_UU.yz * tmp254; double tmp278 = gammaBar_UU.xz * tmp255; double tmp279 = gammaBar_UU.zz * partial_gammaBar_LLl[2].yz; double tmp280 = tmp277 + tmp278; double tmp281 = tmp279 + tmp280; double tmp282 = gammaBar_UU.yz * tmp270; double tmp283 = gammaBar_UU.yz * tmp281; double tmp284 = partial_gammaBar_LLl[1].zz * tmp1; double tmp285 = partial_gammaBar_LLl[0].zz * tmp11; double tmp286 = gammaBar_UU.xy * tmp284; double tmp287 = gammaBar_UU.xx * tmp285; double tmp288 = gammaBar_UU.xz * partial_gammaBar_LLl[2].zz; double tmp289 = tmp286 + tmp287; double tmp290 = tmp288 + tmp289; double tmp291 = gammaBar_UU.yy * tmp284; double tmp292 = gammaBar_UU.xy * tmp285; double tmp293 = gammaBar_UU.yz * partial_gammaBar_LLl[2].zz; double tmp294 = tmp291 + tmp292; double tmp295 = tmp293 + tmp294; double tmp296 = gammaBar_UU.yz * tmp284; double tmp297 = gammaBar_UU.xz * tmp285; double tmp298 = gammaBar_UU.zz * partial_gammaBar_LLl[2].zz; double tmp299 = tmp296 + tmp297; double tmp300 = tmp298 + tmp299; double tmp301 = gammaBar_UU.xy * partial_gammaBar_LLl[2].xy; double tmp302 = gammaBar_UU.xx * partial_gammaBar_LLl[2].xx; double tmp303 = tmp208 + tmp301; double tmp304 = tmp302 + tmp303; double tmp305 = gammaBar_UU.xy * partial_gammaBar_LLl[2].yy; double tmp306 = gammaBar_UU.xx * partial_gammaBar_LLl[2].xy; double tmp307 = tmp258 + tmp305; double tmp308 = tmp306 + tmp307; double tmp309 = gammaBar_UU.xy * partial_gammaBar_LLl[2].yz; double tmp310 = gammaBar_UU.xx * partial_gammaBar_LLl[2].xz; double tmp311 = tmp288 + tmp309; double tmp312 = tmp310 + tmp311; double tmp313 = gammaBar_UU.xz * tmp312; double tmp314 = gammaBar_UU.yy * partial_gammaBar_LLl[2].xy; double tmp315 = gammaBar_UU.xy * partial_gammaBar_LLl[2].xx; double tmp316 = tmp225 + tmp314; double tmp317 = tmp315 + tmp316; double tmp318 = gammaBar_UU.yy * partial_gammaBar_LLl[2].yy; double tmp319 = tmp268 + tmp318; double tmp320 = tmp301 + tmp319; double tmp321 = gammaBar_UU.yy * partial_gammaBar_LLl[2].yz; double tmp322 = gammaBar_UU.xy * partial_gammaBar_LLl[2].xz; double tmp323 = tmp293 + tmp321; double tmp324 = tmp322 + tmp323; double tmp325 = gammaBar_UU.xz * tmp324; double tmp326 = gammaBar_UU.yz * tmp312; double tmp327 = tmp220 + tmp242; double tmp328 = tmp194 + tmp327; double tmp329 = tmp263 + tmp279; double tmp330 = tmp201 + tmp329; double tmp331 = tmp268 + tmp298; double tmp332 = tmp208 + tmp331; double tmp333 = gammaBar_UU.xz * tmp332; double tmp334 = gammaBar_UU.yz * tmp308; double tmp335 = gammaBar_UU.zz * tmp312; double tmp336 = gammaBar_UU.xz * tmp304; double tmp337 = gammaBar_UU.yz * tmp324; double tmp338 = gammaBar_UU.yz * tmp332; double tmp339 = gammaBar_UU.yz * tmp320; double tmp340 = gammaBar_UU.zz * tmp324; double tmp341 = gammaBar_UU.xz * tmp317; double tmp342 = gammaBar_UU.yz * tmp330; double tmp343 = gammaBar_UU.zz * tmp332; double tmp344 = gammaBar_UU.xz * tmp328; double tmp345 = gammaBar_UU.xy * partial_gammaBar_LLl[1].xy; double tmp346 = gammaBar_UU.xz * partial_gammaBar_LLl[1].xz; double tmp347 = gammaBar_UU.xx * partial_gammaBar_LLl[1].xx; double tmp348 = tmp345 + tmp346; double tmp349 = tmp347 + tmp348; double tmp350 = gammaBar_UU.xy * partial_gammaBar_LLl[1].yy; double tmp351 = gammaBar_UU.xz * partial_gammaBar_LLl[1].yz; double tmp352 = gammaBar_UU.xx * partial_gammaBar_LLl[1].xy; double tmp353 = tmp350 + tmp351; double tmp354 = tmp352 + tmp353; double tmp355 = gammaBar_UU.xy * partial_gammaBar_LLl[1].yz; double tmp356 = gammaBar_UU.xz * partial_gammaBar_LLl[1].zz; double tmp357 = gammaBar_UU.xx * partial_gammaBar_LLl[1].xz; double tmp358 = tmp355 + tmp356; double tmp359 = tmp357 + tmp358; double tmp360 = gammaBar_UU.yy * partial_gammaBar_LLl[1].xy; double tmp361 = gammaBar_UU.yz * partial_gammaBar_LLl[1].xz; double tmp362 = gammaBar_UU.xy * partial_gammaBar_LLl[1].xx; double tmp363 = tmp360 + tmp361; double tmp364 = tmp362 + tmp363; double tmp365 = gammaBar_UU.yy * partial_gammaBar_LLl[1].yy; double tmp366 = gammaBar_UU.yz * partial_gammaBar_LLl[1].yz; double tmp367 = tmp365 + tmp366; double tmp368 = tmp345 + tmp367; double tmp369 = gammaBar_UU.yy * partial_gammaBar_LLl[1].yz; double tmp370 = gammaBar_UU.yz * partial_gammaBar_LLl[1].zz; double tmp371 = gammaBar_UU.xy * partial_gammaBar_LLl[1].xz; double tmp372 = tmp369 + tmp370; double tmp373 = tmp371 + tmp372; double tmp374 = gammaBar_UU.yz * partial_gammaBar_LLl[1].xy; double tmp375 = gammaBar_UU.zz * partial_gammaBar_LLl[1].xz; double tmp376 = gammaBar_UU.xz * partial_gammaBar_LLl[1].xx; double tmp377 = tmp374 + tmp375; double tmp378 = tmp376 + tmp377; double tmp379 = gammaBar_UU.yz * partial_gammaBar_LLl[1].yy; double tmp380 = gammaBar_UU.zz * partial_gammaBar_LLl[1].yz; double tmp381 = gammaBar_UU.xz * partial_gammaBar_LLl[1].xy; double tmp382 = tmp379 + tmp380; double tmp383 = tmp381 + tmp382; double tmp384 = gammaBar_UU.zz * partial_gammaBar_LLl[1].zz; double tmp385 = tmp366 + tmp384; double tmp386 = tmp346 + tmp385; double tmp387 = gammaBar_UU.xy * partial_gammaBar_LLl[0].xy; double tmp388 = gammaBar_UU.xz * partial_gammaBar_LLl[0].xz; double tmp389 = gammaBar_UU.xx * partial_gammaBar_LLl[0].xx; double tmp390 = tmp387 + tmp388; double tmp391 = tmp389 + tmp390; double tmp392 = gammaBar_UU.xy * partial_gammaBar_LLl[0].yy; double tmp393 = gammaBar_UU.xz * partial_gammaBar_LLl[0].yz; double tmp394 = gammaBar_UU.xx * partial_gammaBar_LLl[0].xy; double tmp395 = tmp392 + tmp393; double tmp396 = tmp394 + tmp395; double tmp397 = gammaBar_UU.xy * partial_gammaBar_LLl[0].yz; double tmp398 = gammaBar_UU.xz * partial_gammaBar_LLl[0].zz; double tmp399 = gammaBar_UU.xx * partial_gammaBar_LLl[0].xz; double tmp400 = tmp397 + tmp398; double tmp401 = tmp399 + tmp400; double tmp402 = gammaBar_UU.yy * partial_gammaBar_LLl[0].xy; double tmp403 = gammaBar_UU.yz * partial_gammaBar_LLl[0].xz; double tmp404 = gammaBar_UU.xy * partial_gammaBar_LLl[0].xx; double tmp405 = tmp402 + tmp403; double tmp406 = tmp404 + tmp405; double tmp407 = gammaBar_UU.yy * partial_gammaBar_LLl[0].yy; double tmp408 = gammaBar_UU.yz * partial_gammaBar_LLl[0].yz; double tmp409 = tmp407 + tmp408; double tmp410 = tmp387 + tmp409; double tmp411 = gammaBar_UU.yy * partial_gammaBar_LLl[0].yz; double tmp412 = gammaBar_UU.yz * partial_gammaBar_LLl[0].zz; double tmp413 = gammaBar_UU.xy * partial_gammaBar_LLl[0].xz; double tmp414 = tmp411 + tmp412; double tmp415 = tmp413 + tmp414; double tmp416 = gammaBar_UU.yz * partial_gammaBar_LLl[0].xy; double tmp417 = gammaBar_UU.zz * partial_gammaBar_LLl[0].xz; double tmp418 = gammaBar_UU.xz * partial_gammaBar_LLl[0].xx; double tmp419 = tmp416 + tmp417; double tmp420 = tmp418 + tmp419; double tmp421 = gammaBar_UU.yz * partial_gammaBar_LLl[0].yy; double tmp422 = gammaBar_UU.zz * partial_gammaBar_LLl[0].yz; double tmp423 = gammaBar_UU.xz * partial_gammaBar_LLl[0].xy; double tmp424 = tmp421 + tmp422; double tmp425 = tmp423 + tmp424; double tmp426 = gammaBar_UU.zz * partial_gammaBar_LLl[0].zz; double tmp427 = tmp408 + tmp426; double tmp428 = tmp388 + tmp427; double tmp429 = tmp1 * tmp349; double tmp430 = tmp1 * tmp391; double tmp431 = r * tmp430; double tmp432 = tmp1 * tmp364; double tmp433 = tmp1 * tmp406; double tmp434 = r * tmp433; double tmp435 = tmp1 * tmp378; double tmp436 = tmp1 * tmp420; double tmp437 = r * tmp436; double tmp438 = tmp1 * tmp354; double tmp439 = tmp1 * tmp396; double tmp440 = r * tmp439; double tmp441 = tmp1 * tmp368; double tmp442 = tmp1 * tmp410; double tmp443 = r * tmp442; double tmp444 = tmp1 * tmp383; double tmp445 = tmp1 * tmp425; double tmp446 = r * tmp445; double tmp447 = tmp1 * tmp359; double tmp448 = tmp1 * tmp401; double tmp449 = r * tmp448; double tmp450 = tmp1 * tmp373; double tmp451 = tmp1 * tmp415; double tmp452 = r * tmp451; double tmp453 = tmp1 * tmp386; double tmp454 = tmp1 * tmp428; double tmp455 = r * tmp454; double dt_K = -1. * (gammaBar_UU.yy * partial2_alpha_ll.yy * tmp4 + gammaBar_UU.zz * partial2_alpha_ll.zz * tmp2 + gammaBar_UU.xx * partial2_alpha_ll.xx * tmp2 * tmp3 * tmp5 + 2. * gammaBar_UU.xy * partial2_alpha_ll.xy * r * tmp4 + 2. * gammaBar_UU.xz * partial2_alpha_ll.xz * r * tmp6 + 2. * gammaBar_UU.yz * partial2_alpha_ll.yz * tmp6) * tmp9 + W * (partial_W_l.z * (gammaBar_UU.zz * partial_alpha_l.z + gammaBar_UU.xz * tmp12 + gammaBar_UU.yz * tmp10) + partial_W_l.x * r * (gammaBar_UU.xz * partial_alpha_l.z + gammaBar_UU.xx * tmp12 + gammaBar_UU.xy * tmp10) * tmp1 + partial_W_l.y * (gammaBar_UU.yz * partial_alpha_l.z + gammaBar_UU.xy * tmp12 + gammaBar_UU.yy * tmp10) * tmp1) * tmp9 + (-1. * partial_alpha_l.x * r * (gammaBar_UU.yy + gammaBar_UU.zz) * tmp1 + partial_alpha_l.y * (2. * tmp20 + -1. * gammaBar_UU.zz * tmp16)) * tmp2 * tmp7 * tmp14 + 2. * partial_alpha_l.z * tmp2 * tmp9 * tmp25 + (U->LambdaBar_U.z * partial_alpha_l.z + U->LambdaBar_U.x * tmp12 + U->LambdaBar_U.y * tmp10) * tmp2 * tmp15 + -1. * (C_U.z * partial_alpha_l.z + C_U.x * tmp12 + C_U.y * tmp10) * tmp2 * tmp15 + -1. * (U->beta_U.y * tmp1 * tmp35 + U->beta_U.z * tmp30) * tmp15 + -1. * (U->beta_U.x * tmp99 + U->beta_U.z * tmp189 + U->beta_U.y * tmp144) * tmp15 + -1. * (U->beta_U.x * (ABar_LL.xx * (gammaBar_UU.xx * tmp196 + tmp211 + tmp212) + ABar_LL.xy * (gammaBar_UU.xx * tmp217 + tmp228 + tmp229) + ABar_LL.xy * (gammaBar_UU.xy * tmp196 + gammaBar_UU.yz * tmp210 + gammaBar_UU.yy * tmp203) + ABar_LL.xz * (gammaBar_UU.xx * tmp234 + tmp245 + tmp246) + ABar_LL.xz * (gammaBar_UU.xz * tmp196 + gammaBar_UU.zz * tmp210 + gammaBar_UU.yz * tmp203) + ABar_LL.yy * (gammaBar_UU.xy * tmp217 + gammaBar_UU.yz * tmp227 + gammaBar_UU.yy * tmp222) + ABar_LL.yz * (gammaBar_UU.xy * tmp234 + gammaBar_UU.yz * tmp244 + gammaBar_UU.yy * tmp239) + ABar_LL.zz * (gammaBar_UU.xz * tmp234 + gammaBar_UU.zz * tmp244 + gammaBar_UU.yz * tmp239) + ABar_LL.yz * (gammaBar_UU.xz * tmp217 + gammaBar_UU.zz * tmp227 + gammaBar_UU.yz * tmp222)) + U->beta_U.z * (ABar_LL.xx * (gammaBar_UU.xx * tmp210 + gammaBar_UU.xz * tmp290 + gammaBar_UU.xy * tmp260) + ABar_LL.xy * (gammaBar_UU.xx * tmp227 + gammaBar_UU.xz * tmp295 + gammaBar_UU.xy * tmp270) + ABar_LL.xy * (gammaBar_UU.xy * tmp210 + gammaBar_UU.yz * tmp290 + gammaBar_UU.yy * tmp260) + ABar_LL.xz * (gammaBar_UU.xx * tmp244 + gammaBar_UU.xz * tmp300 + gammaBar_UU.xy * tmp281) + ABar_LL.xz * (gammaBar_UU.zz * tmp290 + tmp212 + tmp271) + ABar_LL.yy * (gammaBar_UU.xy * tmp227 + gammaBar_UU.yz * tmp295 + gammaBar_UU.yy * tmp270) + ABar_LL.yz * (gammaBar_UU.xy * tmp244 + gammaBar_UU.yz * tmp300 + gammaBar_UU.yy * tmp281) + ABar_LL.zz * (gammaBar_UU.zz * tmp300 + tmp246 + tmp283) + ABar_LL.yz * (gammaBar_UU.zz * tmp295 + tmp229 + tmp282)) + U->beta_U.y * (ABar_LL.xx * (gammaBar_UU.xx * tmp203 + gammaBar_UU.xz * tmp260 + gammaBar_UU.xy * tmp253) + ABar_LL.xy * (gammaBar_UU.xx * tmp222 + gammaBar_UU.xz * tmp270 + gammaBar_UU.xy * tmp265) + ABar_LL.xy * (gammaBar_UU.yy * tmp253 + tmp211 + tmp271) + ABar_LL.xz * (gammaBar_UU.xx * tmp239 + gammaBar_UU.xz * tmp281 + gammaBar_UU.xy * tmp276) + ABar_LL.xz * (gammaBar_UU.xz * tmp203 + gammaBar_UU.zz * tmp260 + gammaBar_UU.yz * tmp253) + ABar_LL.yy * (gammaBar_UU.yy * tmp265 + tmp228 + tmp282) + ABar_LL.yz * (gammaBar_UU.yy * tmp276 + tmp245 + tmp283) + ABar_LL.zz * (gammaBar_UU.xz * tmp239 + gammaBar_UU.zz * tmp281 + gammaBar_UU.yz * tmp276) + ABar_LL.yz * (gammaBar_UU.xz * tmp222 + gammaBar_UU.zz * tmp270 + gammaBar_UU.yz * tmp265))) * tmp15 + -1. * (U->beta_U.z * (ABar_LL.xx * (gammaBar_UU.xx * tmp304 + gammaBar_UU.xy * tmp308 + tmp313) + ABar_LL.xy * (gammaBar_UU.xx * tmp317 + gammaBar_UU.xy * tmp320 + tmp325) + ABar_LL.xy * (gammaBar_UU.xy * tmp304 + gammaBar_UU.yy * tmp308 + tmp326) + ABar_LL.xz * (gammaBar_UU.xx * tmp328 + gammaBar_UU.xy * tmp330 + tmp333) + ABar_LL.xz * (tmp334 + tmp335 + tmp336) + ABar_LL.yy * (gammaBar_UU.xy * tmp317 + gammaBar_UU.yy * tmp320 + tmp337) + ABar_LL.yz * (gammaBar_UU.xy * tmp328 + gammaBar_UU.yy * tmp330 + tmp338) + ABar_LL.zz * (tmp342 + tmp343 + tmp344) + ABar_LL.yz * (tmp339 + tmp340 + tmp341)) + U->beta_U.x * r * (ABar_LL.xx * (gammaBar_UU.xx * tmp391 + gammaBar_UU.xz * tmp401 + gammaBar_UU.xy * tmp396) + ABar_LL.xy * (gammaBar_UU.xx * tmp406 + gammaBar_UU.xz * tmp415 + gammaBar_UU.xy * tmp410) + ABar_LL.xy * (gammaBar_UU.xy * tmp391 + gammaBar_UU.yz * tmp401 + gammaBar_UU.yy * tmp396) + ABar_LL.xz * (gammaBar_UU.xx * tmp420 + gammaBar_UU.xz * tmp428 + gammaBar_UU.xy * tmp425) + ABar_LL.xz * (gammaBar_UU.xz * tmp391 + gammaBar_UU.zz * tmp401 + gammaBar_UU.yz * tmp396) + ABar_LL.yy * (gammaBar_UU.xy * tmp406 + gammaBar_UU.yz * tmp415 + gammaBar_UU.yy * tmp410) + ABar_LL.yz * (gammaBar_UU.xy * tmp420 + gammaBar_UU.yz * tmp428 + gammaBar_UU.yy * tmp425) + ABar_LL.zz * (gammaBar_UU.xz * tmp420 + gammaBar_UU.zz * tmp428 + gammaBar_UU.yz * tmp425) + ABar_LL.yz * (gammaBar_UU.xz * tmp406 + gammaBar_UU.zz * tmp415 + gammaBar_UU.yz * tmp410)) * tmp1 + U->beta_U.y * (ABar_LL.xx * (gammaBar_UU.xx * tmp349 + gammaBar_UU.xz * tmp359 + gammaBar_UU.xy * tmp354) + ABar_LL.xy * (gammaBar_UU.xx * tmp364 + gammaBar_UU.xz * tmp373 + gammaBar_UU.xy * tmp368) + ABar_LL.xy * (gammaBar_UU.xy * tmp349 + gammaBar_UU.yz * tmp359 + gammaBar_UU.yy * tmp354) + ABar_LL.xz * (gammaBar_UU.xx * tmp378 + gammaBar_UU.xz * tmp386 + gammaBar_UU.xy * tmp383) + ABar_LL.xz * (gammaBar_UU.xz * tmp349 + gammaBar_UU.zz * tmp359 + gammaBar_UU.yz * tmp354) + ABar_LL.yy * (gammaBar_UU.xy * tmp364 + gammaBar_UU.yz * tmp373 + gammaBar_UU.yy * tmp368) + ABar_LL.yz * (gammaBar_UU.xy * tmp378 + gammaBar_UU.yz * tmp386 + gammaBar_UU.yy * tmp383) + ABar_LL.zz * (gammaBar_UU.xz * tmp378 + gammaBar_UU.zz * tmp386 + gammaBar_UU.yz * tmp383) + ABar_LL.yz * (gammaBar_UU.xz * tmp364 + gammaBar_UU.zz * tmp373 + gammaBar_UU.yz * tmp368)) * tmp1) * tmp15 + U->beta_U.x * tmp15 * tmp99 + U->beta_U.x * (ABar_LL.xx * (gammaBar_UU.xx * tmp431 + gammaBar_UU.xy * tmp429 + tmp336) + ABar_LL.xy * (gammaBar_UU.xx * tmp434 + gammaBar_UU.xy * tmp432 + tmp341) + ABar_LL.xy * (gammaBar_UU.yz * tmp304 + gammaBar_UU.xy * tmp431 + gammaBar_UU.yy * tmp429) + ABar_LL.xz * (gammaBar_UU.xx * tmp437 + gammaBar_UU.xy * tmp435 + tmp344) + ABar_LL.xz * (gammaBar_UU.zz * tmp304 + gammaBar_UU.xz * tmp431 + gammaBar_UU.yz * tmp429) + ABar_LL.yy * (gammaBar_UU.yz * tmp317 + gammaBar_UU.xy * tmp434 + gammaBar_UU.yy * tmp432) + ABar_LL.yz * (gammaBar_UU.yz * tmp328 + gammaBar_UU.xy * tmp437 + gammaBar_UU.yy * tmp435) + ABar_LL.zz * (gammaBar_UU.zz * tmp328 + gammaBar_UU.xz * tmp437 + gammaBar_UU.yz * tmp435) + ABar_LL.yz * (gammaBar_UU.zz * tmp317 + gammaBar_UU.xz * tmp434 + gammaBar_UU.yz * tmp432)) * tmp15 + U->beta_U.y * tmp15 * tmp144 + U->beta_U.y * (ABar_LL.xx * (gammaBar_UU.xz * tmp308 + gammaBar_UU.xx * tmp440 + gammaBar_UU.xy * tmp438) + ABar_LL.xy * (gammaBar_UU.xz * tmp320 + gammaBar_UU.xx * tmp443 + gammaBar_UU.xy * tmp441) + ABar_LL.xy * (gammaBar_UU.xy * tmp440 + gammaBar_UU.yy * tmp438 + tmp334) + ABar_LL.xz * (gammaBar_UU.xz * tmp330 + gammaBar_UU.xx * tmp446 + gammaBar_UU.xy * tmp444) + ABar_LL.xz * (gammaBar_UU.zz * tmp308 + gammaBar_UU.xz * tmp440 + gammaBar_UU.yz * tmp438) + ABar_LL.yy * (gammaBar_UU.xy * tmp443 + gammaBar_UU.yy * tmp441 + tmp339) + ABar_LL.yz * (gammaBar_UU.xy * tmp446 + gammaBar_UU.yy * tmp444 + tmp342) + ABar_LL.zz * (gammaBar_UU.zz * tmp330 + gammaBar_UU.xz * tmp446 + gammaBar_UU.yz * tmp444) + ABar_LL.yz * (gammaBar_UU.zz * tmp320 + gammaBar_UU.xz * tmp443 + gammaBar_UU.yz * tmp441)) * tmp15 + U->beta_U.z * tmp15 * tmp30 + U->beta_U.z * tmp15 * tmp189 + U->beta_U.z * (ABar_LL.xx * (gammaBar_UU.xx * tmp449 + gammaBar_UU.xy * tmp447 + tmp313) + ABar_LL.xy * (gammaBar_UU.xx * tmp452 + gammaBar_UU.xy * tmp450 + tmp325) + ABar_LL.xy * (gammaBar_UU.xy * tmp449 + gammaBar_UU.yy * tmp447 + tmp326) + ABar_LL.xz * (gammaBar_UU.xx * tmp455 + gammaBar_UU.xy * tmp453 + tmp333) + ABar_LL.xz * (gammaBar_UU.xz * tmp449 + gammaBar_UU.yz * tmp447 + tmp335) + ABar_LL.yy * (gammaBar_UU.xy * tmp452 + gammaBar_UU.yy * tmp450 + tmp337) + ABar_LL.yz * (gammaBar_UU.xy * tmp455 + gammaBar_UU.yy * tmp453 + tmp338) + ABar_LL.zz * (gammaBar_UU.xz * tmp455 + gammaBar_UU.yz * tmp453 + tmp343) + ABar_LL.yz * (gammaBar_UU.xz * tmp452 + gammaBar_UU.yz * tmp450 + tmp340)) * tmp15 + U->alpha * (U->K * U->K + (R_LL.xx * gammaBar_UU.xx + R_LL.yy * gammaBar_UU.yy + R_LL.zz * gammaBar_UU.zz + 2. * R_LL.xy * gammaBar_UU.xy + 2. * R_LL.yz * gammaBar_UU.yz + 2. * R_LL.xz * gammaBar_UU.xz) * tmp2 + -12. * M_PI * U->rho + 4. * M_PI * S) + U->beta_U.y * tmp13 * tmp35 + (U->beta_U.x * r * (gammaBar_UU.xx * partial_ABar_LLl[0].xx + gammaBar_UU.yy * partial_ABar_LLl[0].yy + gammaBar_UU.zz * partial_ABar_LLl[0].zz + 2. * gammaBar_UU.xy * partial_ABar_LLl[0].xy + 2. * gammaBar_UU.yz * partial_ABar_LLl[0].yz + 2. * gammaBar_UU.xz * partial_ABar_LLl[0].xz) + U->beta_U.y * (gammaBar_UU.xx * partial_ABar_LLl[1].xx + gammaBar_UU.yy * partial_ABar_LLl[1].yy + gammaBar_UU.zz * partial_ABar_LLl[1].zz + 2. * gammaBar_UU.xy * partial_ABar_LLl[1].xy + 2. * gammaBar_UU.yz * partial_ABar_LLl[1].yz + 2. * gammaBar_UU.xz * partial_ABar_LLl[1].xz)) * tmp13 + U->beta_U.z * (gammaBar_UU.xx * partial_ABar_LLl[2].xx + gammaBar_UU.yy * partial_ABar_LLl[2].yy + gammaBar_UU.zz * partial_ABar_LLl[2].zz + 2. * gammaBar_UU.xy * partial_ABar_LLl[2].xy + 2. * gammaBar_UU.yz * partial_ABar_LLl[2].yz + 2. * gammaBar_UU.xz * partial_ABar_LLl[2].xz) * tmp15 + (U->beta_U.x * partial_K_l.x * r + U->beta_U.y * partial_K_l.y) * tmp13 + U->beta_U.z * partial_K_l.z * tmp15;


variable: $\bar{\epsilon}$
eqn:${{{{ \bar{\epsilon}} _I} _J} _{,t}} = {{{{-2}} {{\alpha}} \cdot {{{{ \bar{A}} _I} _J}}} + {{{{{ \bar{\gamma}} _I} _K}} {{{{ \beta} ^K} _{,j}}} {{{{ e} ^j} _J}}} + {{{{{ \bar{\gamma}} _J} _K}} {{{{ \beta} ^K} _{,i}}} {{{{ e} ^i} _I}}} + {{{{ \beta} ^A}} {{{{ \bar{\gamma}} _I} _K}} {{{{ e} ^j} _J}} {{{{ e} _k} ^K}} {{{{{ e} ^k} _A} _{,j}}}} + {{{{ \beta} ^A}} {{{{ \bar{\gamma}} _J} _K}} {{{{ e} ^i} _I}} {{{{ e} _k} ^K}} {{{{{ e} ^k} _A} _{,i}}}} + {{{{ \beta} ^K}} {{{{ \bar{\gamma}} _M} _J}} {{{{ e} ^i} _I}} {{{{ e} ^k} _K}} {{{{{ e} _i} ^M} _{,k}}}} + {{{{ \beta} ^K}} {{{{ \bar{\gamma}} _I} _N}} {{{{ e} ^j} _J}} {{{{ e} ^k} _K}} {{{{{ e} _j} ^N} _{,k}}}} + {{{{ \beta} ^K}} {{{{ e} ^k} _K}} {{{{{ \bar{\gamma}} _I} _J} _{,k}}}} + {{{-2}} \cdot {{\frac{1}{3}}} {{{ \beta} ^K}} {{{{ \bar{\gamma}} _I} _J}} {{{{{ e} ^k} _K} _{,k}}}} + {{{-2}} \cdot {{\frac{1}{3}}} {{{{ \bar{\gamma}} _I} _J}} {{{{ \beta} ^K} _{,k}}} {{{{ e} ^k} _K}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \bar{\gamma}} _{,k}}} {{{ \beta} ^K}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^k} _K}} {{\frac{1}{\bar{\gamma}}}}}}$
new eqn: ${{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {dt_epsilonBar_LL.xx} & {dt_epsilonBar_LL.xy} & {dt_epsilonBar_LL.xz} \\ {dt_epsilonBar_LL.xy} & {dt_epsilonBar_LL.yy} & {dt_epsilonBar_LL.yz} \\ {dt_epsilonBar_LL.xz} & {dt_epsilonBar_LL.yz} & {dt_epsilonBar_LL.zz}\end{matrix} \right]}} _I} _J} = {{{{-2}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _I} _J}} {{U->alpha}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^K}} {{{{ \overset{k\downarrow K\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^k} _K}} {{{{{ \overset{I\downarrow[{J\downarrow k\rightarrow}]}{\left[ \begin{matrix} \overset{J\downarrow k\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{J\downarrow k\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{J\downarrow k\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _I} _J} _k}}} + {{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _J} _K}} {{{{ \overset{K\downarrow i\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^K} _i}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}}} + {{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _K}} {{{{ \overset{K\downarrow j\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^K} _j}} {{{{ \overset{j\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^j} _J}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^K}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _M} _J}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}} {{{{ \overset{k\downarrow K\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^k} _K}} {{{{{ \overset{i\downarrow[{M\downarrow k\rightarrow}]}{\left[ \begin{matrix} \overset{M\downarrow k\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{M\downarrow k\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{M\downarrow k\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _i} ^M} _k}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^K}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _N}} {{{{ \overset{j\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^j} _J}} {{{{ \overset{k\downarrow K\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^k} _K}} {{{{{ \overset{j\downarrow[{N\downarrow k\rightarrow}]}{\left[ \begin{matrix} \overset{N\downarrow k\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{N\downarrow k\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{N\downarrow k\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _j} ^N} _k}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _J} _K}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}} {{{{ \overset{k\downarrow K\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _k} ^K}} {{{{{ \overset{k\downarrow[{A\downarrow i\rightarrow}]}{\left[ \begin{matrix} \overset{A\downarrow i\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{A\downarrow i\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{A\downarrow i\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^k} _A} _i}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _K}} {{{{ \overset{j\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^j} _J}} {{{{ \overset{k\downarrow K\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _k} ^K}} {{{{{ \overset{k\downarrow[{A\downarrow j\rightarrow}]}{\left[ \begin{matrix} \overset{A\downarrow j\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{A\downarrow j\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{A\downarrow j\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^k} _A} _j}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \overset{k\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _k}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^K}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{k\downarrow K\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^k} _K}} {{\frac{1}{{det_gammaBar}}}}} + {{{-2}} \cdot {{\frac{1}{3}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^K}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{{ \overset{k\downarrow[{K\downarrow k\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow k\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow k\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow k\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^k} _K} _k}}} + {{{-2}} \cdot {{\frac{1}{3}}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{K\downarrow k\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^K} _k}} {{{{ \overset{k\downarrow K\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^k} _K}}}}$

double tmp1 = sin(theta); double tmp2 = 1. / r; double tmp3 = 1. / tmp1; double tmp4 = tmp2 * tmp3; double tmp5 = r * tmp1; double tmp6 = partial_beta_Ul[1].y * tmp1; double tmp7 = partial_beta_Ul[0].x * tmp5; double tmp8 = tmp6 + tmp7; double tmp9 = partial_beta_Ul[2].z + tmp8; double tmp10 = tmp4 * tmp9; double tmp11 = 1. / 3.; double tmp12 = r * r; double tmp13 = cos(theta); double tmp14 = U->beta_U.x * tmp1; double tmp15 = U->beta_U.y * tmp13; double tmp16 = 2. * tmp14; double tmp17 = 1. / det_gammaBar; double tmp18 = tmp15 + tmp16; double tmp19 = tmp1 * tmp17; double tmp20 = r * tmp12; double tmp21 = tmp18 * tmp19; double tmp22 = tmp20 * tmp21; double tmp23 = partial_gammaBar_LLl[2].xy * tmp4; double tmp24 = partial_gammaBar_LLl[0].xy * r; double tmp25 = U->beta_U.y * partial_gammaBar_LLl[1].xy; double tmp26 = U->beta_U.x * tmp24; double tmp27 = tmp25 + tmp26; double tmp28 = U->beta_U.z * tmp23; double tmp29 = tmp2 * tmp27; double tmp30 = gammaBar_LL.xy * tmp10; double tmp31 = tmp11 * tmp30; double tmp32 = U->beta_U.y * gammaBar_LL.yy; double tmp33 = U->beta_U.z * gammaBar_LL.yz; double tmp34 = tmp32 + tmp33; double tmp35 = tmp2 * tmp34; double tmp36 = partial_beta_Ul[1].x * tmp2; double tmp37 = partial_beta_Ul[1].y * tmp2; double tmp38 = partial_beta_Ul[1].z * tmp2; double tmp39 = gammaBar_LL.xy * tmp37; double tmp40 = gammaBar_LL.xz * tmp38; double tmp41 = gammaBar_LL.xx * tmp36; double tmp42 = tmp39 + tmp40; double tmp43 = gammaBar_LL.xy * tmp22; double tmp44 = tmp11 * tmp43; double tmp45 = gammaBar_LL.xy * tmp2; double tmp46 = tmp4 * tmp13; double tmp47 = gammaBar_LL.xz * tmp46; double tmp48 = U->beta_U.z * tmp47; double tmp49 = gammaBar_LL.yy * partial_beta_Ul[0].y; double tmp50 = gammaBar_LL.yz * partial_beta_Ul[0].z; double tmp51 = gammaBar_LL.xy * partial_beta_Ul[0].x; double tmp52 = tmp49 + tmp50; double tmp53 = ABar_LL.xy * U->alpha; double tmp54 = tmp51 + tmp52; double tmp55 = -2. * tmp53; double tmp56 = -1. * tmp48; double tmp57 = tmp54 + tmp55; double tmp58 = U->beta_U.x * tmp45; double tmp59 = tmp56 + tmp57; double tmp60 = -2. * tmp44; double tmp61 = tmp58 + tmp59; double tmp62 = tmp41 + tmp42; double tmp63 = tmp60 + tmp61; double tmp64 = -1. * tmp35; double tmp65 = tmp62 + tmp63; double tmp66 = -2. * tmp31; double tmp67 = tmp64 + tmp65; double tmp68 = tmp28 + tmp29; double tmp69 = tmp66 + tmp67; double tmp70 = partial_gammaBar_LLl[2].xz * tmp4; double tmp71 = partial_gammaBar_LLl[0].xz * r; double tmp72 = U->beta_U.y * partial_gammaBar_LLl[1].xz; double tmp73 = U->beta_U.x * tmp71; double tmp74 = tmp72 + tmp73; double tmp75 = U->beta_U.z * tmp70; double tmp76 = tmp2 * tmp74; double tmp77 = partial_beta_Ul[2].x * tmp4; double tmp78 = partial_beta_Ul[2].y * tmp4; double tmp79 = partial_beta_Ul[2].z * tmp4; double tmp80 = gammaBar_LL.xy * tmp78; double tmp81 = gammaBar_LL.xz * tmp79; double tmp82 = gammaBar_LL.xx * tmp77; double tmp83 = tmp80 + tmp81; double tmp84 = gammaBar_LL.xz * tmp10; double tmp85 = tmp11 * tmp84; double tmp86 = tmp14 + tmp15; double tmp87 = tmp4 * tmp86; double tmp88 = U->beta_U.y * gammaBar_LL.yz; double tmp89 = U->beta_U.z * gammaBar_LL.zz; double tmp90 = tmp88 + tmp89; double tmp91 = tmp2 * tmp90; double tmp92 = gammaBar_LL.xz * tmp22; double tmp93 = tmp11 * tmp92; double tmp94 = gammaBar_LL.yz * partial_beta_Ul[0].y; double tmp95 = gammaBar_LL.zz * partial_beta_Ul[0].z; double tmp96 = gammaBar_LL.xz * partial_beta_Ul[0].x; double tmp97 = tmp94 + tmp95; double tmp98 = ABar_LL.xz * U->alpha; double tmp99 = tmp96 + tmp97; double tmp100 = -2. * tmp98; double tmp101 = -2. * tmp93; double tmp102 = tmp99 + tmp100; double tmp103 = -1. * tmp91; double tmp104 = tmp101 + tmp102; double tmp105 = gammaBar_LL.xz * tmp87; double tmp106 = tmp103 + tmp104; double tmp107 = -2. * tmp85; double tmp108 = tmp105 + tmp106; double tmp109 = tmp82 + tmp83; double tmp110 = tmp107 + tmp108; double tmp111 = tmp75 + tmp76; double tmp112 = tmp109 + tmp110; double tmp113 = partial_gammaBar_LLl[2].yz * tmp4; double tmp114 = partial_gammaBar_LLl[0].yz * r; double tmp115 = U->beta_U.y * partial_gammaBar_LLl[1].yz; double tmp116 = U->beta_U.x * tmp114; double tmp117 = tmp115 + tmp116; double tmp118 = U->beta_U.z * tmp113; double tmp119 = tmp2 * tmp117; double tmp120 = gammaBar_LL.yy * tmp78; double tmp121 = gammaBar_LL.yz * tmp79; double tmp122 = gammaBar_LL.xy * tmp77; double tmp123 = tmp120 + tmp121; double tmp124 = gammaBar_LL.yz * tmp10; double tmp125 = tmp11 * tmp124; double tmp126 = gammaBar_LL.yz * tmp37; double tmp127 = gammaBar_LL.zz * tmp38; double tmp128 = gammaBar_LL.xz * tmp36; double tmp129 = tmp126 + tmp127; double tmp130 = gammaBar_LL.yz * tmp22; double tmp131 = tmp11 * tmp130; double tmp132 = gammaBar_LL.yz * tmp2; double tmp133 = gammaBar_LL.zz * tmp46; double tmp134 = U->beta_U.z * tmp133; double tmp135 = ABar_LL.yz * U->alpha; double tmp136 = -1. * tmp134; double tmp137 = -2. * tmp135; double tmp138 = U->beta_U.x * tmp132; double tmp139 = tmp136 + tmp137; double tmp140 = -2. * tmp131; double tmp141 = tmp138 + tmp139; double tmp142 = tmp128 + tmp129; double tmp143 = tmp140 + tmp141; double tmp144 = gammaBar_LL.yz * tmp87; double tmp145 = tmp142 + tmp143; double tmp146 = -2. * tmp125; double tmp147 = tmp144 + tmp145; double tmp148 = tmp122 + tmp123; double tmp149 = tmp146 + tmp147; double tmp150 = tmp118 + tmp119; double tmp151 = tmp148 + tmp149; double tmp152 = tmp68 + tmp69; double tmp153 = tmp111 + tmp112; double tmp154 = tmp150 + tmp151; double dt_epsilonBar_LL.xx = -2. * gammaBar_LL.xx * tmp10 * tmp11 + -2. * (U->beta_U.z * gammaBar_LL.xz + U->beta_U.y * gammaBar_LL.xy) * tmp2 + -2. * gammaBar_LL.xx * tmp11 * tmp22 + -2. * ABar_LL.xx * U->alpha + 2. * (gammaBar_LL.xx * partial_beta_Ul[0].x + gammaBar_LL.xz * partial_beta_Ul[0].z + gammaBar_LL.xy * partial_beta_Ul[0].y) + (U->beta_U.x * partial_gammaBar_LLl[0].xx * r + U->beta_U.y * partial_gammaBar_LLl[1].xx) * tmp2 + U->beta_U.z * partial_gammaBar_LLl[2].xx * tmp4; double dt_epsilonBar_LL.xy = tmp152; double dt_epsilonBar_LL.xz = tmp153; double dt_epsilonBar_LL.xy = tmp152; double dt_epsilonBar_LL.yy = -2. * gammaBar_LL.yy * tmp10 * tmp11 + 2. * (gammaBar_LL.xy * partial_beta_Ul[1].x + gammaBar_LL.yz * partial_beta_Ul[1].z + gammaBar_LL.yy * partial_beta_Ul[1].y) * tmp2 + -2. * gammaBar_LL.yy * tmp11 * tmp22 + 2. * U->beta_U.x * gammaBar_LL.yy * tmp2 + -2. * ABar_LL.yy * U->alpha + -2. * U->beta_U.z * gammaBar_LL.yz * tmp46 + (U->beta_U.x * partial_gammaBar_LLl[0].yy * r + U->beta_U.y * partial_gammaBar_LLl[1].yy) * tmp2 + U->beta_U.z * partial_gammaBar_LLl[2].yy * tmp4; double dt_epsilonBar_LL.yz = tmp154; double dt_epsilonBar_LL.xz = tmp153; double dt_epsilonBar_LL.yz = tmp154; double dt_epsilonBar_LL.zz = 2. * (gammaBar_LL.xz * partial_beta_Ul[2].x + gammaBar_LL.zz * partial_beta_Ul[2].z + gammaBar_LL.yz * partial_beta_Ul[2].y) * tmp4 + -2. * gammaBar_LL.zz * tmp10 * tmp11 + 2. * gammaBar_LL.zz * tmp87 + -2. * ABar_LL.zz * U->alpha + -2. * gammaBar_LL.zz * tmp11 * tmp22 + (U->beta_U.x * partial_gammaBar_LLl[0].zz * r + U->beta_U.y * partial_gammaBar_LLl[1].zz) * tmp2 + U->beta_U.z * partial_gammaBar_LLl[2].zz * tmp4;


variable: $\bar{A}$
eqn:${{{{ \bar{A}} _I} _J} _{,t}} = {{{{8}} \cdot {{\frac{1}{3}}} {{S}} {{\alpha}} \cdot {{\pi}} \cdot {{{{ \bar{\gamma}} _I} _J}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \bar{\gamma}} _{,a}}} {{{ \beta} ^A}} {{{{ \bar{A}} _I} _J}} {{{{ e} ^a} _A}} {{\frac{1}{\bar{\gamma}}}}} + {{{2}} \cdot {{\frac{1}{3}}} {{W}} {{{ W} _{,a}}} {{{ \alpha} _{,b}}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{\alpha}} \cdot {{{{ R} _A} _B}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ \bar{\gamma}} _I} _J}} {{{W}^{2}}}} + {{{\frac{1}{3}}} {{{{ \alpha} _{,a}} _{,b}}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{W}^{2}}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \alpha} _{,a}}} {{{ \bar{\Lambda}} ^A}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^a} _A}} {{{W}^{2}}}} + {{{\frac{1}{2}}} {{{ \alpha} _{,a}}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ \bar{\gamma}} _C} _I}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^j} _J}} {{{{{ e} _b} ^C} _{,j}}} {{{W}^{2}}}} + {{{\frac{1}{2}}} {{{ \alpha} _{,a}}} {{{{ e} ^a} _M}} {{{{ e} ^i} _I}} {{{{ e} ^j} _J}} {{{{{ e} _i} ^M} _{,j}}} {{{W}^{2}}}} + {{{\frac{1}{2}}} {{{ \alpha} _{,a}}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ \bar{\gamma}} _C} _J}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^i} _I}} {{{{{ e} _b} ^C} _{,i}}} {{{W}^{2}}}} + {{{\frac{1}{2}}} {{{ \alpha} _{,a}}} {{{{ e} ^a} _N}} {{{{ e} ^i} _I}} {{{{ e} ^j} _J}} {{{{{ e} _j} ^N} _{,i}}} {{{W}^{2}}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{ \alpha} _{,a}}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ \bar{\gamma}} _M} _J}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^i} _I}} {{{{{ e} _i} ^M} _{,b}}} {{{W}^{2}}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{ \alpha} _{,a}}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ \bar{\gamma}} _I} _N}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^j} _J}} {{{{{ e} _j} ^N} _{,b}}} {{{W}^{2}}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{ \alpha} _{,a}}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{{ \bar{\gamma}} _I} _J} _{,b}}} {{{W}^{2}}}} + {{{\frac{1}{2}}} {{{ \alpha} _{,a}}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ e} ^a} _A}} {{{{ e} ^i} _I}} {{{{{ \bar{\gamma}} _B} _J} _{,i}}} {{{W}^{2}}}} + {{{\frac{1}{2}}} {{{ \alpha} _{,a}}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ e} ^a} _A}} {{{{ e} ^j} _J}} {{{{{ \bar{\gamma}} _B} _I} _{,j}}} {{{W}^{2}}}} + {{{K}} {{\alpha}} \cdot {{{{ \bar{A}} _I} _J}}} + {{{-1}} {{W}} {{{ W} _{,i}}} {{{ \alpha} _{,j}}} {{{{ e} ^i} _I}} {{{{ e} ^j} _J}}} + {{{-1}} {{W}} {{{ W} _{,j}}} {{{ \alpha} _{,i}}} {{{{ e} ^i} _I}} {{{{ e} ^j} _J}}} + {{{\alpha}} \cdot {{{{ R} _I} _J}} {{{W}^{2}}}} + {{{-2}} {{\alpha}} \cdot {{{{ \bar{A}} _A} _J}} {{{{ \bar{A}} _B} _I}} {{{{ \bar{\gamma}} ^A} ^B}}} + {{{-8}} {{\alpha}} \cdot {{\pi}} \cdot {{{{ S} _I} _J}} {{{W}^{2}}}} + {{{-1}} {{{{ \alpha} _{,i}} _{,j}}} {{{{ e} ^i} _I}} {{{{ e} ^j} _J}} {{{W}^{2}}}} + {{{{{ \bar{A}} _B} _I}} {{{{ \beta} ^B} _{,j}}} {{{{ e} ^j} _J}}} + {{{{{ \bar{A}} _B} _J}} {{{{ \beta} ^B} _{,i}}} {{{{ e} ^i} _I}}} + {{{{ \beta} ^A}} {{{{ \bar{A}} _M} _J}} {{{{ e} ^a} _A}} {{{{ e} ^i} _I}} {{{{{ e} _i} ^M} _{,a}}}} + {{{{ \beta} ^A}} {{{{ \bar{A}} _I} _N}} {{{{ e} ^a} _A}} {{{{ e} ^j} _J}} {{{{{ e} _j} ^N} _{,a}}}} + {{{{ \beta} ^A}} {{{{ e} ^a} _A}} {{{{{ \bar{A}} _I} _J} _{,a}}}} + {{{{ \beta} ^B}} {{{{ \bar{A}} _A} _I}} {{{{ e} _a} ^A}} {{{{ e} ^j} _J}} {{{{{ e} ^a} _B} _{,j}}}} + {{{{ \beta} ^B}} {{{{ \bar{A}} _A} _J}} {{{{ e} _a} ^A}} {{{{ e} ^i} _I}} {{{{{ e} ^a} _B} _{,i}}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^E}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^a} _A}} {{{{{ \bar{A}} _B} _E} _{,a}}}} + {{{-2}} \cdot {{\frac{1}{3}}} {{{ \beta} ^A}} {{{{ \bar{A}} _I} _J}} {{{{{ e} ^a} _A} _{,a}}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \beta} ^A}} {{{{ \bar{A}} _D} _E}} {{{{ \bar{\gamma}} ^D} ^C}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{{ e} _c} ^E} _{,a}}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \beta} ^A}} {{{{ \bar{A}} _D} _E}} {{{{ \bar{\gamma}} ^B} ^E}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{{ e} _b} ^D} _{,a}}}} + {{{\frac{1}{3}}} {{{ \beta} ^A}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^B} ^F}} {{{{ \bar{\gamma}} ^C} ^E}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^a} _A}} {{{{{ \bar{\gamma}} _F} _E} _{,a}}}} + {{{\frac{1}{3}}} {{{ \beta} ^F}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^B} ^D}} {{{{ \bar{\gamma}} ^C} ^E}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^e} _E}} {{{{{ \bar{\gamma}} _F} _D} _{,e}}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \beta} ^A}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^B} ^D}} {{{{ \bar{\gamma}} ^C} ^G}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^d} _D}} {{{{{ \bar{\gamma}} _A} _G} _{,d}}}} + {{{\frac{1}{3}}} {{{ \beta} ^F}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^B} ^D}} {{{{ \bar{\gamma}} ^C} ^E}} {{{{ \bar{\gamma}} _F} _G}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^d} _D}} {{{{ e} ^e} _E}} {{{{{ e} _d} ^G} _{,e}}}} + {{{\frac{1}{3}}} {{{ \beta} ^A}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^C} ^E}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^a} _A}} {{{{ e} ^e} _E}} {{{{{ e} _a} ^B} _{,e}}}} + {{{\frac{1}{3}}} {{{ \beta} ^A}} {{{{ \bar{A}} _G} _C}} {{{{ \bar{\gamma}} ^C} ^E}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^a} _A}} {{{{ e} ^e} _E}} {{{{{ e} _e} ^G} _{,a}}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \beta} ^A}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^B} ^D}} {{{{ \bar{\gamma}} ^C} ^E}} {{{{ \bar{\gamma}} _A} _G}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^d} _D}} {{{{ e} ^e} _E}} {{{{{ e} _e} ^G} _{,d}}}} + {{{\frac{1}{3}}} {{{ \beta} ^A}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^B} ^D}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^a} _A}} {{{{ e} ^d} _D}} {{{{{ e} _d} ^C} _{,a}}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \beta} ^A}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^B} ^D}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^a} _A}} {{{{ e} ^d} _D}} {{{{{ e} _a} ^C} _{,d}}}} + {{{-2}} \cdot {{\frac{1}{3}}} {{{{ \bar{A}} _I} _J}} {{{{ \beta} ^A} _{,a}}} {{{{ e} ^a} _A}}} + {{{\frac{1}{3}}} {{{ \alpha} _{,a}}} {{{ \mathcal{C}} ^A}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^a} _A}} {{{W}^{2}}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \alpha} _{,a}}} {{{ \hat{\Gamma}} ^A}} {{{{ \bar{\gamma}} _I} _J}} {{{{ e} ^a} _A}} {{{W}^{2}}}}}$
new eqn: ${{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {dt_ABar_LL.xx} & {dt_ABar_LL.xy} & {dt_ABar_LL.xz} \\ {dt_ABar_LL.xy} & {dt_ABar_LL.yy} & {dt_ABar_LL.yz} \\ {dt_ABar_LL.xz} & {dt_ABar_LL.yz} & {dt_ABar_LL.zz}\end{matrix} \right]}} _I} _J} = {{{{\frac{1}{6}}} {{\left({{{{2}} {{\left({{{{3}} {{\left({{{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _I} _J}} {{U->alpha}} \cdot {{U->K}}} + {{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {R_LL.xx} & {R_LL.xy} & {R_LL.xz} \\ {R_LL.xy} & {R_LL.yy} & {R_LL.yz} \\ {R_LL.xz} & {R_LL.yz} & {R_LL.zz}\end{matrix} \right]}} _I} _J}} {{{W}^{2}}} {{U->alpha}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{{ \overset{I\downarrow[{J\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{J\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_ABar_LLl[0].xx} & {partial_ABar_LLl[1].xx} & {partial_ABar_LLl[2].xx} \\ {partial_ABar_LLl[0].xy} & {partial_ABar_LLl[1].xy} & {partial_ABar_LLl[2].xy} \\ {partial_ABar_LLl[0].xz} & {partial_ABar_LLl[1].xz} & {partial_ABar_LLl[2].xz}\end{matrix} \right]} \\ \overset{J\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_ABar_LLl[0].xy} & {partial_ABar_LLl[1].xy} & {partial_ABar_LLl[2].xy} \\ {partial_ABar_LLl[0].yy} & {partial_ABar_LLl[1].yy} & {partial_ABar_LLl[2].yy} \\ {partial_ABar_LLl[0].yz} & {partial_ABar_LLl[1].yz} & {partial_ABar_LLl[2].yz}\end{matrix} \right]} \\ \overset{J\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_ABar_LLl[0].xz} & {partial_ABar_LLl[1].xz} & {partial_ABar_LLl[2].xz} \\ {partial_ABar_LLl[0].yz} & {partial_ABar_LLl[1].yz} & {partial_ABar_LLl[2].yz} \\ {partial_ABar_LLl[0].zz} & {partial_ABar_LLl[1].zz} & {partial_ABar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _I} _J} _a}}} + {{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _J}} {{{{ \overset{B\downarrow i\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^B} _i}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}}} + {{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _I}} {{{{ \overset{B\downarrow j\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^B} _j}} {{{{ \overset{j\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^j} _J}}} + {{{-1}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {partial2_alpha_ll.xx} & {partial2_alpha_ll.xy} & {partial2_alpha_ll.xz} \\ {partial2_alpha_ll.xy} & {partial2_alpha_ll.yy} & {partial2_alpha_ll.yz} \\ {partial2_alpha_ll.xz} & {partial2_alpha_ll.yz} & {partial2_alpha_ll.zz}\end{matrix} \right]}} _i} _j}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}} {{{{ \overset{j\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^j} _J}} {{{W}^{2}}}} + {{{-2}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _A} _J}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{U->alpha}}} + {{{-1}} {{W}} {{{ \overset{j\downarrow}{\left[ \begin{matrix} {partial_W_l.x} \\ {partial_W_l.y} \\ {partial_W_l.z}\end{matrix} \right]}} _j}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _i}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}} {{{{ \overset{j\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^j} _J}}} + {{{-1}} {{W}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {partial_W_l.x} \\ {partial_W_l.y} \\ {partial_W_l.z}\end{matrix} \right]}} _i}} {{{ \overset{j\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _j}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}} {{{{ \overset{j\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^j} _J}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _M} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}} {{{{{ \overset{i\downarrow[{M\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{M\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{M\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{M\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _i} ^M} _a}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _A} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _a} ^A}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}} {{{{{ \overset{a\downarrow[{B\downarrow i\rightarrow}]}{\left[ \begin{matrix} \overset{B\downarrow i\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow i\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow i\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^a} _B} _i}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _I} _N}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{j\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^j} _J}} {{{{{ \overset{j\downarrow[{N\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{N\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{N\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{N\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _j} ^N} _a}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _A} _I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _a} ^A}} {{{{ \overset{j\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^j} _J}} {{{{{ \overset{a\downarrow[{B\downarrow j\rightarrow}]}{\left[ \begin{matrix} \overset{B\downarrow j\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow j\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow j\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^a} _B} _j}}} + {{{-8}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {S_LL.xx} & {S_LL.xy} & {S_LL.xz} \\ {S_LL.xy} & {S_LL.yy} & {S_LL.yz} \\ {S_LL.xz} & {S_LL.yz} & {S_LL.zz}\end{matrix} \right]}} _I} _J}} {{{W}^{2}}} {{U->alpha}} \cdot {{{M_PI}}}}}\right)}}} + {{{-2}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{{ \overset{a\downarrow[{A\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{A\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{A\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{A\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^a} _A} _a}}} + {{{-2}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{A\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^A} _a}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}}} + {{{-1}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _a}} {{{ \overset{A\downarrow}{\left[ \begin{matrix} -{{\frac{1}{r}}{\left({{{gammaBar_UU.yy}} + {{gammaBar_UU.zz}}}\right)}} \\ \frac{{-{{{{gammaBar_UU.zz}}} \cdot {{\cos\left( theta\right)}}}} + {{{2}} {{{gammaBar_UU.xy}}} \cdot {{\sin\left( theta\right)}}}}{{{r}} {{\sin\left( theta\right)}}} \\ \frac{{{2}} {{\left({{{{{gammaBar_UU.xz}}} \cdot {{\sin\left( theta\right)}}} + {{{{gammaBar_UU.yz}}} \cdot {{\cos\left( theta\right)}}}}\right)}}}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{W}^{2}}}} + {{{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _a}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {C_U.x} \\ {C_U.y} \\ {C_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{W}^{2}}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{{ \overset{B\downarrow[{E\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_ABar_LLl[0].xx} & {partial_ABar_LLl[1].xx} & {partial_ABar_LLl[2].xx} \\ {partial_ABar_LLl[0].xy} & {partial_ABar_LLl[1].xy} & {partial_ABar_LLl[2].xy} \\ {partial_ABar_LLl[0].xz} & {partial_ABar_LLl[1].xz} & {partial_ABar_LLl[2].xz}\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_ABar_LLl[0].xy} & {partial_ABar_LLl[1].xy} & {partial_ABar_LLl[2].xy} \\ {partial_ABar_LLl[0].yy} & {partial_ABar_LLl[1].yy} & {partial_ABar_LLl[2].yy} \\ {partial_ABar_LLl[0].yz} & {partial_ABar_LLl[1].yz} & {partial_ABar_LLl[2].yz}\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_ABar_LLl[0].xz} & {partial_ABar_LLl[1].xz} & {partial_ABar_LLl[2].xz} \\ {partial_ABar_LLl[0].yz} & {partial_ABar_LLl[1].yz} & {partial_ABar_LLl[2].yz} \\ {partial_ABar_LLl[0].zz} & {partial_ABar_LLl[1].zz} & {partial_ABar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _B} _E} _a}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _G} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{e\downarrow[{G\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{G\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _e} ^G} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{a\downarrow[{C\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _a} ^C} _d}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^F}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{F\downarrow[{D\downarrow e\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow e\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{D\downarrow e\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{D\downarrow e\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _F} _D} _e}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^G}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{A\downarrow[{G\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{G\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{G\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{G\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _A} _G} _d}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{d\downarrow[{C\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^C} _a}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^F}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{{ \overset{F\downarrow[{E\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _F} _E} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _D} _E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{{ \overset{b\downarrow[{D\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^D} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _D} _E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^D} ^C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{c\downarrow[{E\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^E} _a}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{a\downarrow[{B\downarrow e\rightarrow}]}{\left[ \begin{matrix} \overset{B\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _a} ^B} _e}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^F}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _F} _G}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{d\downarrow[{G\downarrow e\rightarrow}]}{\left[ \begin{matrix} \overset{G\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^G} _e}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _A} _G}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{e\downarrow[{G\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{G\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _e} ^G} _d}}}}\right)}}} + {{{-2}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {R_LL.xx} & {R_LL.xy} & {R_LL.xz} \\ {R_LL.xy} & {R_LL.yy} & {R_LL.yz} \\ {R_LL.xz} & {R_LL.yz} & {R_LL.zz}\end{matrix} \right]}} _A} _B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{W}^{2}}} {{U->alpha}}} + {{{-2}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _a}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->LambdaBar_U.x} \\ {U->LambdaBar_U.y} \\ {U->LambdaBar_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{W}^{2}}}} + {{{2}} {{{{ \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_alpha_ll.xx} & {partial2_alpha_ll.xy} & {partial2_alpha_ll.xz} \\ {partial2_alpha_ll.xy} & {partial2_alpha_ll.yy} & {partial2_alpha_ll.yz} \\ {partial2_alpha_ll.xz} & {partial2_alpha_ll.yz} & {partial2_alpha_ll.zz}\end{matrix} \right]}} _a} _b}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{W}^{2}}}} + {{{-3}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _a}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{{ \overset{I\downarrow[{J\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{J\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{J\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{J\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _I} _J} _b}} {{{W}^{2}}}} + {{{3}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _a}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{j\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^j} _J}} {{{{{ \overset{B\downarrow[{I\downarrow j\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow j\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{I\downarrow j\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{I\downarrow j\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _B} _I} _j}} {{{W}^{2}}}} + {{{3}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _a}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}} {{{{{ \overset{B\downarrow[{J\downarrow i\rightarrow}]}{\left[ \begin{matrix} \overset{J\downarrow i\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{J\downarrow i\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{J\downarrow i\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _B} _J} _i}} {{{W}^{2}}}} + {{{3}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _a}} {{{{ \overset{a\downarrow M\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _M}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}} {{{{ \overset{j\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^j} _J}} {{{{{ \overset{i\downarrow[{M\downarrow j\rightarrow}]}{\left[ \begin{matrix} \overset{M\downarrow j\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{M\downarrow j\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{M\downarrow j\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _i} ^M} _j}} {{{W}^{2}}}} + {{{3}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _a}} {{{{ \overset{a\downarrow N\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _N}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}} {{{{ \overset{j\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^j} _J}} {{{{{ \overset{j\downarrow[{N\downarrow i\rightarrow}]}{\left[ \begin{matrix} \overset{N\downarrow i\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{N\downarrow i\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{N\downarrow i\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _j} ^N} _i}} {{{W}^{2}}}} + {{{4}} {{W}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_W_l.x} \\ {partial_W_l.y} \\ {partial_W_l.z}\end{matrix} \right]}} _a}} {{{ \overset{b\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _b}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}}} + {{{3}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _a}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _C} _I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{j\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^j} _J}} {{{{{ \overset{b\downarrow[{C\downarrow j\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow j\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow j\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow j\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^C} _j}} {{{W}^{2}}}} + {{{-3}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _a}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _M} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}} {{{{{ \overset{i\downarrow[{M\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{M\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{M\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{M\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _i} ^M} _b}} {{{W}^{2}}}} + {{{-3}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _a}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _N}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{j\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^j} _J}} {{{{{ \overset{j\downarrow[{N\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{N\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{N\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{N\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _j} ^N} _b}} {{{W}^{2}}}} + {{{3}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _a}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _C} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^i} _I}} {{{{{ \overset{b\downarrow[{C\downarrow i\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow i\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow i\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow i\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^C} _i}} {{{W}^{2}}}}}\right)}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _I} _J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{\frac{1}{{det_gammaBar}}}}} + {{{8}} \cdot {{\frac{1}{3}}} {{S}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _I} _J}} {{U->alpha}} \cdot {{{M_PI}}}}}$

double tmp1 = sin(theta); double tmp2 = cos(theta); double tmp3 = gammaBar_UU.xz * tmp1; double tmp4 = gammaBar_UU.yz * tmp2; double tmp5 = W * W; double tmp6 = tmp3 + tmp4; double tmp7 = tmp5 * tmp6; double tmp8 = partial_alpha_l.z * tmp7; double tmp9 = tmp1 * tmp1; double tmp10 = gammaBar_UU.yy + gammaBar_UU.zz; double tmp11 = tmp9 * tmp10; double tmp12 = tmp5 * tmp11; double tmp13 = r * tmp12; double tmp14 = partial_alpha_l.x * tmp13; double tmp15 = gammaBar_UU.zz * tmp2; double tmp16 = gammaBar_UU.xy * tmp1; double tmp17 = -1. * tmp15; double tmp18 = 2. * tmp16; double tmp19 = tmp17 + tmp18; double tmp20 = tmp1 * tmp19; double tmp21 = tmp5 * tmp20; double tmp22 = -1. * tmp14; double tmp23 = partial_alpha_l.y * tmp21; double tmp24 = 2. * tmp8; double tmp25 = tmp22 + tmp23; double tmp26 = tmp24 + tmp25; double tmp27 = r * tmp5; double tmp28 = ABar_LL.xy * gammaBar_UU.xy; double tmp29 = ABar_LL.xz * gammaBar_UU.xz; double tmp30 = ABar_LL.xx * gammaBar_UU.xx; double tmp31 = tmp28 + tmp29; double tmp32 = tmp30 + tmp31; double tmp33 = ABar_LL.xy * gammaBar_UU.yy; double tmp34 = ABar_LL.xz * gammaBar_UU.yz; double tmp35 = ABar_LL.xx * gammaBar_UU.xy; double tmp36 = tmp33 + tmp34; double tmp37 = tmp35 + tmp36; double tmp38 = ABar_LL.xy * gammaBar_UU.yz; double tmp39 = ABar_LL.xz * gammaBar_UU.zz; double tmp40 = ABar_LL.xx * gammaBar_UU.xz; double tmp41 = tmp38 + tmp39; double tmp42 = tmp40 + tmp41; double tmp43 = U->alpha * tmp27; double tmp44 = r * tmp1; double tmp45 = U->alpha * tmp44; double tmp46 = U->K * tmp45; double tmp47 = tmp1 * tmp5; double tmp48 = r * tmp47; double tmp49 = U->alpha * tmp48; double tmp50 = gammaBar_UU.xy * partial_gammaBar_LLl[2].xy; double tmp51 = gammaBar_UU.xz * partial_gammaBar_LLl[2].xz; double tmp52 = gammaBar_UU.xx * partial_gammaBar_LLl[2].xx; double tmp53 = tmp50 + tmp51; double tmp54 = tmp52 + tmp53; double tmp55 = gammaBar_UU.xy * partial_gammaBar_LLl[1].xy; double tmp56 = gammaBar_UU.xz * partial_gammaBar_LLl[1].xz; double tmp57 = gammaBar_UU.xx * partial_gammaBar_LLl[1].xx; double tmp58 = tmp55 + tmp56; double tmp59 = tmp57 + tmp58; double tmp60 = tmp1 * tmp59; double tmp61 = gammaBar_UU.xy * partial_gammaBar_LLl[0].xy; double tmp62 = gammaBar_UU.xz * partial_gammaBar_LLl[0].xz; double tmp63 = gammaBar_UU.xx * partial_gammaBar_LLl[0].xx; double tmp64 = tmp61 + tmp62; double tmp65 = tmp63 + tmp64; double tmp66 = tmp1 * tmp65; double tmp67 = r * tmp66; double tmp68 = gammaBar_UU.xy * tmp60; double tmp69 = gammaBar_UU.xx * tmp67; double tmp70 = gammaBar_UU.xz * tmp54; double tmp71 = tmp68 + tmp69; double tmp72 = tmp70 + tmp71; double tmp73 = gammaBar_UU.yy * partial_gammaBar_LLl[2].xy; double tmp74 = gammaBar_UU.yz * partial_gammaBar_LLl[2].xz; double tmp75 = gammaBar_UU.xy * partial_gammaBar_LLl[2].xx; double tmp76 = tmp73 + tmp74; double tmp77 = tmp75 + tmp76; double tmp78 = gammaBar_UU.yy * partial_gammaBar_LLl[1].xy; double tmp79 = gammaBar_UU.yz * partial_gammaBar_LLl[1].xz; double tmp80 = gammaBar_UU.xy * partial_gammaBar_LLl[1].xx; double tmp81 = tmp78 + tmp79; double tmp82 = tmp80 + tmp81; double tmp83 = tmp1 * tmp82; double tmp84 = gammaBar_UU.yy * partial_gammaBar_LLl[0].xy; double tmp85 = gammaBar_UU.yz * partial_gammaBar_LLl[0].xz; double tmp86 = gammaBar_UU.xy * partial_gammaBar_LLl[0].xx; double tmp87 = tmp84 + tmp85; double tmp88 = tmp86 + tmp87; double tmp89 = tmp1 * tmp88; double tmp90 = r * tmp89; double tmp91 = gammaBar_UU.xy * tmp83; double tmp92 = gammaBar_UU.xx * tmp90; double tmp93 = gammaBar_UU.xz * tmp77; double tmp94 = tmp91 + tmp92; double tmp95 = tmp93 + tmp94; double tmp96 = gammaBar_UU.yy * tmp60; double tmp97 = gammaBar_UU.xy * tmp67; double tmp98 = gammaBar_UU.yz * tmp54; double tmp99 = tmp96 + tmp97; double tmp100 = tmp98 + tmp99; double tmp101 = gammaBar_UU.yz * partial_gammaBar_LLl[2].xy; double tmp102 = gammaBar_UU.zz * partial_gammaBar_LLl[2].xz; double tmp103 = gammaBar_UU.xz * partial_gammaBar_LLl[2].xx; double tmp104 = tmp101 + tmp102; double tmp105 = tmp103 + tmp104; double tmp106 = gammaBar_UU.yz * partial_gammaBar_LLl[1].xy; double tmp107 = gammaBar_UU.zz * partial_gammaBar_LLl[1].xz; double tmp108 = gammaBar_UU.xz * partial_gammaBar_LLl[1].xx; double tmp109 = tmp106 + tmp107; double tmp110 = tmp108 + tmp109; double tmp111 = tmp1 * tmp110; double tmp112 = gammaBar_UU.yz * partial_gammaBar_LLl[0].xy; double tmp113 = gammaBar_UU.zz * partial_gammaBar_LLl[0].xz; double tmp114 = gammaBar_UU.xz * partial_gammaBar_LLl[0].xx; double tmp115 = tmp112 + tmp113; double tmp116 = tmp114 + tmp115; double tmp117 = tmp1 * tmp116; double tmp118 = r * tmp117; double tmp119 = gammaBar_UU.xy * tmp111; double tmp120 = gammaBar_UU.xx * tmp118; double tmp121 = gammaBar_UU.xz * tmp105; double tmp122 = tmp119 + tmp120; double tmp123 = tmp121 + tmp122; double tmp124 = gammaBar_UU.yz * tmp60; double tmp125 = gammaBar_UU.xz * tmp67; double tmp126 = gammaBar_UU.zz * tmp54; double tmp127 = tmp124 + tmp125; double tmp128 = tmp126 + tmp127; double tmp129 = gammaBar_UU.yy * tmp83; double tmp130 = gammaBar_UU.xy * tmp90; double tmp131 = gammaBar_UU.yz * tmp77; double tmp132 = tmp129 + tmp130; double tmp133 = tmp131 + tmp132; double tmp134 = gammaBar_UU.yy * tmp111; double tmp135 = gammaBar_UU.xy * tmp118; double tmp136 = gammaBar_UU.yz * tmp105; double tmp137 = tmp134 + tmp135; double tmp138 = tmp136 + tmp137; double tmp139 = gammaBar_UU.yz * tmp83; double tmp140 = gammaBar_UU.xz * tmp90; double tmp141 = gammaBar_UU.zz * tmp77; double tmp142 = tmp139 + tmp140; double tmp143 = tmp141 + tmp142; double tmp144 = gammaBar_UU.yz * tmp111; double tmp145 = gammaBar_UU.xz * tmp118; double tmp146 = gammaBar_UU.zz * tmp105; double tmp147 = tmp144 + tmp145; double tmp148 = tmp146 + tmp147; double tmp149 = ABar_LL.yz * tmp143; double tmp150 = ABar_LL.zz * tmp148; double tmp151 = ABar_LL.yz * tmp138; double tmp152 = tmp149 + tmp150; double tmp153 = ABar_LL.yy * tmp133; double tmp154 = tmp151 + tmp152; double tmp155 = ABar_LL.xz * tmp128; double tmp156 = tmp153 + tmp154; double tmp157 = ABar_LL.xz * tmp123; double tmp158 = tmp155 + tmp156; double tmp159 = ABar_LL.xy * tmp100; double tmp160 = tmp157 + tmp158; double tmp161 = ABar_LL.xy * tmp95; double tmp162 = tmp159 + tmp160; double tmp163 = ABar_LL.xx * tmp72; double tmp164 = tmp161 + tmp162; double tmp165 = tmp163 + tmp164; double tmp166 = gammaBar_UU.xy * partial_gammaBar_LLl[2].yy; double tmp167 = gammaBar_UU.xz * partial_gammaBar_LLl[2].yz; double tmp168 = gammaBar_UU.xx * partial_gammaBar_LLl[2].xy; double tmp169 = tmp166 + tmp167; double tmp170 = tmp168 + tmp169; double tmp171 = gammaBar_UU.xy * partial_gammaBar_LLl[1].yy; double tmp172 = gammaBar_UU.xz * partial_gammaBar_LLl[1].yz; double tmp173 = gammaBar_UU.xx * partial_gammaBar_LLl[1].xy; double tmp174 = tmp171 + tmp172; double tmp175 = tmp173 + tmp174; double tmp176 = tmp1 * tmp175; double tmp177 = gammaBar_UU.xy * partial_gammaBar_LLl[0].yy; double tmp178 = gammaBar_UU.xz * partial_gammaBar_LLl[0].yz; double tmp179 = gammaBar_UU.xx * partial_gammaBar_LLl[0].xy; double tmp180 = tmp177 + tmp178; double tmp181 = tmp179 + tmp180; double tmp182 = tmp1 * tmp181; double tmp183 = r * tmp182; double tmp184 = gammaBar_UU.xy * tmp176; double tmp185 = gammaBar_UU.xx * tmp183; double tmp186 = gammaBar_UU.xz * tmp170; double tmp187 = tmp184 + tmp185; double tmp188 = tmp186 + tmp187; double tmp189 = gammaBar_UU.yy * partial_gammaBar_LLl[2].yy; double tmp190 = gammaBar_UU.yz * partial_gammaBar_LLl[2].yz; double tmp191 = tmp189 + tmp190; double tmp192 = tmp50 + tmp191; double tmp193 = gammaBar_UU.yy * partial_gammaBar_LLl[1].yy; double tmp194 = gammaBar_UU.yz * partial_gammaBar_LLl[1].yz; double tmp195 = tmp193 + tmp194; double tmp196 = tmp55 + tmp195; double tmp197 = tmp1 * tmp196; double tmp198 = gammaBar_UU.yy * partial_gammaBar_LLl[0].yy; double tmp199 = gammaBar_UU.yz * partial_gammaBar_LLl[0].yz; double tmp200 = tmp198 + tmp199; double tmp201 = tmp61 + tmp200; double tmp202 = tmp1 * tmp201; double tmp203 = r * tmp202; double tmp204 = gammaBar_UU.xy * tmp197; double tmp205 = gammaBar_UU.xx * tmp203; double tmp206 = gammaBar_UU.xz * tmp192; double tmp207 = tmp204 + tmp205; double tmp208 = tmp206 + tmp207; double tmp209 = gammaBar_UU.yy * tmp176; double tmp210 = gammaBar_UU.xy * tmp183; double tmp211 = gammaBar_UU.yz * tmp170; double tmp212 = tmp209 + tmp210; double tmp213 = tmp211 + tmp212; double tmp214 = gammaBar_UU.yz * partial_gammaBar_LLl[2].yy; double tmp215 = gammaBar_UU.zz * partial_gammaBar_LLl[2].yz; double tmp216 = gammaBar_UU.xz * partial_gammaBar_LLl[2].xy; double tmp217 = tmp214 + tmp215; double tmp218 = tmp216 + tmp217; double tmp219 = gammaBar_UU.yz * partial_gammaBar_LLl[1].yy; double tmp220 = gammaBar_UU.zz * partial_gammaBar_LLl[1].yz; double tmp221 = gammaBar_UU.xz * partial_gammaBar_LLl[1].xy; double tmp222 = tmp219 + tmp220; double tmp223 = tmp221 + tmp222; double tmp224 = tmp1 * tmp223; double tmp225 = gammaBar_UU.yz * partial_gammaBar_LLl[0].yy; double tmp226 = gammaBar_UU.zz * partial_gammaBar_LLl[0].yz; double tmp227 = gammaBar_UU.xz * partial_gammaBar_LLl[0].xy; double tmp228 = tmp225 + tmp226; double tmp229 = tmp227 + tmp228; double tmp230 = tmp1 * tmp229; double tmp231 = r * tmp230; double tmp232 = gammaBar_UU.xy * tmp224; double tmp233 = gammaBar_UU.xx * tmp231; double tmp234 = gammaBar_UU.xz * tmp218; double tmp235 = tmp232 + tmp233; double tmp236 = tmp234 + tmp235; double tmp237 = gammaBar_UU.yz * tmp176; double tmp238 = gammaBar_UU.xz * tmp183; double tmp239 = gammaBar_UU.zz * tmp170; double tmp240 = tmp237 + tmp238; double tmp241 = tmp239 + tmp240; double tmp242 = gammaBar_UU.yy * tmp197; double tmp243 = gammaBar_UU.xy * tmp203; double tmp244 = gammaBar_UU.yz * tmp192; double tmp245 = tmp242 + tmp243; double tmp246 = tmp244 + tmp245; double tmp247 = gammaBar_UU.yy * tmp224; double tmp248 = gammaBar_UU.xy * tmp231; double tmp249 = gammaBar_UU.yz * tmp218; double tmp250 = tmp247 + tmp248; double tmp251 = tmp249 + tmp250; double tmp252 = gammaBar_UU.yz * tmp197; double tmp253 = gammaBar_UU.xz * tmp203; double tmp254 = gammaBar_UU.zz * tmp192; double tmp255 = tmp252 + tmp253; double tmp256 = tmp254 + tmp255; double tmp257 = gammaBar_UU.yz * tmp224; double tmp258 = gammaBar_UU.xz * tmp231; double tmp259 = gammaBar_UU.zz * tmp218; double tmp260 = tmp257 + tmp258; double tmp261 = tmp259 + tmp260; double tmp262 = ABar_LL.yz * tmp256; double tmp263 = ABar_LL.zz * tmp261; double tmp264 = ABar_LL.yz * tmp251; double tmp265 = tmp262 + tmp263; double tmp266 = ABar_LL.yy * tmp246; double tmp267 = tmp264 + tmp265; double tmp268 = ABar_LL.xz * tmp241; double tmp269 = tmp266 + tmp267; double tmp270 = ABar_LL.xz * tmp236; double tmp271 = tmp268 + tmp269; double tmp272 = ABar_LL.xy * tmp213; double tmp273 = tmp270 + tmp271; double tmp274 = ABar_LL.xy * tmp208; double tmp275 = tmp272 + tmp273; double tmp276 = ABar_LL.xx * tmp188; double tmp277 = tmp274 + tmp275; double tmp278 = tmp276 + tmp277; double tmp279 = gammaBar_UU.xy * partial_gammaBar_LLl[2].yz; double tmp280 = gammaBar_UU.xz * partial_gammaBar_LLl[2].zz; double tmp281 = gammaBar_UU.xx * partial_gammaBar_LLl[2].xz; double tmp282 = tmp279 + tmp280; double tmp283 = tmp281 + tmp282; double tmp284 = gammaBar_UU.xy * partial_gammaBar_LLl[1].yz; double tmp285 = gammaBar_UU.xz * partial_gammaBar_LLl[1].zz; double tmp286 = gammaBar_UU.xx * partial_gammaBar_LLl[1].xz; double tmp287 = tmp284 + tmp285; double tmp288 = tmp286 + tmp287; double tmp289 = tmp1 * tmp288; double tmp290 = gammaBar_UU.xy * partial_gammaBar_LLl[0].yz; double tmp291 = gammaBar_UU.xz * partial_gammaBar_LLl[0].zz; double tmp292 = gammaBar_UU.xx * partial_gammaBar_LLl[0].xz; double tmp293 = tmp290 + tmp291; double tmp294 = tmp292 + tmp293; double tmp295 = tmp1 * tmp294; double tmp296 = r * tmp295; double tmp297 = gammaBar_UU.xy * tmp289; double tmp298 = gammaBar_UU.xx * tmp296; double tmp299 = gammaBar_UU.xz * tmp283; double tmp300 = tmp297 + tmp298; double tmp301 = tmp299 + tmp300; double tmp302 = gammaBar_UU.yy * partial_gammaBar_LLl[2].yz; double tmp303 = gammaBar_UU.yz * partial_gammaBar_LLl[2].zz; double tmp304 = gammaBar_UU.xy * partial_gammaBar_LLl[2].xz; double tmp305 = tmp302 + tmp303; double tmp306 = tmp304 + tmp305; double tmp307 = gammaBar_UU.yy * partial_gammaBar_LLl[1].yz; double tmp308 = gammaBar_UU.yz * partial_gammaBar_LLl[1].zz; double tmp309 = gammaBar_UU.xy * partial_gammaBar_LLl[1].xz; double tmp310 = tmp307 + tmp308; double tmp311 = tmp309 + tmp310; double tmp312 = tmp1 * tmp311; double tmp313 = gammaBar_UU.yy * partial_gammaBar_LLl[0].yz; double tmp314 = gammaBar_UU.yz * partial_gammaBar_LLl[0].zz; double tmp315 = gammaBar_UU.xy * partial_gammaBar_LLl[0].xz; double tmp316 = tmp313 + tmp314; double tmp317 = tmp315 + tmp316; double tmp318 = tmp1 * tmp317; double tmp319 = r * tmp318; double tmp320 = gammaBar_UU.xy * tmp312; double tmp321 = gammaBar_UU.xx * tmp319; double tmp322 = gammaBar_UU.xz * tmp306; double tmp323 = tmp320 + tmp321; double tmp324 = tmp322 + tmp323; double tmp325 = gammaBar_UU.yy * tmp289; double tmp326 = gammaBar_UU.xy * tmp296; double tmp327 = gammaBar_UU.yz * tmp283; double tmp328 = tmp325 + tmp326; double tmp329 = tmp327 + tmp328; double tmp330 = gammaBar_UU.zz * partial_gammaBar_LLl[2].zz; double tmp331 = tmp190 + tmp330; double tmp332 = tmp51 + tmp331; double tmp333 = gammaBar_UU.zz * partial_gammaBar_LLl[1].zz; double tmp334 = tmp194 + tmp333; double tmp335 = tmp56 + tmp334; double tmp336 = tmp1 * tmp335; double tmp337 = gammaBar_UU.zz * partial_gammaBar_LLl[0].zz; double tmp338 = tmp199 + tmp337; double tmp339 = tmp62 + tmp338; double tmp340 = tmp1 * tmp339; double tmp341 = r * tmp340; double tmp342 = gammaBar_UU.xy * tmp336; double tmp343 = gammaBar_UU.xx * tmp341; double tmp344 = gammaBar_UU.xz * tmp332; double tmp345 = tmp342 + tmp343; double tmp346 = tmp344 + tmp345; double tmp347 = gammaBar_UU.yz * tmp289; double tmp348 = gammaBar_UU.xz * tmp296; double tmp349 = gammaBar_UU.zz * tmp283; double tmp350 = tmp347 + tmp348; double tmp351 = tmp349 + tmp350; double tmp352 = gammaBar_UU.yy * tmp312; double tmp353 = gammaBar_UU.xy * tmp319; double tmp354 = gammaBar_UU.yz * tmp306; double tmp355 = tmp352 + tmp353; double tmp356 = tmp354 + tmp355; double tmp357 = gammaBar_UU.yy * tmp336; double tmp358 = gammaBar_UU.xy * tmp341; double tmp359 = gammaBar_UU.yz * tmp332; double tmp360 = tmp357 + tmp358; double tmp361 = tmp359 + tmp360; double tmp362 = gammaBar_UU.yz * tmp312; double tmp363 = gammaBar_UU.xz * tmp319; double tmp364 = gammaBar_UU.zz * tmp306; double tmp365 = tmp362 + tmp363; double tmp366 = tmp364 + tmp365; double tmp367 = gammaBar_UU.yz * tmp336; double tmp368 = gammaBar_UU.xz * tmp341; double tmp369 = gammaBar_UU.zz * tmp332; double tmp370 = tmp367 + tmp368; double tmp371 = tmp369 + tmp370; double tmp372 = ABar_LL.yz * tmp366; double tmp373 = ABar_LL.zz * tmp371; double tmp374 = ABar_LL.yz * tmp361; double tmp375 = tmp372 + tmp373; double tmp376 = ABar_LL.yy * tmp356; double tmp377 = tmp374 + tmp375; double tmp378 = ABar_LL.xz * tmp351; double tmp379 = tmp376 + tmp377; double tmp380 = ABar_LL.xz * tmp346; double tmp381 = tmp378 + tmp379; double tmp382 = ABar_LL.xy * tmp329; double tmp383 = tmp380 + tmp381; double tmp384 = ABar_LL.xy * tmp324; double tmp385 = tmp382 + tmp383; double tmp386 = ABar_LL.xx * tmp301; double tmp387 = tmp384 + tmp385; double tmp388 = tmp386 + tmp387; double tmp389 = U->beta_U.y * tmp278; double tmp390 = U->beta_U.z * tmp388; double tmp391 = U->beta_U.x * tmp165; double tmp392 = tmp389 + tmp390; double tmp393 = tmp391 + tmp392; double tmp394 = gammaBar_UU.xy * partial_ABar_LLl[2].xy; double tmp395 = gammaBar_UU.xz * partial_ABar_LLl[2].xz; double tmp396 = gammaBar_UU.yz * partial_ABar_LLl[2].yz; double tmp397 = 2. * tmp395; double tmp398 = 2. * tmp396; double tmp399 = 2. * tmp394; double tmp400 = tmp397 + tmp398; double tmp401 = gammaBar_UU.zz * partial_ABar_LLl[2].zz; double tmp402 = tmp399 + tmp400; double tmp403 = gammaBar_UU.yy * partial_ABar_LLl[2].yy; double tmp404 = tmp401 + tmp402; double tmp405 = gammaBar_UU.xx * partial_ABar_LLl[2].xx; double tmp406 = tmp403 + tmp404; double tmp407 = tmp405 + tmp406; double tmp408 = gammaBar_UU.xy * partial_ABar_LLl[1].xy; double tmp409 = gammaBar_UU.xz * partial_ABar_LLl[1].xz; double tmp410 = gammaBar_UU.yz * partial_ABar_LLl[1].yz; double tmp411 = 2. * tmp409; double tmp412 = 2. * tmp410; double tmp413 = 2. * tmp408; double tmp414 = tmp411 + tmp412; double tmp415 = gammaBar_UU.zz * partial_ABar_LLl[1].zz; double tmp416 = tmp413 + tmp414; double tmp417 = gammaBar_UU.yy * partial_ABar_LLl[1].yy; double tmp418 = tmp415 + tmp416; double tmp419 = gammaBar_UU.xx * partial_ABar_LLl[1].xx; double tmp420 = tmp417 + tmp418; double tmp421 = tmp419 + tmp420; double tmp422 = tmp1 * tmp421; double tmp423 = gammaBar_UU.xy * partial_ABar_LLl[0].xy; double tmp424 = gammaBar_UU.xz * partial_ABar_LLl[0].xz; double tmp425 = gammaBar_UU.yz * partial_ABar_LLl[0].yz; double tmp426 = 2. * tmp424; double tmp427 = 2. * tmp425; double tmp428 = 2. * tmp423; double tmp429 = tmp426 + tmp427; double tmp430 = gammaBar_UU.zz * partial_ABar_LLl[0].zz; double tmp431 = tmp428 + tmp429; double tmp432 = gammaBar_UU.yy * partial_ABar_LLl[0].yy; double tmp433 = tmp430 + tmp431; double tmp434 = gammaBar_UU.xx * partial_ABar_LLl[0].xx; double tmp435 = tmp432 + tmp433; double tmp436 = tmp434 + tmp435; double tmp437 = tmp1 * tmp436; double tmp438 = r * tmp437; double tmp439 = U->beta_U.y * tmp422; double tmp440 = U->beta_U.x * tmp438; double tmp441 = U->beta_U.z * tmp407; double tmp442 = tmp439 + tmp440; double tmp443 = tmp441 + tmp442; double tmp444 = partial_gammaBar_LLl[1].xx * tmp1; double tmp445 = partial_gammaBar_LLl[0].xx * tmp44; double tmp446 = gammaBar_UU.xy * tmp444; double tmp447 = gammaBar_UU.xx * tmp445; double tmp448 = tmp446 + tmp447; double tmp449 = tmp103 + tmp448; double tmp450 = partial_gammaBar_LLl[1].xy * tmp1; double tmp451 = partial_gammaBar_LLl[0].xy * tmp44; double tmp452 = gammaBar_UU.xy * tmp450; double tmp453 = gammaBar_UU.xx * tmp451; double tmp454 = tmp452 + tmp453; double tmp455 = tmp216 + tmp454; double tmp456 = partial_gammaBar_LLl[1].xz * tmp1; double tmp457 = partial_gammaBar_LLl[0].xz * tmp44; double tmp458 = gammaBar_UU.xy * tmp456; double tmp459 = gammaBar_UU.xx * tmp457; double tmp460 = tmp458 + tmp459; double tmp461 = tmp51 + tmp460; double tmp462 = gammaBar_UU.xy * tmp455; double tmp463 = gammaBar_UU.xz * tmp461; double tmp464 = gammaBar_UU.xx * tmp449; double tmp465 = tmp462 + tmp463; double tmp466 = tmp464 + tmp465; double tmp467 = gammaBar_UU.yy * tmp444; double tmp468 = gammaBar_UU.xy * tmp445; double tmp469 = gammaBar_UU.yz * partial_gammaBar_LLl[2].xx; double tmp470 = tmp467 + tmp468; double tmp471 = tmp469 + tmp470; double tmp472 = gammaBar_UU.yy * tmp450; double tmp473 = gammaBar_UU.xy * tmp451; double tmp474 = tmp472 + tmp473; double tmp475 = tmp101 + tmp474; double tmp476 = gammaBar_UU.yy * tmp456; double tmp477 = gammaBar_UU.xy * tmp457; double tmp478 = tmp476 + tmp477; double tmp479 = tmp74 + tmp478; double tmp480 = gammaBar_UU.xy * tmp475; double tmp481 = gammaBar_UU.xz * tmp479; double tmp482 = gammaBar_UU.xx * tmp471; double tmp483 = tmp480 + tmp481; double tmp484 = tmp482 + tmp483; double tmp485 = gammaBar_UU.yy * tmp455; double tmp486 = gammaBar_UU.yz * tmp461; double tmp487 = gammaBar_UU.xy * tmp449; double tmp488 = tmp485 + tmp486; double tmp489 = tmp487 + tmp488; double tmp490 = gammaBar_UU.yz * tmp444; double tmp491 = gammaBar_UU.xz * tmp445; double tmp492 = gammaBar_UU.zz * partial_gammaBar_LLl[2].xx; double tmp493 = tmp490 + tmp491; double tmp494 = tmp492 + tmp493; double tmp495 = gammaBar_UU.yz * tmp450; double tmp496 = gammaBar_UU.xz * tmp451; double tmp497 = gammaBar_UU.zz * partial_gammaBar_LLl[2].xy; double tmp498 = tmp495 + tmp496; double tmp499 = tmp497 + tmp498; double tmp500 = gammaBar_UU.yz * tmp456; double tmp501 = gammaBar_UU.xz * tmp457; double tmp502 = tmp500 + tmp501; double tmp503 = tmp102 + tmp502; double tmp504 = gammaBar_UU.xy * tmp499; double tmp505 = gammaBar_UU.xz * tmp503; double tmp506 = gammaBar_UU.xx * tmp494; double tmp507 = tmp504 + tmp505; double tmp508 = tmp506 + tmp507; double tmp509 = gammaBar_UU.yz * tmp455; double tmp510 = gammaBar_UU.zz * tmp461; double tmp511 = gammaBar_UU.xz * tmp449; double tmp512 = tmp509 + tmp510; double tmp513 = tmp511 + tmp512; double tmp514 = gammaBar_UU.yy * tmp475; double tmp515 = gammaBar_UU.yz * tmp479; double tmp516 = gammaBar_UU.xy * tmp471; double tmp517 = tmp514 + tmp515; double tmp518 = tmp516 + tmp517; double tmp519 = gammaBar_UU.yy * tmp499; double tmp520 = gammaBar_UU.yz * tmp503; double tmp521 = gammaBar_UU.xy * tmp494; double tmp522 = tmp519 + tmp520; double tmp523 = tmp521 + tmp522; double tmp524 = gammaBar_UU.yz * tmp475; double tmp525 = gammaBar_UU.zz * tmp479; double tmp526 = gammaBar_UU.xz * tmp471; double tmp527 = tmp524 + tmp525; double tmp528 = tmp526 + tmp527; double tmp529 = gammaBar_UU.yz * tmp499; double tmp530 = gammaBar_UU.zz * tmp503; double tmp531 = gammaBar_UU.xz * tmp494; double tmp532 = tmp529 + tmp530; double tmp533 = tmp531 + tmp532; double tmp534 = ABar_LL.yz * tmp528; double tmp535 = ABar_LL.zz * tmp533; double tmp536 = ABar_LL.yz * tmp523; double tmp537 = tmp534 + tmp535; double tmp538 = ABar_LL.yy * tmp518; double tmp539 = tmp536 + tmp537; double tmp540 = ABar_LL.xz * tmp513; double tmp541 = tmp538 + tmp539; double tmp542 = ABar_LL.xz * tmp508; double tmp543 = tmp540 + tmp541; double tmp544 = ABar_LL.xy * tmp489; double tmp545 = tmp542 + tmp543; double tmp546 = ABar_LL.xy * tmp484; double tmp547 = tmp544 + tmp545; double tmp548 = ABar_LL.xx * tmp466; double tmp549 = tmp546 + tmp547; double tmp550 = tmp548 + tmp549; double tmp551 = partial_gammaBar_LLl[1].yy * tmp1; double tmp552 = partial_gammaBar_LLl[0].yy * tmp44; double tmp553 = gammaBar_UU.xy * tmp551; double tmp554 = gammaBar_UU.xx * tmp552; double tmp555 = gammaBar_UU.xz * partial_gammaBar_LLl[2].yy; double tmp556 = tmp553 + tmp554; double tmp557 = tmp555 + tmp556; double tmp558 = partial_gammaBar_LLl[1].yz * tmp1; double tmp559 = partial_gammaBar_LLl[0].yz * tmp44; double tmp560 = gammaBar_UU.xy * tmp558; double tmp561 = gammaBar_UU.xx * tmp559; double tmp562 = tmp560 + tmp561; double tmp563 = tmp167 + tmp562; double tmp564 = gammaBar_UU.xy * tmp557; double tmp565 = gammaBar_UU.xz * tmp563; double tmp566 = gammaBar_UU.xx * tmp455; double tmp567 = tmp564 + tmp565; double tmp568 = tmp566 + tmp567; double tmp569 = gammaBar_UU.yy * tmp551; double tmp570 = gammaBar_UU.xy * tmp552; double tmp571 = tmp569 + tmp570; double tmp572 = tmp214 + tmp571; double tmp573 = gammaBar_UU.yy * tmp558; double tmp574 = gammaBar_UU.xy * tmp559; double tmp575 = tmp573 + tmp574; double tmp576 = tmp190 + tmp575; double tmp577 = gammaBar_UU.xy * tmp572; double tmp578 = gammaBar_UU.xz * tmp576; double tmp579 = gammaBar_UU.xx * tmp475; double tmp580 = tmp577 + tmp578; double tmp581 = tmp579 + tmp580; double tmp582 = gammaBar_UU.yy * tmp557; double tmp583 = gammaBar_UU.yz * tmp563; double tmp584 = tmp582 + tmp583; double tmp585 = tmp462 + tmp584; double tmp586 = gammaBar_UU.yz * tmp551; double tmp587 = gammaBar_UU.xz * tmp552; double tmp588 = gammaBar_UU.zz * partial_gammaBar_LLl[2].yy; double tmp589 = tmp586 + tmp587; double tmp590 = tmp588 + tmp589; double tmp591 = gammaBar_UU.yz * tmp558; double tmp592 = gammaBar_UU.xz * tmp559; double tmp593 = tmp591 + tmp592; double tmp594 = tmp215 + tmp593; double tmp595 = gammaBar_UU.xy * tmp590; double tmp596 = gammaBar_UU.xz * tmp594; double tmp597 = gammaBar_UU.xx * tmp499; double tmp598 = tmp595 + tmp596; double tmp599 = tmp597 + tmp598; double tmp600 = gammaBar_UU.yz * tmp557; double tmp601 = gammaBar_UU.zz * tmp563; double tmp602 = gammaBar_UU.xz * tmp455; double tmp603 = tmp600 + tmp601; double tmp604 = tmp602 + tmp603; double tmp605 = gammaBar_UU.yy * tmp572; double tmp606 = gammaBar_UU.yz * tmp576; double tmp607 = tmp605 + tmp606; double tmp608 = tmp480 + tmp607; double tmp609 = gammaBar_UU.yy * tmp590; double tmp610 = gammaBar_UU.yz * tmp594; double tmp611 = tmp609 + tmp610; double tmp612 = tmp504 + tmp611; double tmp613 = gammaBar_UU.yz * tmp572; double tmp614 = gammaBar_UU.zz * tmp576; double tmp615 = gammaBar_UU.xz * tmp475; double tmp616 = tmp613 + tmp614; double tmp617 = tmp615 + tmp616; double tmp618 = gammaBar_UU.yz * tmp590; double tmp619 = gammaBar_UU.zz * tmp594; double tmp620 = gammaBar_UU.xz * tmp499; double tmp621 = tmp618 + tmp619; double tmp622 = tmp620 + tmp621; double tmp623 = ABar_LL.yz * tmp617; double tmp624 = ABar_LL.zz * tmp622; double tmp625 = ABar_LL.yz * tmp612; double tmp626 = tmp623 + tmp624; double tmp627 = ABar_LL.yy * tmp608; double tmp628 = tmp625 + tmp626; double tmp629 = ABar_LL.xz * tmp604; double tmp630 = tmp627 + tmp628; double tmp631 = ABar_LL.xz * tmp599; double tmp632 = tmp629 + tmp630; double tmp633 = ABar_LL.xy * tmp585; double tmp634 = tmp631 + tmp632; double tmp635 = ABar_LL.xy * tmp581; double tmp636 = tmp633 + tmp634; double tmp637 = ABar_LL.xx * tmp568; double tmp638 = tmp635 + tmp636; double tmp639 = tmp637 + tmp638; double tmp640 = gammaBar_UU.xy * tmp170; double tmp641 = gammaBar_UU.xx * tmp54; double tmp642 = tmp299 + tmp640; double tmp643 = tmp641 + tmp642; double tmp644 = gammaBar_UU.xy * tmp192; double tmp645 = gammaBar_UU.xx * tmp77; double tmp646 = tmp322 + tmp644; double tmp647 = tmp645 + tmp646; double tmp648 = gammaBar_UU.yy * tmp170; double tmp649 = gammaBar_UU.xy * tmp54; double tmp650 = tmp327 + tmp648; double tmp651 = tmp649 + tmp650; double tmp652 = gammaBar_UU.xy * tmp218; double tmp653 = gammaBar_UU.xx * tmp105; double tmp654 = tmp344 + tmp652; double tmp655 = tmp653 + tmp654; double tmp656 = tmp211 + tmp349; double tmp657 = tmp70 + tmp656; double tmp658 = gammaBar_UU.yy * tmp192; double tmp659 = gammaBar_UU.xy * tmp77; double tmp660 = tmp354 + tmp658; double tmp661 = tmp659 + tmp660; double tmp662 = gammaBar_UU.yy * tmp218; double tmp663 = gammaBar_UU.xy * tmp105; double tmp664 = tmp359 + tmp662; double tmp665 = tmp663 + tmp664; double tmp666 = tmp244 + tmp364; double tmp667 = tmp93 + tmp666; double tmp668 = tmp249 + tmp369; double tmp669 = tmp121 + tmp668; double tmp670 = ABar_LL.yz * tmp667; double tmp671 = ABar_LL.zz * tmp669; double tmp672 = ABar_LL.yz * tmp665; double tmp673 = tmp670 + tmp671; double tmp674 = ABar_LL.yy * tmp661; double tmp675 = tmp672 + tmp673; double tmp676 = ABar_LL.xz * tmp657; double tmp677 = tmp674 + tmp675; double tmp678 = ABar_LL.xz * tmp655; double tmp679 = tmp676 + tmp677; double tmp680 = ABar_LL.xy * tmp651; double tmp681 = tmp678 + tmp679; double tmp682 = ABar_LL.xy * tmp647; double tmp683 = tmp680 + tmp681; double tmp684 = ABar_LL.xx * tmp643; double tmp685 = tmp682 + tmp683; double tmp686 = tmp684 + tmp685; double tmp687 = partial_gammaBar_LLl[1].zz * tmp1; double tmp688 = partial_gammaBar_LLl[0].zz * tmp44; double tmp689 = gammaBar_UU.xy * tmp687; double tmp690 = gammaBar_UU.xx * tmp688; double tmp691 = tmp689 + tmp690; double tmp692 = tmp280 + tmp691; double tmp693 = gammaBar_UU.xy * tmp563; double tmp694 = gammaBar_UU.xz * tmp692; double tmp695 = gammaBar_UU.xx * tmp461; double tmp696 = tmp693 + tmp694; double tmp697 = tmp695 + tmp696; double tmp698 = gammaBar_UU.yy * tmp687; double tmp699 = gammaBar_UU.xy * tmp688; double tmp700 = tmp698 + tmp699; double tmp701 = tmp303 + tmp700; double tmp702 = gammaBar_UU.xy * tmp576; double tmp703 = gammaBar_UU.xz * tmp701; double tmp704 = gammaBar_UU.xx * tmp479; double tmp705 = tmp702 + tmp703; double tmp706 = tmp704 + tmp705; double tmp707 = gammaBar_UU.yy * tmp563; double tmp708 = gammaBar_UU.yz * tmp692; double tmp709 = gammaBar_UU.xy * tmp461; double tmp710 = tmp707 + tmp708; double tmp711 = tmp709 + tmp710; double tmp712 = gammaBar_UU.yz * tmp687; double tmp713 = gammaBar_UU.xz * tmp688; double tmp714 = tmp712 + tmp713; double tmp715 = tmp330 + tmp714; double tmp716 = gammaBar_UU.xy * tmp594; double tmp717 = gammaBar_UU.xz * tmp715; double tmp718 = gammaBar_UU.xx * tmp503; double tmp719 = tmp716 + tmp717; double tmp720 = tmp718 + tmp719; double tmp721 = gammaBar_UU.zz * tmp692; double tmp722 = tmp583 + tmp721; double tmp723 = tmp463 + tmp722; double tmp724 = gammaBar_UU.yy * tmp576; double tmp725 = gammaBar_UU.yz * tmp701; double tmp726 = gammaBar_UU.xy * tmp479; double tmp727 = tmp724 + tmp725; double tmp728 = tmp726 + tmp727; double tmp729 = gammaBar_UU.yy * tmp594; double tmp730 = gammaBar_UU.yz * tmp715; double tmp731 = gammaBar_UU.xy * tmp503; double tmp732 = tmp729 + tmp730; double tmp733 = tmp731 + tmp732; double tmp734 = gammaBar_UU.zz * tmp701; double tmp735 = tmp606 + tmp734; double tmp736 = tmp481 + tmp735; double tmp737 = gammaBar_UU.zz * tmp715; double tmp738 = tmp610 + tmp737; double tmp739 = tmp505 + tmp738; double tmp740 = ABar_LL.yz * tmp736; double tmp741 = ABar_LL.zz * tmp739; double tmp742 = ABar_LL.yz * tmp733; double tmp743 = tmp740 + tmp741; double tmp744 = ABar_LL.yy * tmp728; double tmp745 = tmp742 + tmp743; double tmp746 = ABar_LL.xz * tmp723; double tmp747 = tmp744 + tmp745; double tmp748 = ABar_LL.xz * tmp720; double tmp749 = tmp746 + tmp747; double tmp750 = ABar_LL.xy * tmp711; double tmp751 = tmp748 + tmp749; double tmp752 = ABar_LL.xy * tmp706; double tmp753 = tmp750 + tmp751; double tmp754 = ABar_LL.xx * tmp697; double tmp755 = tmp752 + tmp753; double tmp756 = tmp754 + tmp755; double tmp757 = partial_alpha_l.y * tmp1; double tmp758 = partial_alpha_l.x * tmp44; double tmp759 = C_U.y * tmp757; double tmp760 = C_U.x * tmp758; double tmp761 = C_U.z * partial_alpha_l.z; double tmp762 = tmp759 + tmp760; double tmp763 = tmp761 + tmp762; double tmp764 = gammaBar_UU.xy * tmp175; double tmp765 = gammaBar_UU.xz * tmp288; double tmp766 = gammaBar_UU.xx * tmp59; double tmp767 = tmp764 + tmp765; double tmp768 = tmp766 + tmp767; double tmp769 = gammaBar_UU.xy * tmp196; double tmp770 = gammaBar_UU.xz * tmp311; double tmp771 = gammaBar_UU.xx * tmp82; double tmp772 = tmp769 + tmp770; double tmp773 = tmp771 + tmp772; double tmp774 = gammaBar_UU.yy * tmp175; double tmp775 = gammaBar_UU.yz * tmp288; double tmp776 = gammaBar_UU.xy * tmp59; double tmp777 = tmp774 + tmp775; double tmp778 = tmp776 + tmp777; double tmp779 = gammaBar_UU.xy * tmp223; double tmp780 = gammaBar_UU.xz * tmp335; double tmp781 = gammaBar_UU.xx * tmp110; double tmp782 = tmp779 + tmp780; double tmp783 = tmp781 + tmp782; double tmp784 = gammaBar_UU.yz * tmp175; double tmp785 = gammaBar_UU.zz * tmp288; double tmp786 = gammaBar_UU.xz * tmp59; double tmp787 = tmp784 + tmp785; double tmp788 = tmp786 + tmp787; double tmp789 = gammaBar_UU.yy * tmp196; double tmp790 = gammaBar_UU.yz * tmp311; double tmp791 = gammaBar_UU.xy * tmp82; double tmp792 = tmp789 + tmp790; double tmp793 = tmp791 + tmp792; double tmp794 = gammaBar_UU.yy * tmp223; double tmp795 = gammaBar_UU.yz * tmp335; double tmp796 = gammaBar_UU.xy * tmp110; double tmp797 = tmp794 + tmp795; double tmp798 = tmp796 + tmp797; double tmp799 = gammaBar_UU.yz * tmp196; double tmp800 = gammaBar_UU.zz * tmp311; double tmp801 = gammaBar_UU.xz * tmp82; double tmp802 = tmp799 + tmp800; double tmp803 = tmp801 + tmp802; double tmp804 = gammaBar_UU.yz * tmp223; double tmp805 = gammaBar_UU.zz * tmp335; double tmp806 = gammaBar_UU.xz * tmp110; double tmp807 = tmp804 + tmp805; double tmp808 = tmp806 + tmp807; double tmp809 = ABar_LL.yz * tmp803; double tmp810 = ABar_LL.zz * tmp808; double tmp811 = ABar_LL.yz * tmp798; double tmp812 = tmp809 + tmp810; double tmp813 = ABar_LL.yy * tmp793; double tmp814 = tmp811 + tmp812; double tmp815 = ABar_LL.xz * tmp788; double tmp816 = tmp813 + tmp814; double tmp817 = ABar_LL.xz * tmp783; double tmp818 = tmp815 + tmp816; double tmp819 = ABar_LL.xy * tmp778; double tmp820 = tmp817 + tmp818; double tmp821 = ABar_LL.xy * tmp773; double tmp822 = tmp819 + tmp820; double tmp823 = ABar_LL.xx * tmp768; double tmp824 = tmp821 + tmp822; double tmp825 = tmp823 + tmp824; double tmp826 = tmp1 * tmp825; double tmp827 = gammaBar_UU.xy * tmp181; double tmp828 = gammaBar_UU.xz * tmp294; double tmp829 = gammaBar_UU.xx * tmp65; double tmp830 = tmp827 + tmp828; double tmp831 = tmp829 + tmp830; double tmp832 = gammaBar_UU.xy * tmp201; double tmp833 = gammaBar_UU.xz * tmp317; double tmp834 = gammaBar_UU.xx * tmp88; double tmp835 = tmp832 + tmp833; double tmp836 = tmp834 + tmp835; double tmp837 = gammaBar_UU.yy * tmp181; double tmp838 = gammaBar_UU.yz * tmp294; double tmp839 = gammaBar_UU.xy * tmp65; double tmp840 = tmp837 + tmp838; double tmp841 = tmp839 + tmp840; double tmp842 = gammaBar_UU.xy * tmp229; double tmp843 = gammaBar_UU.xz * tmp339; double tmp844 = gammaBar_UU.xx * tmp116; double tmp845 = tmp842 + tmp843; double tmp846 = tmp844 + tmp845; double tmp847 = gammaBar_UU.yz * tmp181; double tmp848 = gammaBar_UU.zz * tmp294; double tmp849 = gammaBar_UU.xz * tmp65; double tmp850 = tmp847 + tmp848; double tmp851 = tmp849 + tmp850; double tmp852 = gammaBar_UU.yy * tmp201; double tmp853 = gammaBar_UU.yz * tmp317; double tmp854 = gammaBar_UU.xy * tmp88; double tmp855 = tmp852 + tmp853; double tmp856 = tmp854 + tmp855; double tmp857 = gammaBar_UU.yy * tmp229; double tmp858 = gammaBar_UU.yz * tmp339; double tmp859 = gammaBar_UU.xy * tmp116; double tmp860 = tmp857 + tmp858; double tmp861 = tmp859 + tmp860; double tmp862 = gammaBar_UU.yz * tmp201; double tmp863 = gammaBar_UU.zz * tmp317; double tmp864 = gammaBar_UU.xz * tmp88; double tmp865 = tmp862 + tmp863; double tmp866 = tmp864 + tmp865; double tmp867 = gammaBar_UU.yz * tmp229; double tmp868 = gammaBar_UU.zz * tmp339; double tmp869 = gammaBar_UU.xz * tmp116; double tmp870 = tmp867 + tmp868; double tmp871 = tmp869 + tmp870; double tmp872 = ABar_LL.yz * tmp866; double tmp873 = ABar_LL.zz * tmp871; double tmp874 = ABar_LL.yz * tmp861; double tmp875 = tmp872 + tmp873; double tmp876 = ABar_LL.yy * tmp856; double tmp877 = tmp874 + tmp875; double tmp878 = ABar_LL.xz * tmp851; double tmp879 = tmp876 + tmp877; double tmp880 = ABar_LL.xz * tmp846; double tmp881 = tmp878 + tmp879; double tmp882 = ABar_LL.xy * tmp841; double tmp883 = tmp880 + tmp881; double tmp884 = ABar_LL.xy * tmp836; double tmp885 = tmp882 + tmp883; double tmp886 = ABar_LL.xx * tmp831; double tmp887 = tmp884 + tmp885; double tmp888 = tmp886 + tmp887; double tmp889 = tmp1 * tmp888; double tmp890 = r * tmp889; double tmp891 = U->beta_U.y * tmp826; double tmp892 = U->beta_U.x * tmp890; double tmp893 = tmp5 * tmp763; double tmp894 = tmp891 + tmp892; double tmp895 = U->beta_U.z * tmp756; double tmp896 = tmp893 + tmp894; double tmp897 = U->beta_U.z * tmp686; double tmp898 = tmp895 + tmp896; double tmp899 = U->beta_U.y * tmp639; double tmp900 = tmp897 + tmp898; double tmp901 = U->beta_U.x * tmp550; double tmp902 = tmp899 + tmp900; double tmp903 = -1. * tmp443; double tmp904 = tmp901 + tmp902; double tmp905 = -1. * tmp393; double tmp906 = tmp903 + tmp904; double tmp907 = tmp905 + tmp906; double tmp908 = partial_beta_Ul[1].y * tmp1; double tmp909 = partial_beta_Ul[0].x * tmp44; double tmp910 = tmp908 + tmp909; double tmp911 = partial_beta_Ul[2].z + tmp910; double tmp912 = r * r; double tmp913 = 1. / tmp912; double tmp914 = 1. / tmp9; double tmp915 = tmp913 * tmp914; double tmp916 = 1. / 3.; double tmp917 = gammaBar_UU.yz * tmp757; double tmp918 = gammaBar_UU.xz * tmp758; double tmp919 = gammaBar_UU.zz * partial_alpha_l.z; double tmp920 = tmp917 + tmp918; double tmp921 = tmp919 + tmp920; double tmp922 = gammaBar_UU.yy * tmp757; double tmp923 = gammaBar_UU.xy * tmp758; double tmp924 = gammaBar_UU.yz * partial_alpha_l.z; double tmp925 = tmp922 + tmp923; double tmp926 = tmp924 + tmp925; double tmp927 = tmp1 * tmp926; double tmp928 = gammaBar_UU.xy * tmp757; double tmp929 = gammaBar_UU.xx * tmp758; double tmp930 = gammaBar_UU.xz * partial_alpha_l.z; double tmp931 = tmp928 + tmp929; double tmp932 = tmp930 + tmp931; double tmp933 = tmp1 * tmp932; double tmp934 = r * tmp933; double tmp935 = partial_W_l.y * tmp927; double tmp936 = partial_W_l.x * tmp934; double tmp937 = partial_W_l.z * tmp921; double tmp938 = tmp935 + tmp936; double tmp939 = tmp937 + tmp938; double tmp940 = U->LambdaBar_U.y * tmp757; double tmp941 = U->LambdaBar_U.x * tmp758; double tmp942 = U->LambdaBar_U.z * partial_alpha_l.z; double tmp943 = R_LL.xy * gammaBar_UU.xy; double tmp944 = R_LL.xz * gammaBar_UU.xz; double tmp945 = R_LL.yz * gammaBar_UU.yz; double tmp946 = 2. * tmp944; double tmp947 = 2. * tmp945; double tmp948 = 2. * tmp943; double tmp949 = tmp946 + tmp947; double tmp950 = R_LL.zz * gammaBar_UU.zz; double tmp951 = tmp948 + tmp949; double tmp952 = R_LL.yy * gammaBar_UU.yy; double tmp953 = tmp950 + tmp951; double tmp954 = R_LL.xx * gammaBar_UU.xx; double tmp955 = tmp952 + tmp953; double tmp956 = tmp954 + tmp955; double tmp957 = tmp1 * tmp956; double tmp958 = r * tmp957; double tmp959 = tmp5 * tmp9; double tmp960 = partial2_alpha_ll.yy * tmp959; double tmp961 = partial2_alpha_ll.zz * tmp5; double tmp962 = tmp9 * tmp912; double tmp963 = tmp5 * tmp962; double tmp964 = partial2_alpha_ll.xx * tmp963; double tmp965 = r * tmp959; double tmp966 = partial2_alpha_ll.xy * tmp965; double tmp967 = gammaBar_UU.xy * tmp966; double tmp968 = partial2_alpha_ll.yz * tmp47; double tmp969 = gammaBar_UU.yz * tmp968; double tmp970 = partial2_alpha_ll.xz * tmp48; double tmp971 = gammaBar_UU.xz * tmp970; double tmp972 = 2. * tmp969; double tmp973 = 2. * tmp971; double tmp974 = 2. * tmp967; double tmp975 = tmp972 + tmp973; double tmp976 = gammaBar_UU.xx * tmp964; double tmp977 = tmp974 + tmp975; double tmp978 = gammaBar_UU.zz * tmp961; double tmp979 = tmp976 + tmp977; double tmp980 = gammaBar_UU.yy * tmp960; double tmp981 = tmp978 + tmp979; double tmp982 = tmp980 + tmp981; double tmp983 = tmp915 * tmp982; double tmp984 = 1. / 2.; double tmp985 = U->beta_U.x * tmp1; double tmp986 = U->beta_U.y * tmp2; double tmp987 = 2. * tmp985; double tmp988 = tmp986 + tmp987; double tmp989 = r * tmp912; double tmp990 = tmp1 * tmp988; double tmp991 = tmp989 * tmp990; double tmp992 = 1. / det_gammaBar; double tmp993 = gammaBar_LL.xy * tmp26; double tmp994 = gammaBar_UU.xy * gammaBar_UU.xy; double tmp995 = gammaBar_LL.xy * gammaBar_LL.xy; double tmp996 = tmp1 * tmp994; double tmp997 = gammaBar_UU.yy * tmp2; double tmp998 = tmp16 + tmp997; double tmp999 = gammaBar_UU.xz * tmp998; double tmp1000 = gammaBar_LL.xz * tmp999; double tmp1001 = tmp995 * tmp996; double tmp1002 = gammaBar_LL.xy * tmp1000; double tmp1003 = tmp1001 + tmp1002; double tmp1004 = gammaBar_UU.xx * tmp1; double tmp1005 = gammaBar_UU.xy * tmp2; double tmp1006 = tmp1004 + tmp1005; double tmp1007 = gammaBar_UU.xz * tmp1006; double tmp1008 = gammaBar_UU.xx * tmp16; double tmp1009 = gammaBar_LL.xz * tmp1007; double tmp1010 = gammaBar_LL.xy * tmp1008; double tmp1011 = tmp1009 + tmp1010; double tmp1012 = gammaBar_LL.xy * tmp1011; double tmp1013 = gammaBar_UU.yz * tmp1006; double tmp1014 = gammaBar_UU.yy * tmp1; double tmp1015 = gammaBar_UU.xx * tmp1014; double tmp1016 = gammaBar_LL.xz * tmp1013; double tmp1017 = gammaBar_LL.xy * tmp1015; double tmp1018 = tmp1016 + tmp1017; double tmp1019 = gammaBar_LL.xy * tmp1018; double tmp1020 = gammaBar_UU.zz * tmp1006; double tmp1021 = gammaBar_UU.yz * tmp1; double tmp1022 = gammaBar_UU.xx * tmp1021; double tmp1023 = gammaBar_LL.xz * tmp1020; double tmp1024 = gammaBar_LL.xy * tmp1022; double tmp1025 = tmp1023 + tmp1024; double tmp1026 = gammaBar_LL.xy * tmp1025; double tmp1027 = gammaBar_UU.yz * tmp998; double tmp1028 = gammaBar_UU.xy * tmp1014; double tmp1029 = gammaBar_LL.xz * tmp1027; double tmp1030 = gammaBar_LL.xy * tmp1028; double tmp1031 = tmp1029 + tmp1030; double tmp1032 = gammaBar_LL.xy * tmp1031; double tmp1033 = gammaBar_UU.yz * tmp6; double tmp1034 = gammaBar_UU.xz * tmp1014; double tmp1035 = gammaBar_LL.xz * tmp1033; double tmp1036 = gammaBar_LL.xy * tmp1034; double tmp1037 = tmp1035 + tmp1036; double tmp1038 = gammaBar_LL.xy * tmp1037; double tmp1039 = gammaBar_UU.zz * tmp998; double tmp1040 = gammaBar_UU.xy * tmp1021; double tmp1041 = gammaBar_LL.xz * tmp1039; double tmp1042 = gammaBar_LL.xy * tmp1040; double tmp1043 = tmp1041 + tmp1042; double tmp1044 = gammaBar_LL.xy * tmp1043; double tmp1045 = gammaBar_UU.zz * tmp6; double tmp1046 = gammaBar_UU.xz * tmp1021; double tmp1047 = gammaBar_LL.xz * tmp1045; double tmp1048 = gammaBar_LL.xy * tmp1046; double tmp1049 = tmp1047 + tmp1048; double tmp1050 = gammaBar_LL.xy * tmp1049; double tmp1051 = gammaBar_LL.xz * tmp6; double tmp1052 = gammaBar_LL.xy * tmp16; double tmp1053 = tmp1051 + tmp1052; double tmp1054 = gammaBar_UU.xz * tmp1053; double tmp1055 = gammaBar_LL.xy * tmp1054; double tmp1056 = ABar_LL.zz * tmp1050; double tmp1057 = ABar_LL.xz * tmp1055; double tmp1058 = ABar_LL.yz * tmp1044; double tmp1059 = tmp1056 + tmp1057; double tmp1060 = ABar_LL.yz * tmp1038; double tmp1061 = tmp1058 + tmp1059; double tmp1062 = ABar_LL.yy * tmp1032; double tmp1063 = tmp1060 + tmp1061; double tmp1064 = ABar_LL.xz * tmp1026; double tmp1065 = tmp1062 + tmp1063; double tmp1066 = ABar_LL.xy * tmp1019; double tmp1067 = tmp1064 + tmp1065; double tmp1068 = ABar_LL.xx * tmp1012; double tmp1069 = tmp1066 + tmp1067; double tmp1070 = ABar_LL.xy * tmp1003; double tmp1071 = tmp1068 + tmp1069; double tmp1072 = tmp1070 + tmp1071; double tmp1073 = gammaBar_LL.yz * tmp1007; double tmp1074 = gammaBar_LL.yy * tmp1008; double tmp1075 = tmp1073 + tmp1074; double tmp1076 = gammaBar_LL.yy * tmp996; double tmp1077 = gammaBar_LL.yz * tmp999; double tmp1078 = tmp1076 + tmp1077; double tmp1079 = gammaBar_LL.yz * tmp1013; double tmp1080 = gammaBar_LL.yy * tmp1015; double tmp1081 = tmp1079 + tmp1080; double tmp1082 = gammaBar_LL.yz * tmp1020; double tmp1083 = gammaBar_LL.yy * tmp1022; double tmp1084 = tmp1082 + tmp1083; double tmp1085 = gammaBar_LL.yz * tmp1027; double tmp1086 = gammaBar_LL.yy * tmp1028; double tmp1087 = tmp1085 + tmp1086; double tmp1088 = gammaBar_LL.yz * tmp1033; double tmp1089 = gammaBar_LL.yy * tmp1034; double tmp1090 = tmp1088 + tmp1089; double tmp1091 = gammaBar_LL.yz * tmp1039; double tmp1092 = gammaBar_LL.yy * tmp1040; double tmp1093 = tmp1091 + tmp1092; double tmp1094 = gammaBar_LL.yz * tmp1045; double tmp1095 = gammaBar_LL.yy * tmp1046; double tmp1096 = tmp1094 + tmp1095; double tmp1097 = gammaBar_LL.yz * tmp6; double tmp1098 = gammaBar_LL.yy * tmp16; double tmp1099 = tmp1097 + tmp1098; double tmp1100 = gammaBar_UU.xz * tmp1099; double tmp1101 = ABar_LL.zz * tmp1096; double tmp1102 = ABar_LL.xz * tmp1100; double tmp1103 = ABar_LL.yz * tmp1093; double tmp1104 = tmp1101 + tmp1102; double tmp1105 = ABar_LL.yz * tmp1090; double tmp1106 = tmp1103 + tmp1104; double tmp1107 = ABar_LL.yy * tmp1087; double tmp1108 = tmp1105 + tmp1106; double tmp1109 = ABar_LL.xz * tmp1084; double tmp1110 = tmp1107 + tmp1108; double tmp1111 = ABar_LL.xy * tmp1081; double tmp1112 = tmp1109 + tmp1110; double tmp1113 = ABar_LL.xy * tmp1078; double tmp1114 = tmp1111 + tmp1112; double tmp1115 = ABar_LL.xx * tmp1075; double tmp1116 = tmp1113 + tmp1114; double tmp1117 = tmp1115 + tmp1116; double tmp1118 = gammaBar_LL.xy * tmp1117; double tmp1119 = gammaBar_LL.zz * tmp1007; double tmp1120 = gammaBar_LL.yz * tmp1008; double tmp1121 = tmp1119 + tmp1120; double tmp1122 = gammaBar_LL.yz * tmp996; double tmp1123 = gammaBar_LL.zz * tmp999; double tmp1124 = tmp1122 + tmp1123; double tmp1125 = gammaBar_LL.zz * tmp1013; double tmp1126 = gammaBar_LL.yz * tmp1015; double tmp1127 = tmp1125 + tmp1126; double tmp1128 = gammaBar_LL.zz * tmp1020; double tmp1129 = gammaBar_LL.yz * tmp1022; double tmp1130 = tmp1128 + tmp1129; double tmp1131 = gammaBar_LL.zz * tmp1027; double tmp1132 = gammaBar_LL.yz * tmp1028; double tmp1133 = tmp1131 + tmp1132; double tmp1134 = gammaBar_LL.zz * tmp1033; double tmp1135 = gammaBar_LL.yz * tmp1034; double tmp1136 = tmp1134 + tmp1135; double tmp1137 = gammaBar_LL.zz * tmp1039; double tmp1138 = gammaBar_LL.yz * tmp1040; double tmp1139 = tmp1137 + tmp1138; double tmp1140 = gammaBar_LL.zz * tmp1045; double tmp1141 = gammaBar_LL.yz * tmp1046; double tmp1142 = tmp1140 + tmp1141; double tmp1143 = gammaBar_LL.zz * tmp6; double tmp1144 = gammaBar_LL.yz * tmp16; double tmp1145 = tmp1143 + tmp1144; double tmp1146 = gammaBar_UU.xz * tmp1145; double tmp1147 = ABar_LL.zz * tmp1142; double tmp1148 = ABar_LL.xz * tmp1146; double tmp1149 = ABar_LL.yz * tmp1139; double tmp1150 = tmp1147 + tmp1148; double tmp1151 = ABar_LL.yz * tmp1136; double tmp1152 = tmp1149 + tmp1150; double tmp1153 = ABar_LL.yy * tmp1133; double tmp1154 = tmp1151 + tmp1152; double tmp1155 = ABar_LL.xz * tmp1130; double tmp1156 = tmp1153 + tmp1154; double tmp1157 = ABar_LL.xy * tmp1127; double tmp1158 = tmp1155 + tmp1156; double tmp1159 = ABar_LL.xy * tmp1124; double tmp1160 = tmp1157 + tmp1158; double tmp1161 = ABar_LL.xx * tmp1121; double tmp1162 = tmp1159 + tmp1160; double tmp1163 = tmp1161 + tmp1162; double tmp1164 = gammaBar_LL.xy * tmp1163; double tmp1165 = U->beta_U.y * tmp1118; double tmp1166 = U->beta_U.z * tmp1164; double tmp1167 = U->beta_U.x * tmp1072; double tmp1168 = tmp1165 + tmp1166; double tmp1169 = tmp1167 + tmp1168; double tmp1170 = ABar_LL.xy * partial_beta_Ul[1].y; double tmp1171 = ABar_LL.xz * partial_beta_Ul[1].z; double tmp1172 = ABar_LL.xx * partial_beta_Ul[1].x; double tmp1173 = tmp1170 + tmp1171; double tmp1174 = tmp1172 + tmp1173; double tmp1175 = ABar_LL.yy * U->beta_U.y; double tmp1176 = ABar_LL.yz * U->beta_U.z; double tmp1177 = U->beta_U.z * tmp2; double tmp1178 = ABar_LL.xz * tmp1177; double tmp1179 = partial_ABar_LLl[1].xy * tmp1; double tmp1180 = partial2_alpha_ll.xy * tmp47; double tmp1181 = ABar_LL.yy * partial_beta_Ul[0].y; double tmp1182 = ABar_LL.yz * partial_beta_Ul[0].z; double tmp1183 = ABar_LL.xy * partial_beta_Ul[0].x; double tmp1184 = tmp1181 + tmp1182; double tmp1185 = tmp1183 + tmp1184; double tmp1186 = tmp1 * tmp1185; double tmp1187 = partial_ABar_LLl[0].xy * tmp44; double tmp1188 = partial_W_l.x * tmp757; double tmp1189 = W * tmp1188; double tmp1190 = partial_alpha_l.x * tmp1; double tmp1191 = partial_W_l.y * tmp1190; double tmp1192 = W * tmp1191; double tmp1193 = R_LL.xy * tmp49; double tmp1194 = ABar_LL.xy * tmp46; double tmp1195 = -1. * tmp1192; double tmp1196 = -1. * tmp1189; double tmp1197 = U->beta_U.x * tmp1187; double tmp1198 = r * tmp1186; double tmp1199 = -1. * tmp1180; double tmp1200 = U->beta_U.y * tmp1179; double tmp1201 = -1. * tmp1178; double tmp1202 = ABar_LL.xy * tmp985; double tmp1203 = tmp1 * tmp1174; double tmp1204 = U->beta_U.z * partial_ABar_LLl[2].xy; double tmp1205 = tmp895 + tmp899; double tmp1206 = tmp901 + tmp1205; double tmp1207 = gammaBar_LL.xy * tmp393; double tmp1208 = gammaBar_LL.xy * tmp443; double tmp1209 = tmp894 + tmp897; double tmp1210 = ABar_LL.xy * tmp911; double tmp1211 = gammaBar_LL.xy * tmp893; double tmp1212 = tmp1166 + tmp1211; double tmp1213 = -2. * tmp1210; double tmp1214 = tmp1165 + tmp1212; double tmp1215 = gammaBar_LL.xy * tmp1209; double tmp1216 = tmp1213 + tmp1214; double tmp1217 = -1. * tmp1208; double tmp1218 = tmp1215 + tmp1216; double tmp1219 = -1. * tmp1207; double tmp1220 = tmp1217 + tmp1218; double tmp1221 = gammaBar_LL.xy * tmp1206; double tmp1222 = tmp1219 + tmp1220; double tmp1223 = tmp1221 + tmp1222; double tmp1224 = tmp1167 + tmp1223; double tmp1225 = -1. * tmp1169; double tmp1226 = -1. * tmp993; double tmp1227 = gammaBar_LL.xy * tmp983; double tmp1228 = tmp5 * tmp913; double tmp1229 = partial_alpha_l.y * tmp1228; double tmp1230 = tmp1 * tmp475; double tmp1231 = tmp1 * tmp455; double tmp1232 = r * tmp1231; double tmp1233 = partial_alpha_l.y * tmp1230; double tmp1234 = partial_alpha_l.x * tmp1232; double tmp1235 = partial_alpha_l.z * tmp499; double tmp1236 = tmp1233 + tmp1234; double tmp1237 = tmp1235 + tmp1236; double tmp1238 = tmp915 * tmp1237; double tmp1239 = tmp5 * tmp1238; double tmp1240 = tmp984 * tmp1239; double tmp1241 = r * tmp60; double tmp1242 = partial_alpha_l.y * tmp83; double tmp1243 = partial_alpha_l.x * tmp1241; double tmp1244 = partial_alpha_l.z * tmp110; double tmp1245 = tmp1242 + tmp1243; double tmp1246 = 1. / tmp1; double tmp1247 = tmp1244 + tmp1245; double tmp1248 = tmp913 * tmp1246; double tmp1249 = tmp1247 * tmp1248; double tmp1250 = tmp5 * tmp1249; double tmp1251 = gammaBar_LL.yy * gammaBar_UU.yz; double tmp1252 = gammaBar_LL.yz * gammaBar_UU.zz; double tmp1253 = tmp1251 + tmp1252; double tmp1254 = gammaBar_LL.yy * gammaBar_UU.yy; double tmp1255 = gammaBar_LL.yz * gammaBar_UU.yz; double tmp1256 = tmp1254 + tmp1255; double tmp1257 = tmp1 * tmp1256; double tmp1258 = gammaBar_LL.yy * gammaBar_UU.xy; double tmp1259 = gammaBar_LL.yz * gammaBar_UU.xz; double tmp1260 = tmp1258 + tmp1259; double tmp1261 = tmp1 * tmp1260; double tmp1262 = r * tmp1261; double tmp1263 = partial_alpha_l.y * tmp1257; double tmp1264 = partial_alpha_l.x * tmp1262; double tmp1265 = partial_alpha_l.z * tmp1253; double tmp1266 = tmp1263 + tmp1264; double tmp1267 = tmp1265 + tmp1266; double tmp1268 = partial_alpha_l.y * tmp202; double tmp1269 = partial_alpha_l.x * tmp183; double tmp1270 = partial_alpha_l.z * tmp229; double tmp1271 = tmp1268 + tmp1269; double tmp1272 = tmp1270 + tmp1271; double tmp1273 = U->alpha * tmp958; double tmp1274 = tmp941 + tmp1273; double tmp1275 = tmp940 + tmp1274; double tmp1276 = tmp942 + tmp1275; double tmp1277 = gammaBar_LL.xy * tmp1276; double tmp1278 = 3. * tmp1272; double tmp1279 = -2. * tmp1277; double tmp1280 = 1. / r; double tmp1281 = tmp1278 + tmp1279; double tmp1282 = tmp1246 * tmp1280; double tmp1283 = tmp1281 * tmp1282; double tmp1284 = 1. / 6.; double tmp1285 = tmp5 * tmp1283; double tmp1286 = tmp915 * tmp939; double tmp1287 = gammaBar_LL.xy * tmp1286; double tmp1288 = W * tmp1287; double tmp1289 = tmp916 * tmp1288; double tmp1290 = tmp2 * tmp915; double tmp1291 = tmp921 * tmp1290; double tmp1292 = tmp5 * tmp1291; double tmp1293 = gammaBar_LL.xz * tmp1292; double tmp1294 = 2. * tmp1289; double tmp1295 = tmp984 * tmp1293; double tmp1296 = tmp1284 * tmp1285; double tmp1297 = tmp984 * tmp1250; double tmp1298 = -1. * tmp1240; double tmp1299 = tmp984 * tmp1229; double tmp1300 = tmp916 * tmp1227; double tmp1301 = ABar_LL.xy * tmp991; double tmp1302 = det_gammaBar * gammaBar_LL.xy; double tmp1303 = U->alpha * tmp1302; double tmp1304 = S * tmp1303; double tmp1305 = M_PI * tmp1304; double tmp1306 = -1. * tmp1301; double tmp1307 = 4. * tmp1305; double tmp1308 = tmp1306 + tmp1307; double tmp1309 = tmp992 * tmp1308; double tmp1310 = tmp916 * tmp1309; double tmp1311 = 2. * tmp1310; double tmp1312 = gammaBar_LL.xz * tmp26; double tmp1313 = tmp985 + tmp986; double tmp1314 = partial2_alpha_ll.xz * tmp5; double tmp1315 = ABar_LL.yz * U->beta_U.y; double tmp1316 = ABar_LL.zz * U->beta_U.z; double tmp1317 = partial_ABar_LLl[1].xz * tmp1; double tmp1318 = partial_W_l.x * partial_alpha_l.z; double tmp1319 = W * tmp1318; double tmp1320 = partial_W_l.z * partial_alpha_l.x; double tmp1321 = W * tmp1320; double tmp1322 = ABar_LL.yz * partial_beta_Ul[0].y; double tmp1323 = ABar_LL.zz * partial_beta_Ul[0].z; double tmp1324 = ABar_LL.xz * partial_beta_Ul[0].x; double tmp1325 = tmp1322 + tmp1323; double tmp1326 = tmp1324 + tmp1325; double tmp1327 = tmp1 * tmp1326; double tmp1328 = partial_ABar_LLl[0].xz * tmp44; double tmp1329 = R_LL.xz * tmp49; double tmp1330 = ABar_LL.xz * tmp46; double tmp1331 = U->beta_U.x * tmp1328; double tmp1332 = r * tmp1327; double tmp1333 = -1. * tmp1321; double tmp1334 = -1. * tmp1319; double tmp1335 = U->beta_U.y * tmp1317; double tmp1336 = -1. * tmp1314; double tmp1337 = U->beta_U.z * partial_ABar_LLl[2].xz; double tmp1338 = ABar_LL.xz * tmp1313; double tmp1339 = ABar_LL.xz * partial_beta_Ul[2].z; double tmp1340 = ABar_LL.xy * partial_beta_Ul[2].y; double tmp1341 = ABar_LL.xx * partial_beta_Ul[2].x; double tmp1342 = ABar_LL.xz * tmp911; double tmp1343 = gammaBar_LL.xz * tmp907; double tmp1344 = -2. * tmp1342; double tmp1345 = tmp1343 + tmp1344; double tmp1346 = -1. * tmp1312; double tmp1347 = gammaBar_LL.xz * tmp983; double tmp1348 = tmp1 * tmp77; double tmp1349 = tmp1 * tmp54; double tmp1350 = r * tmp1349; double tmp1351 = partial_alpha_l.y * tmp1348; double tmp1352 = partial_alpha_l.x * tmp1350; double tmp1353 = partial_alpha_l.z * tmp105; double tmp1354 = tmp1351 + tmp1352; double tmp1355 = tmp1353 + tmp1354; double tmp1356 = tmp915 * tmp1355; double tmp1357 = tmp5 * tmp1356; double tmp1358 = tmp1 * tmp479; double tmp1359 = tmp1 * tmp461; double tmp1360 = r * tmp1359; double tmp1361 = partial_alpha_l.y * tmp1358; double tmp1362 = partial_alpha_l.x * tmp1360; double tmp1363 = partial_alpha_l.z * tmp503; double tmp1364 = tmp1361 + tmp1362; double tmp1365 = tmp1363 + tmp1364; double tmp1366 = tmp915 * tmp1365; double tmp1367 = tmp5 * tmp1366; double tmp1368 = tmp984 * tmp1367; double tmp1369 = tmp1 * tmp998; double tmp1370 = tmp1 * tmp1006; double tmp1371 = r * tmp1370; double tmp1372 = partial_alpha_l.y * tmp1369; double tmp1373 = partial_alpha_l.x * tmp1371; double tmp1374 = partial_alpha_l.z * tmp6; double tmp1375 = tmp1372 + tmp1373; double tmp1376 = tmp1374 + tmp1375; double tmp1377 = tmp915 * tmp1376; double tmp1378 = tmp5 * tmp1377; double tmp1379 = gammaBar_LL.xz * tmp1378; double tmp1380 = tmp984 * tmp1379; double tmp1381 = tmp5 * tmp1248; double tmp1382 = partial_alpha_l.z * tmp1381; double tmp1383 = gammaBar_LL.zz * gammaBar_UU.zz; double tmp1384 = tmp1255 + tmp1383; double tmp1385 = gammaBar_LL.yz * gammaBar_UU.yy; double tmp1386 = gammaBar_LL.zz * gammaBar_UU.yz; double tmp1387 = tmp1385 + tmp1386; double tmp1388 = tmp1 * tmp1387; double tmp1389 = gammaBar_LL.yz * gammaBar_UU.xy; double tmp1390 = gammaBar_LL.zz * gammaBar_UU.xz; double tmp1391 = tmp1389 + tmp1390; double tmp1392 = tmp1 * tmp1391; double tmp1393 = r * tmp1392; double tmp1394 = partial_alpha_l.y * tmp1388; double tmp1395 = partial_alpha_l.x * tmp1393; double tmp1396 = partial_alpha_l.z * tmp1384; double tmp1397 = tmp1394 + tmp1395; double tmp1398 = tmp1396 + tmp1397; double tmp1399 = tmp1248 * tmp1398; double tmp1400 = tmp5 * tmp1399; double tmp1401 = partial_alpha_l.y * tmp318; double tmp1402 = partial_alpha_l.x * tmp296; double tmp1403 = partial_alpha_l.z * tmp339; double tmp1404 = tmp1401 + tmp1402; double tmp1405 = tmp1403 + tmp1404; double tmp1406 = gammaBar_LL.xz * tmp1276; double tmp1407 = 3. * tmp1405; double tmp1408 = -2. * tmp1406; double tmp1409 = tmp1407 + tmp1408; double tmp1410 = tmp1282 * tmp1409; double tmp1411 = tmp5 * tmp1410; double tmp1412 = gammaBar_LL.xz * tmp1286; double tmp1413 = W * tmp1412; double tmp1414 = tmp916 * tmp1413; double tmp1415 = tmp1284 * tmp1411; double tmp1416 = 2. * tmp1414; double tmp1417 = tmp984 * tmp1400; double tmp1418 = tmp1415 + tmp1416; double tmp1419 = tmp984 * tmp1382; double tmp1420 = tmp1417 + tmp1418; double tmp1421 = -1. * tmp1380; double tmp1422 = tmp1419 + tmp1420; double tmp1423 = -1. * tmp1368; double tmp1424 = tmp1421 + tmp1422; double tmp1425 = tmp984 * tmp1357; double tmp1426 = tmp1423 + tmp1424; double tmp1427 = tmp916 * tmp1347; double tmp1428 = tmp1425 + tmp1426; double tmp1429 = tmp1427 + tmp1428; double tmp1430 = ABar_LL.xz * tmp991; double tmp1431 = det_gammaBar * gammaBar_LL.xz; double tmp1432 = U->alpha * tmp1431; double tmp1433 = S * tmp1432; double tmp1434 = M_PI * tmp1433; double tmp1435 = -1. * tmp1430; double tmp1436 = 4. * tmp1434; double tmp1437 = tmp1435 + tmp1436; double tmp1438 = tmp992 * tmp1437; double tmp1439 = tmp916 * tmp1438; double tmp1440 = 2. * tmp1439; double tmp1441 = ABar_LL.yy * gammaBar_UU.xy; double tmp1442 = ABar_LL.yz * gammaBar_UU.xz; double tmp1443 = ABar_LL.xy * gammaBar_UU.xx; double tmp1444 = tmp1441 + tmp1442; double tmp1445 = tmp1443 + tmp1444; double tmp1446 = ABar_LL.yy * gammaBar_UU.yy; double tmp1447 = ABar_LL.yz * gammaBar_UU.yz; double tmp1448 = tmp1446 + tmp1447; double tmp1449 = tmp28 + tmp1448; double tmp1450 = ABar_LL.yy * gammaBar_UU.yz; double tmp1451 = ABar_LL.yz * gammaBar_UU.zz; double tmp1452 = ABar_LL.xy * gammaBar_UU.xz; double tmp1453 = tmp1450 + tmp1451; double tmp1454 = tmp1452 + tmp1453; double tmp1455 = tmp932 * tmp1248; double tmp1456 = tmp5 * tmp1455; double tmp1457 = tmp1 * tmp912; double tmp1458 = tmp5 * tmp1457; double tmp1459 = U->alpha * tmp1458; double tmp1460 = U->alpha * tmp1457; double tmp1461 = U->K * tmp1460; double tmp1462 = gammaBar_LL.yy * gammaBar_LL.yy; double tmp1463 = tmp996 * tmp1462; double tmp1464 = gammaBar_LL.yy * tmp1077; double tmp1465 = tmp1463 + tmp1464; double tmp1466 = gammaBar_LL.yy * tmp1075; double tmp1467 = gammaBar_LL.yy * tmp1081; double tmp1468 = gammaBar_LL.yy * tmp1084; double tmp1469 = gammaBar_LL.yy * tmp1087; double tmp1470 = gammaBar_LL.yy * tmp1090; double tmp1471 = gammaBar_LL.yy * tmp1093; double tmp1472 = gammaBar_LL.yy * tmp1096; double tmp1473 = gammaBar_LL.yy * tmp1100; double tmp1474 = ABar_LL.zz * tmp1472; double tmp1475 = ABar_LL.xz * tmp1473; double tmp1476 = ABar_LL.yz * tmp1471; double tmp1477 = tmp1474 + tmp1475; double tmp1478 = ABar_LL.yz * tmp1470; double tmp1479 = tmp1476 + tmp1477; double tmp1480 = ABar_LL.yy * tmp1469; double tmp1481 = tmp1478 + tmp1479; double tmp1482 = ABar_LL.xz * tmp1468; double tmp1483 = tmp1480 + tmp1481; double tmp1484 = ABar_LL.xy * tmp1467; double tmp1485 = tmp1482 + tmp1483; double tmp1486 = ABar_LL.xx * tmp1466; double tmp1487 = tmp1484 + tmp1485; double tmp1488 = ABar_LL.xy * tmp1465; double tmp1489 = tmp1486 + tmp1487; double tmp1490 = tmp1488 + tmp1489; double tmp1491 = gammaBar_LL.xy * tmp996; double tmp1492 = tmp1000 + tmp1491; double tmp1493 = ABar_LL.zz * tmp1049; double tmp1494 = ABar_LL.xz * tmp1054; double tmp1495 = ABar_LL.yz * tmp1043; double tmp1496 = tmp1493 + tmp1494; double tmp1497 = ABar_LL.yz * tmp1037; double tmp1498 = tmp1495 + tmp1496; double tmp1499 = ABar_LL.yy * tmp1031; double tmp1500 = tmp1497 + tmp1498; double tmp1501 = ABar_LL.xz * tmp1025; double tmp1502 = tmp1499 + tmp1500; double tmp1503 = ABar_LL.xy * tmp1018; double tmp1504 = tmp1501 + tmp1502; double tmp1505 = ABar_LL.xy * tmp1492; double tmp1506 = tmp1503 + tmp1504; double tmp1507 = ABar_LL.xx * tmp1011; double tmp1508 = tmp1505 + tmp1506; double tmp1509 = tmp1507 + tmp1508; double tmp1510 = gammaBar_LL.yy * tmp1509; double tmp1511 = gammaBar_LL.yy * tmp1163; double tmp1512 = U->beta_U.x * tmp1510; double tmp1513 = U->beta_U.z * tmp1511; double tmp1514 = U->beta_U.y * tmp1490; double tmp1515 = tmp1 * tmp1276; double tmp1516 = r * tmp1515; double tmp1517 = gammaBar_LL.yz * tmp26; double tmp1518 = partial2_alpha_ll.yz * tmp5; double tmp1519 = ABar_LL.yy * partial_beta_Ul[2].y; double tmp1520 = ABar_LL.yz * partial_beta_Ul[2].z; double tmp1521 = ABar_LL.xy * partial_beta_Ul[2].x; double tmp1522 = tmp1519 + tmp1520; double tmp1523 = tmp1521 + tmp1522; double tmp1524 = partial_ABar_LLl[1].yz * tmp1; double tmp1525 = partial_ABar_LLl[0].yz * tmp44; double tmp1526 = U->beta_U.y * tmp1524; double tmp1527 = U->beta_U.x * tmp1525; double tmp1528 = U->beta_U.z * partial_ABar_LLl[2].yz; double tmp1529 = tmp1526 + tmp1527; double tmp1530 = tmp1528 + tmp1529; double tmp1531 = ABar_LL.zz * tmp1177; double tmp1532 = S_LL.yz * tmp49; double tmp1533 = M_PI * tmp1532; double tmp1534 = -1. * tmp1531; double tmp1535 = -8. * tmp1533; double tmp1536 = ABar_LL.yz * tmp985; double tmp1537 = tmp1534 + tmp1535; double tmp1538 = ABar_LL.yz * tmp1313; double tmp1539 = tmp1536 + tmp1537; double tmp1540 = tmp1538 + tmp1539; double tmp1541 = partial_W_l.y * partial_alpha_l.z; double tmp1542 = W * tmp1541; double tmp1543 = partial_W_l.z * partial_alpha_l.y; double tmp1544 = W * tmp1543; double tmp1545 = ABar_LL.yz * partial_beta_Ul[1].y; double tmp1546 = ABar_LL.zz * partial_beta_Ul[1].z; double tmp1547 = ABar_LL.xz * partial_beta_Ul[1].x; double tmp1548 = tmp1545 + tmp1546; double tmp1549 = tmp1547 + tmp1548; double tmp1550 = tmp1 * tmp1549; double tmp1551 = ABar_LL.yz * tmp1461; double tmp1552 = R_LL.yz * tmp1459; double tmp1553 = r * tmp1550; double tmp1554 = -1. * tmp1544; double tmp1555 = -1. * tmp1542; double tmp1556 = r * tmp1540; double tmp1557 = r * tmp1530; double tmp1558 = r * tmp1523; double tmp1559 = -1. * tmp1518; double tmp1560 = gammaBar_LL.yz * gammaBar_LL.yz; double tmp1561 = tmp996 * tmp1560; double tmp1562 = gammaBar_LL.yz * tmp1123; double tmp1563 = tmp1561 + tmp1562; double tmp1564 = gammaBar_LL.yz * tmp1121; double tmp1565 = gammaBar_LL.yz * tmp1127; double tmp1566 = gammaBar_LL.yz * tmp1130; double tmp1567 = gammaBar_LL.yz * tmp1133; double tmp1568 = gammaBar_LL.yz * tmp1136; double tmp1569 = gammaBar_LL.yz * tmp1139; double tmp1570 = gammaBar_LL.yz * tmp1142; double tmp1571 = gammaBar_LL.yz * tmp1146; double tmp1572 = ABar_LL.zz * tmp1570; double tmp1573 = ABar_LL.xz * tmp1571; double tmp1574 = ABar_LL.yz * tmp1569; double tmp1575 = tmp1572 + tmp1573; double tmp1576 = ABar_LL.yz * tmp1568; double tmp1577 = tmp1574 + tmp1575; double tmp1578 = ABar_LL.yy * tmp1567; double tmp1579 = tmp1576 + tmp1577; double tmp1580 = ABar_LL.xz * tmp1566; double tmp1581 = tmp1578 + tmp1579; double tmp1582 = ABar_LL.xy * tmp1565; double tmp1583 = tmp1580 + tmp1581; double tmp1584 = ABar_LL.xx * tmp1564; double tmp1585 = tmp1582 + tmp1583; double tmp1586 = ABar_LL.xy * tmp1563; double tmp1587 = tmp1584 + tmp1585; double tmp1588 = tmp1586 + tmp1587; double tmp1589 = gammaBar_LL.yz * tmp1509; double tmp1590 = gammaBar_LL.yz * tmp1117; double tmp1591 = U->beta_U.x * tmp1589; double tmp1592 = U->beta_U.y * tmp1590; double tmp1593 = U->beta_U.z * tmp1588; double tmp1594 = tmp1591 + tmp1592; double tmp1595 = tmp1593 + tmp1594; double tmp1596 = gammaBar_LL.yz * tmp393; double tmp1597 = gammaBar_LL.yz * tmp443; double tmp1598 = ABar_LL.yz * tmp911; double tmp1599 = gammaBar_LL.yz * tmp893; double tmp1600 = tmp1592 + tmp1599; double tmp1601 = -2. * tmp1598; double tmp1602 = tmp1591 + tmp1600; double tmp1603 = gammaBar_LL.yz * tmp1209; double tmp1604 = tmp1601 + tmp1602; double tmp1605 = -1. * tmp1597; double tmp1606 = tmp1603 + tmp1604; double tmp1607 = -1. * tmp1596; double tmp1608 = tmp1605 + tmp1606; double tmp1609 = gammaBar_LL.yz * tmp1206; double tmp1610 = tmp1607 + tmp1608; double tmp1611 = tmp1609 + tmp1610; double tmp1612 = -1. * tmp1595; double tmp1613 = tmp1593 + tmp1611; double tmp1614 = tmp1612 + tmp1613; double tmp1615 = r * tmp1614; double tmp1616 = -1. * tmp1517; double tmp1617 = gammaBar_LL.yz * tmp983; double tmp1618 = tmp1 * tmp192; double tmp1619 = tmp1 * tmp170; double tmp1620 = r * tmp1619; double tmp1621 = partial_alpha_l.y * tmp1618; double tmp1622 = partial_alpha_l.x * tmp1620; double tmp1623 = partial_alpha_l.z * tmp218; double tmp1624 = tmp1621 + tmp1622; double tmp1625 = tmp1623 + tmp1624; double tmp1626 = tmp915 * tmp1625; double tmp1627 = tmp5 * tmp1626; double tmp1628 = tmp1 * tmp576; double tmp1629 = tmp1 * tmp563; double tmp1630 = r * tmp1629; double tmp1631 = partial_alpha_l.y * tmp1628; double tmp1632 = partial_alpha_l.x * tmp1630; double tmp1633 = partial_alpha_l.z * tmp594; double tmp1634 = tmp1631 + tmp1632; double tmp1635 = tmp1633 + tmp1634; double tmp1636 = tmp915 * tmp1635; double tmp1637 = tmp5 * tmp1636; double tmp1638 = tmp984 * tmp1637; double tmp1639 = gammaBar_LL.yz * tmp1378; double tmp1640 = tmp984 * tmp1639; double tmp1641 = tmp5 * tmp1290; double tmp1642 = partial_alpha_l.z * tmp1641; double tmp1643 = r * tmp289; double tmp1644 = partial_alpha_l.y * tmp312; double tmp1645 = partial_alpha_l.x * tmp1643; double tmp1646 = partial_alpha_l.z * tmp335; double tmp1647 = tmp1644 + tmp1645; double tmp1648 = tmp1646 + tmp1647; double tmp1649 = tmp1248 * tmp1648; double tmp1650 = tmp5 * tmp1649; double tmp1651 = gammaBar_LL.yz * tmp1286; double tmp1652 = W * tmp1651; double tmp1653 = tmp916 * tmp1652; double tmp1654 = gammaBar_LL.yz * tmp1456; double tmp1655 = tmp984 * tmp1654; double tmp1656 = tmp915 * tmp921; double tmp1657 = tmp2 * tmp1656; double tmp1658 = tmp5 * tmp1657; double tmp1659 = gammaBar_LL.zz * tmp1658; double tmp1660 = tmp1276 * tmp1282; double tmp1661 = tmp5 * tmp1660; double tmp1662 = gammaBar_LL.yz * tmp1661; double tmp1663 = tmp916 * tmp1662; double tmp1664 = tmp984 * tmp1659; double tmp1665 = -1. * tmp1663; double tmp1666 = -1. * tmp1655; double tmp1667 = tmp1664 + tmp1665; double tmp1668 = 2. * tmp1653; double tmp1669 = tmp1666 + tmp1667; double tmp1670 = tmp984 * tmp1650; double tmp1671 = tmp1668 + tmp1669; double tmp1672 = tmp984 * tmp1642; double tmp1673 = tmp1670 + tmp1671; double tmp1674 = -1. * tmp1640; double tmp1675 = tmp1672 + tmp1673; double tmp1676 = -1. * tmp1638; double tmp1677 = tmp1674 + tmp1675; double tmp1678 = tmp984 * tmp1627; double tmp1679 = tmp1676 + tmp1677; double tmp1680 = tmp916 * tmp1617; double tmp1681 = tmp1678 + tmp1679; double tmp1682 = tmp1680 + tmp1681; double tmp1683 = ABar_LL.yz * tmp991; double tmp1684 = det_gammaBar * gammaBar_LL.yz; double tmp1685 = U->alpha * tmp1684; double tmp1686 = S * tmp1685; double tmp1687 = M_PI * tmp1686; double tmp1688 = -1. * tmp1683; double tmp1689 = 4. * tmp1687; double tmp1690 = tmp1688 + tmp1689; double tmp1691 = tmp992 * tmp1690; double tmp1692 = tmp916 * tmp1691; double tmp1693 = 2. * tmp1692; double tmp1694 = ABar_LL.yz * gammaBar_UU.xy; double tmp1695 = ABar_LL.zz * gammaBar_UU.xz; double tmp1696 = ABar_LL.xz * gammaBar_UU.xx; double tmp1697 = tmp1694 + tmp1695; double tmp1698 = tmp1696 + tmp1697; double tmp1699 = ABar_LL.yz * gammaBar_UU.yy; double tmp1700 = ABar_LL.zz * gammaBar_UU.yz; double tmp1701 = ABar_LL.xz * gammaBar_UU.xy; double tmp1702 = tmp1699 + tmp1700; double tmp1703 = tmp1701 + tmp1702; double tmp1704 = ABar_LL.zz * gammaBar_UU.zz; double tmp1705 = tmp1447 + tmp1704; double tmp1706 = tmp29 + tmp1705; double dt_ABar_LL.xx = 2. * (4. * M_PI * S * U->alpha * det_gammaBar * gammaBar_LL.xx + -1. * ABar_LL.xx * tmp991) * tmp916 * tmp992 + (r * (3. * (U->beta_U.z * partial_ABar_LLl[2].xx + (-2. * (ABar_LL.xz * U->beta_U.z + ABar_LL.xy * U->beta_U.y) + 2. * r * (ABar_LL.xx * partial_beta_Ul[0].x + ABar_LL.xz * partial_beta_Ul[0].z + ABar_LL.xy * partial_beta_Ul[0].y) + -1. * partial2_alpha_ll.xx * tmp27 + -2. * U->alpha * r * (ABar_LL.xx * tmp32 + ABar_LL.xz * tmp42 + ABar_LL.xy * tmp37) + -8. * M_PI * S_LL.xx * tmp43 + -2. * W * partial_W_l.x * partial_alpha_l.x * r) * tmp1 + U->beta_U.y * partial_ABar_LLl[1].xx * tmp1 + U->beta_U.x * partial_ABar_LLl[0].xx * tmp44 + R_LL.xx * tmp49 + ABar_LL.xx * tmp46) + -2. * ABar_LL.xx * tmp911 + gammaBar_LL.xx * tmp907) * tmp1 + -1. * gammaBar_LL.xx * tmp26) * tmp915 * tmp916 + W * (W * (r * (3. * (partial_alpha_l.z * tmp116 + partial_alpha_l.x * tmp67 + partial_alpha_l.y * tmp89) + -1. * U->alpha * gammaBar_LL.xx * tmp958 + -1. * gammaBar_LL.xx * (tmp940 + tmp941 + tmp942)) + 3. * (partial_alpha_l.z * (gammaBar_LL.xz * gammaBar_UU.zz + gammaBar_LL.xy * gammaBar_UU.yz) + partial_alpha_l.x * r * (gammaBar_LL.xz * gammaBar_UU.xz + gammaBar_LL.xy * gammaBar_UU.xy) * tmp1 + partial_alpha_l.y * (gammaBar_LL.xz * gammaBar_UU.yz + gammaBar_LL.xy * gammaBar_UU.yy) * tmp1)) * tmp1 + 2. * gammaBar_LL.xx * tmp939) * tmp915 * tmp916 + -1. * (partial_alpha_l.z * tmp494 + partial_alpha_l.x * r * tmp1 * tmp449 + partial_alpha_l.y * tmp1 * tmp471) * tmp5 * tmp915 * tmp984 + gammaBar_LL.xx * tmp916 * tmp983; double dt_ABar_LL.xy = (r * (3. * (-1. * (tmp1175 + tmp1176) * tmp1 + -2. * U->alpha * r * (ABar_LL.xy * tmp32 + ABar_LL.yz * tmp42 + ABar_LL.yy * tmp37) * tmp1 + -8. * M_PI * S_LL.xy * tmp49 + tmp1193 + tmp1194 + tmp1195 + tmp1196 + tmp1197 + tmp1198 + tmp1199 + tmp1200 + tmp1201 + tmp1202 + tmp1203 + tmp1204) + tmp1224 + tmp1225) * tmp1 + tmp1226) * tmp915 * tmp916 + (-1. * gammaBar_LL.xy * tmp932 + tmp1267) * tmp5 * tmp984 * tmp1248 + tmp1294 + tmp1295 + tmp1296 + tmp1297 + tmp1298 + tmp1299 + tmp1300 + tmp1311; double dt_ABar_LL.xz = (r * (3. * (-1. * (tmp1315 + tmp1316) * tmp1 + -2. * U->alpha * r * (ABar_LL.xz * tmp32 + ABar_LL.zz * tmp42 + ABar_LL.yz * tmp37) * tmp1 + -8. * M_PI * S_LL.xz * tmp49 + tmp1329 + tmp1330 + tmp1331 + tmp1332 + tmp1333 + tmp1334 + tmp1335 + tmp1336 + tmp1337 + tmp1338 + tmp1339 + tmp1340 + tmp1341) + tmp1345) * tmp1 + tmp1346) * tmp915 * tmp916 + tmp1429 + tmp1440; double dt_ABar_LL.xy = (r * (3. * (-1. * (8. * M_PI * S_LL.xy * tmp43 + tmp1175 + tmp1176) * tmp1 + -2. * U->alpha * r * (ABar_LL.xx * tmp1445 + ABar_LL.xz * tmp1454 + ABar_LL.xy * tmp1449) * tmp1 + tmp1193 + tmp1194 + tmp1195 + tmp1196 + tmp1197 + tmp1198 + tmp1199 + tmp1200 + tmp1201 + tmp1202 + tmp1203 + tmp1204) + tmp1224 + tmp1225) * tmp1 + tmp1226) * tmp915 * tmp916 + tmp5 * tmp984 * tmp1248 * tmp1267 + -1. * gammaBar_LL.xy * tmp984 * tmp1456 + tmp1294 + tmp1295 + tmp1296 + tmp1297 + tmp1298 + tmp1299 + tmp1300 + tmp1311; double dt_ABar_LL.yy = 2. * (4. * M_PI * S * U->alpha * det_gammaBar * gammaBar_LL.yy + -1. * ABar_LL.yy * tmp991) * tmp916 * tmp992 + ((r * (-1. * (tmp1512 + tmp1513 + tmp1514) + gammaBar_LL.yy * tmp1206 + -1. * gammaBar_LL.yy * tmp393 + -1. * gammaBar_LL.yy * tmp443 + gammaBar_LL.yy * tmp1209 + -2. * ABar_LL.yy * tmp911 + gammaBar_LL.yy * tmp893 + tmp1512 + tmp1513 + tmp1514) + 3. * (r * (U->beta_U.z * partial_ABar_LLl[2].yy + U->beta_U.x * partial_ABar_LLl[0].yy * tmp44 + U->beta_U.y * partial_ABar_LLl[1].yy * tmp1) + 2. * r * (ABar_LL.yy * tmp985 + -4. * M_PI * S_LL.yy * tmp49 + -1. * ABar_LL.yz * tmp1177) + -1. * partial2_alpha_ll.yy * tmp47 + 2. * r * (ABar_LL.xy * partial_beta_Ul[1].x + ABar_LL.yz * partial_beta_Ul[1].z + ABar_LL.yy * partial_beta_Ul[1].y) * tmp1 + R_LL.yy * tmp1459 + -2. * U->alpha * (ABar_LL.xy * tmp1445 + ABar_LL.yz * tmp1454 + ABar_LL.yy * tmp1449) * tmp1 * tmp912 + ABar_LL.yy * tmp1461 + -2. * W * partial_W_l.y * tmp757)) * tmp1 + -1. * gammaBar_LL.yy * tmp26) * tmp915 * tmp916 + W * (2. * gammaBar_LL.yy * tmp939 + 3. * W * (partial_alpha_l.z * tmp223 + partial_alpha_l.x * r * tmp176 + partial_alpha_l.y * tmp197) * tmp1 + -3. * W * gammaBar_LL.yy * tmp933 + -1. * W * gammaBar_LL.yy * tmp1516 + 3. * W * gammaBar_LL.yz * tmp2 * tmp921) * tmp915 * tmp916 + -1. * (partial_alpha_l.z * tmp590 + partial_alpha_l.x * r * tmp1 * tmp557 + partial_alpha_l.y * tmp1 * tmp572) * tmp5 * tmp915 * tmp984 + gammaBar_LL.yy * tmp916 * tmp983; double dt_ABar_LL.yz = ((3. * (-2. * U->alpha * (ABar_LL.xz * tmp1445 + ABar_LL.zz * tmp1454 + ABar_LL.yz * tmp1449) * tmp1 * tmp912 + tmp1551 + tmp1552 + tmp1553 + tmp1554 + tmp1555 + tmp1556 + tmp1557 + tmp1558 + tmp1559) + tmp1615) * tmp1 + tmp1616) * tmp915 * tmp916 + tmp1682 + tmp1693; double dt_ABar_LL.xz = (r * (3. * (-1. * (8. * M_PI * S_LL.xz * tmp43 + tmp1315 + tmp1316) * tmp1 + -2. * U->alpha * r * (ABar_LL.xx * tmp1698 + ABar_LL.xz * tmp1706 + ABar_LL.xy * tmp1703) * tmp1 + tmp1329 + tmp1330 + tmp1331 + tmp1332 + tmp1333 + tmp1334 + tmp1335 + tmp1336 + tmp1337 + tmp1338 + tmp1339 + tmp1340 + tmp1341) + tmp1345) * tmp1 + tmp1346) * tmp915 * tmp916 + tmp1429 + tmp1440; double dt_ABar_LL.yz = ((3. * (-2. * U->alpha * (ABar_LL.xy * tmp1698 + ABar_LL.yz * tmp1706 + ABar_LL.yy * tmp1703) * tmp1 * tmp912 + tmp1551 + tmp1552 + tmp1553 + tmp1554 + tmp1555 + tmp1556 + tmp1557 + tmp1558 + tmp1559) + tmp1615) * tmp1 + tmp1616) * tmp915 * tmp916 + tmp1682 + tmp1693; double dt_ABar_LL.zz = 2. * (4. * M_PI * S * U->alpha * det_gammaBar * gammaBar_LL.zz + -1. * ABar_LL.zz * tmp991) * tmp916 * tmp992 + (3. * (-1. * tmp961 + r * (U->beta_U.z * partial_ABar_LLl[2].zz + U->beta_U.x * partial_ABar_LLl[0].zz * tmp44 + U->beta_U.y * partial_ABar_LLl[1].zz * tmp1) * tmp1 + -2. * U->alpha * (ABar_LL.xz * tmp1698 + ABar_LL.zz * tmp1706 + ABar_LL.yz * tmp1703) * tmp9 * tmp912 + -2. * W * partial_W_l.z * partial_alpha_l.z + 2. * r * (-4. * M_PI * S_LL.zz * tmp49 + ABar_LL.zz * tmp1313) * tmp1 + 2. * r * (ABar_LL.xz * partial_beta_Ul[2].x + ABar_LL.zz * partial_beta_Ul[2].z + ABar_LL.yz * partial_beta_Ul[2].y) * tmp1 + R_LL.zz * U->alpha * tmp963 + ABar_LL.zz * U->K * U->alpha * tmp962) + r * (-2. * ABar_LL.zz * tmp911 + gammaBar_LL.zz * tmp907) * tmp1 + -1. * gammaBar_LL.zz * tmp26) * tmp915 * tmp916 + W * (2. * gammaBar_LL.zz * tmp939 + 3. * W * (partial_alpha_l.z * tmp332 + partial_alpha_l.x * r * tmp1 * tmp283 + partial_alpha_l.y * tmp1 * tmp306) + -1. * W * gammaBar_LL.zz * tmp1516 + -3. * W * gammaBar_LL.zz * tmp1376) * tmp915 * tmp916 + -1. * (partial_alpha_l.z * tmp715 + partial_alpha_l.x * r * tmp1 * tmp692 + partial_alpha_l.y * tmp1 * tmp701) * tmp5 * tmp915 * tmp984 + gammaBar_LL.zz * tmp916 * tmp983;


variable: $\bar{\Lambda}$
eqn:${{{ \bar{\Lambda}} ^I} _{,t}} = {{{{2}} \cdot {{\frac{1}{3}}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ \beta} ^D} _{,d}}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^d} _D}} {{{{{ e} _a} ^I} _{,b}}}} + {{{2}} \cdot {{\frac{1}{3}}} {{{{ \bar{\gamma}} ^C} ^I}} {{{{ \beta} ^D} _{,d}}} {{{{ e} ^b} _F}} {{{{ e} ^c} _C}} {{{{ e} ^d} _D}} {{{{{ e} _c} ^F} _{,b}}}} + {{{2}} \cdot {{\frac{1}{3}}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ \bar{\gamma}} ^F} ^I}} {{{{ \beta} ^D} _{,d}}} {{{{ e} ^b} _B}} {{{{ e} ^d} _D}} {{{{{ \bar{\gamma}} _A} _F} _{,b}}}} + {{{-2}} \cdot {{\frac{1}{3}}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ \beta} ^C} _{,c}}} {{{{ e} ^c} _C}} {{{{{ \hat{\Gamma}} ^I} _A} _B}}} + {{{\frac{1}{2}}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ \bar{\gamma}} _E} _D}} {{{{ \beta} ^D} _{,b}}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{{ e} _c} ^E} _{,a}}}} + {{{\frac{1}{2}}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \beta} ^D} _{,b}}} {{{{ e} ^a} _A}} {{{{ e} ^b} _F}} {{{{ e} ^d} _D}} {{{{{ e} _d} ^F} _{,a}}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ \bar{\gamma}} _E} _D}} {{{{ \beta} ^D} _{,c}}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{{ e} _b} ^E} _{,a}}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \beta} ^D} _{,c}}} {{{{ e} ^a} _A}} {{{{ e} ^c} _F}} {{{{ e} ^d} _D}} {{{{{ e} _d} ^F} _{,a}}}} + {{{\frac{1}{2}}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ \beta} ^D} _{,b}}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{{ \bar{\gamma}} _C} _D} _{,a}}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^E} ^C}} {{{{ \beta} ^D} _{,c}}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{{ \bar{\gamma}} _E} _D} _{,a}}}} + {{{\frac{1}{3}}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{{ \beta} ^B} _{,a}} _{,b}}}} + {{{\frac{1}{2}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^C} ^D}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{ e} ^d} _D}} {{{{{ e} _c} ^B} _{,a}}} {{{{{ e} _d} ^I} _{,b}}}} + {{{\frac{1}{2}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _K}} {{{{ e} ^f} _F}} {{{{{ e} _c} ^F} _{,a}}} {{{{{ e} _f} ^K} _{,b}}}} + {{{\frac{1}{2}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^E}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^d} _H}} {{{{ e} ^e} _E}} {{{{{ e} _d} ^I} _{,b}}} {{{{{ e} _e} ^H} _{,a}}}} + {{{\frac{1}{2}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^E} ^F}} {{{{ e} ^a} _A}} {{{{ e} ^b} _K}} {{{{ e} ^e} _E}} {{{{ e} ^f} _F}} {{{{{ e} _e} ^I} _{,a}}} {{{{{ e} _f} ^K} _{,b}}}} + {{{\frac{1}{2}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^I}} {{{{ \bar{\gamma}} ^C} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{{ \bar{\gamma}} _I} _K} _{,b}}} {{{{{ e} _c} ^K} _{,a}}}} + {{{\frac{1}{2}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^I}} {{{{ \bar{\gamma}} ^E} ^K}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^e} _E}} {{{{{ \bar{\gamma}} _H} _K} _{,b}}} {{{{{ e} _e} ^H} _{,a}}}} + {{{\frac{1}{2}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^E}} {{{{ \bar{\gamma}} ^G} ^D}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^d} _D}} {{{{{ \bar{\gamma}} _G} _E} _{,a}}} {{{{{ e} _d} ^I} _{,b}}}} + {{{\frac{1}{2}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^G} ^I}} {{{{ \bar{\gamma}} ^H} ^F}} {{{{ e} ^a} _A}} {{{{ e} ^b} _K}} {{{{ e} ^f} _F}} {{{{{ \bar{\gamma}} _G} _H} _{,a}}} {{{{{ e} _f} ^K} _{,b}}}} + {{{\frac{1}{2}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^I}} {{{{ \bar{\gamma}} ^G} ^D}} {{{{ \bar{\gamma}} ^E} ^K}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{{ \bar{\gamma}} _G} _E} _{,a}}} {{{{{ \bar{\gamma}} _D} _K} _{,b}}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^d} _F}} {{{{{{ e} _d} ^F} _{,a}} _{,b}}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{{{ e} _c} ^C} _{,a}} _{,b}}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^I}} {{{{ \bar{\gamma}} ^E} ^D}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{{{ \bar{\gamma}} _E} _D} _{,a}} _{,b}}}} + {{{\frac{1}{3}}} {{{ \beta} ^B}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ e} ^a} _A}} {{{{{{ e} ^b} _B} _{,a}} _{,b}}}} + {{{-2}} \cdot {{\frac{1}{3}}} {{{ \beta} ^C}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{{ \hat{\Gamma}} ^I} _A} _B}} {{{{{ e} ^c} _C} _{,c}}}} + {{{2}} \cdot {{\frac{1}{3}}} {{{ \beta} ^D}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{{ e} _a} ^I} _{,b}}} {{{{{ e} ^d} _D} _{,d}}}} + {{{2}} \cdot {{\frac{1}{3}}} {{{ \beta} ^D}} {{{{ \bar{\gamma}} ^C} ^I}} {{{{ e} ^b} _F}} {{{{ e} ^c} _C}} {{{{{ e} _c} ^F} _{,b}}} {{{{{ e} ^d} _D} _{,d}}}} + {{{2}} \cdot {{\frac{1}{3}}} {{{ \beta} ^D}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ \bar{\gamma}} ^C} ^I}} {{{{ e} ^b} _B}} {{{{{ \bar{\gamma}} _A} _C} _{,b}}} {{{{{ e} ^d} _D} _{,d}}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{ \beta} ^D}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ \bar{\gamma}} _E} _F}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{ e} _d} ^F}} {{{{{ e} _b} ^E} _{,a}}} {{{{{ e} ^d} _D} _{,c}}}} + {{{\frac{1}{2}}} {{{ \beta} ^D}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ \bar{\gamma}} _E} _F}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{ e} _d} ^F}} {{{{{ e} _c} ^E} _{,a}}} {{{{{ e} ^d} _D} _{,b}}}} + {{{\frac{1}{2}}} {{{ \beta} ^D}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^b} _F}} {{{{{ e} _d} ^F} _{,a}}} {{{{{ e} ^d} _D} _{,b}}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{ \beta} ^D}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^c} _F}} {{{{{ e} ^d} _D} _{,c}}} {{{{{ e} _d} ^F} _{,a}}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{ \beta} ^D}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{ e} _d} ^F}} {{{{{ \bar{\gamma}} _B} _F} _{,a}}} {{{{{ e} ^d} _D} _{,c}}}} + {{{\frac{1}{2}}} {{{ \beta} ^D}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} _d} ^F}} {{{{{ \bar{\gamma}} _C} _F} _{,a}}} {{{{{ e} ^d} _D} _{,b}}}} + {{{-1}} {{\alpha}} \cdot {{{ \bar{\gamma}} _{,a}}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ \bar{\gamma}} ^I} ^C}} {{{{ e} ^a} _A}} {{\frac{1}{\bar{\gamma}}}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \bar{\gamma}} _{,a}}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \beta} ^B} _{,b}}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{\frac{1}{\bar{\gamma}}}}} + {{{\frac{1}{2}}} {{{ \bar{\gamma}} _{,a}}} {{{{ \bar{\gamma}} ^B} ^A}} {{{{ \beta} ^I} _{,b}}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{\frac{1}{\bar{\gamma}}}}} + {{{\frac{1}{3}}} {{{ \bar{\gamma}} _{,a}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{{ e} _b} ^I} _{,c}}} {{\frac{1}{\bar{\gamma}}}}} + {{{\frac{1}{3}}} {{{ \bar{\gamma}} _{,a}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^D} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^c} _F}} {{{{ e} ^d} _D}} {{{{{ e} _d} ^F} _{,c}}} {{\frac{1}{\bar{\gamma}}}}} + {{{\frac{1}{3}}} {{{ \bar{\gamma}} _{,a}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ \bar{\gamma}} ^F} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{{ \bar{\gamma}} _B} _F} _{,c}}} {{\frac{1}{\bar{\gamma}}}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \bar{\gamma}} _{,a}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ e} ^a} _A}} {{{{{ \hat{\Gamma}} ^I} _B} _C}} {{\frac{1}{\bar{\gamma}}}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \bar{\gamma}} _{,a}}} {{{ \beta} ^B}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ e} ^a} _A}} {{{{{ e} ^b} _B} _{,b}}} {{\frac{1}{\bar{\gamma}}}}} + {{{\frac{1}{2}}} {{{ \bar{\gamma}} _{,a}}} {{{ \beta} ^B}} {{{{ \bar{\gamma}} ^C} ^A}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{{ e} _c} ^I} _{,b}}} {{\frac{1}{\bar{\gamma}}}}} + {{{\frac{1}{2}}} {{{ \bar{\gamma}} _{,a}}} {{{ \beta} ^B}} {{{{ \bar{\gamma}} ^D} ^I}} {{{{ e} ^a} _F}} {{{{ e} ^b} _B}} {{{{ e} ^d} _D}} {{{{{ e} _d} ^F} _{,b}}} {{\frac{1}{\bar{\gamma}}}}} + {{{\frac{1}{2}}} {{{ \bar{\gamma}} _{,a}}} {{{ \beta} ^B}} {{{{ \bar{\gamma}} ^C} ^A}} {{{{ \bar{\gamma}} ^F} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{{ \bar{\gamma}} _C} _F} _{,b}}} {{\frac{1}{\bar{\gamma}}}}} + {{{\frac{1}{2}}} {{{ \bar{\gamma}} _{,a}}} {{{ \beta} ^J}} {{{{ \bar{\gamma}} ^B} ^A}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} _i} ^I}} {{{{{ e} ^i} _J} _{,b}}} {{\frac{1}{\bar{\gamma}}}}} + {{{-2}} {{{ \alpha} _{,a}}} {{{{ \bar{A}} _B} _C}} {{{{ \bar{\gamma}} ^A} ^C}} {{{{ \bar{\gamma}} ^I} ^B}} {{{{ e} ^a} _A}}} + {{{-1}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ \beta} ^I} _{,c}}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{{ e} _a} ^C} _{,b}}}} + {{{-1}} {{{{ \bar{\gamma}} ^C} ^D}} {{{{ \beta} ^I} _{,c}}} {{{{ e} ^b} _F}} {{{{ e} ^c} _C}} {{{{ e} ^d} _D}} {{{{{ e} _d} ^F} _{,b}}}} + {{{-1}} {{{{ \bar{\gamma}} ^E} ^B}} {{{{ \bar{\gamma}} ^C} ^D}} {{{{ \beta} ^I} _{,c}}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{{ \bar{\gamma}} _E} _D} _{,b}}}} + {{{-1}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ \bar{\gamma}} ^C} ^I}} {{{{ \bar{\gamma}} _E} _D}} {{{{ \beta} ^D} _{,c}}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{{ e} _a} ^E} _{,b}}}} + {{{-1}} {{{{ \bar{\gamma}} ^C} ^I}} {{{{ \beta} ^D} _{,c}}} {{{{ e} ^b} _F}} {{{{ e} ^c} _C}} {{{{ e} ^d} _D}} {{{{{ e} _d} ^F} _{,b}}}} + {{{-1}} {{{{ \bar{\gamma}} ^E} ^B}} {{{{ \bar{\gamma}} ^C} ^I}} {{{{ \beta} ^D} _{,c}}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{{ \bar{\gamma}} _E} _D} _{,b}}}} + {{{2}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ \beta} ^D} _{,a}}} {{{{ e} ^a} _A}} {{{{{ \hat{\Gamma}} ^I} _B} _D}}} + {{{{{ \bar{\gamma}} ^A} ^B}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{{ \beta} ^I} _{,a}} _{,b}}}} + {{{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ \bar{\gamma}} _E} _D}} {{{{ \beta} ^D} _{,a}}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{{ e} _b} ^E} _{,c}}}} + {{{{{ \bar{\gamma}} ^A} ^I}} {{{{ \beta} ^D} _{,a}}} {{{{ e} ^a} _A}} {{{{ e} ^c} _F}} {{{{ e} ^d} _D}} {{{{{ e} _d} ^F} _{,c}}}} + {{{-1}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \beta} ^D} _{,b}}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^d} _D}} {{{{{ e} _a} ^B} _{,d}}}} + {{{-1}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ \beta} ^D} _{,b}}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{ e} ^d} _D}} {{{{{ e} _c} ^I} _{,d}}}} + {{{{{ \bar{\gamma}} ^A} ^I}} {{{{ \beta} ^D} _{,c}}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{ e} ^d} _D}} {{{{{ e} _a} ^C} _{,d}}}} + {{{{{ \bar{\gamma}} ^B} ^C}} {{{{ \beta} ^D} _{,c}}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{ e} ^d} _D}} {{{{{ e} _b} ^I} _{,d}}}} + {{{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^E} ^C}} {{{{ \beta} ^D} _{,a}}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{{ \bar{\gamma}} _E} _D} _{,c}}}} + {{{-1}} {{{{ \bar{\gamma}} ^E} ^I}} {{{{ \bar{\gamma}} ^B} ^F}} {{{{ \beta} ^D} _{,b}}} {{{{ e} ^b} _B}} {{{{ e} ^d} _D}} {{{{{ \bar{\gamma}} _E} _F} _{,d}}}} + {{{{{ \bar{\gamma}} ^E} ^I}} {{{{ \bar{\gamma}} ^F} ^C}} {{{{ \beta} ^D} _{,c}}} {{{{ e} ^c} _C}} {{{{ e} ^d} _D}} {{{{{ \bar{\gamma}} _E} _F} _{,d}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ \delta} ^K} _K}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{ e} ^d} _D}} {{{{{ e} _b} ^D} _{,c}}} {{{{{ e} _d} ^I} _{,a}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ \bar{\gamma}} ^F} ^I}} {{{{ \bar{\gamma}} _G} _H}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{ e} ^f} _F}} {{{{{ e} _b} ^G} _{,c}}} {{{{{ e} _f} ^H} _{,a}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^D} ^E}} {{{{ \delta} ^K} _K}} {{{{ e} ^a} _A}} {{{{ e} ^c} _H}} {{{{ e} ^d} _D}} {{{{ e} ^e} _E}} {{{{{ e} _d} ^I} _{,a}}} {{{{{ e} _e} ^H} _{,c}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^I} ^E}} {{{{ e} ^a} _A}} {{{{ e} ^c} _H}} {{{{ e} ^e} _E}} {{{{ e} ^f} _K}} {{{{{ e} _e} ^H} _{,c}}} {{{{{ e} _f} ^K} _{,a}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ \bar{\gamma}} ^F} ^J}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{{ \bar{\gamma}} _J} _F} _{,a}}} {{{{{ e} _b} ^I} _{,c}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^D} ^E}} {{{{ \bar{\gamma}} ^F} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^c} _H}} {{{{ e} ^e} _E}} {{{{{ \bar{\gamma}} _D} _F} _{,a}}} {{{{{ e} _e} ^H} _{,c}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^G} ^C}} {{{{ \bar{\gamma}} ^D} ^H}} {{{{ \delta} ^K} _K}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{ e} ^d} _D}} {{{{{ \bar{\gamma}} _G} _H} _{,c}}} {{{{{ e} _d} ^I} _{,a}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^G} ^C}} {{{{ \bar{\gamma}} ^F} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{ e} ^f} _F}} {{{{{ \bar{\gamma}} _G} _K} _{,c}}} {{{{{ e} _f} ^K} _{,a}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ \bar{\gamma}} ^I} ^H}} {{{{ \bar{\gamma}} ^F} ^J}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{{ \bar{\gamma}} _B} _H} _{,c}}} {{{{{ \bar{\gamma}} _J} _F} _{,a}}}} + {{{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{{ \hat{\Gamma}} ^I} _C} _E}} {{{{{ e} _b} ^E} _{,a}}}} + {{{{ \beta} ^A}} {{{{ \bar{\gamma}} ^D} ^E}} {{{{ e} ^a} _A}} {{{{ e} ^d} _D}} {{{{{ \hat{\Gamma}} ^I} _G} _E}} {{{{{ e} _d} ^G} _{,a}}}} + {{{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ \bar{\gamma}} ^G} ^E}} {{{{ e} ^a} _A}} {{{{{ \bar{\gamma}} _B} _G} _{,a}}} {{{{{ \hat{\Gamma}} ^I} _C} _E}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^J}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{ e} ^f} _J}} {{{{{ e} _b} ^C} _{,f}}} {{{{{ e} _c} ^I} _{,a}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^C} ^D}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{ e} ^d} _D}} {{{{ e} ^f} _H}} {{{{{ e} _c} ^I} _{,a}}} {{{{{ e} _d} ^H} _{,f}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^E} ^F}} {{{{ e} ^a} _A}} {{{{ e} ^b} _K}} {{{{ e} ^e} _E}} {{{{ e} ^f} _F}} {{{{{ e} _b} ^I} _{,f}}} {{{{{ e} _e} ^K} _{,a}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^E} ^F}} {{{{ e} ^a} _A}} {{{{ e} ^d} _K}} {{{{ e} ^e} _E}} {{{{ e} ^f} _F}} {{{{{ e} _d} ^I} _{,f}}} {{{{{ e} _e} ^K} _{,a}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^J}} {{{{ \bar{\gamma}} ^K} ^F}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^f} _F}} {{{{{ \bar{\gamma}} _J} _K} _{,a}}} {{{{{ e} _b} ^I} _{,f}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^C} ^D}} {{{{ \bar{\gamma}} ^K} ^F}} {{{{ e} ^a} _A}} {{{{ e} ^d} _D}} {{{{ e} ^f} _F}} {{{{{ \bar{\gamma}} _C} _K} _{,a}}} {{{{{ e} _d} ^I} _{,f}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^G} ^J}} {{{{ \bar{\gamma}} ^C} ^D}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{ e} ^f} _J}} {{{{{ \bar{\gamma}} _G} _D} _{,f}}} {{{{{ e} _c} ^I} _{,a}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^G} ^I}} {{{{ \bar{\gamma}} ^E} ^F}} {{{{ e} ^a} _A}} {{{{ e} ^e} _E}} {{{{ e} ^f} _F}} {{{{{ \bar{\gamma}} _G} _K} _{,f}}} {{{{{ e} _e} ^K} _{,a}}}} + {{{-1}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^J}} {{{{ \bar{\gamma}} ^I} ^D}} {{{{ \bar{\gamma}} ^K} ^F}} {{{{ e} ^a} _A}} {{{{ e} ^f} _F}} {{{{{ \bar{\gamma}} _B} _D} _{,f}}} {{{{{ \bar{\gamma}} _J} _K} _{,a}}}} + {{{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^d} _D}} {{{{{{ e} _b} ^D} _{,a}} _{,d}}}} + {{{{ \beta} ^A}} {{{{ \bar{\gamma}} ^C} ^D}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{ e} ^d} _D}} {{{{{{ e} _c} ^I} _{,a}} _{,d}}}} + {{{{ \beta} ^A}} {{{{ \bar{\gamma}} ^E} ^I}} {{{{ \bar{\gamma}} ^C} ^D}} {{{{ e} ^a} _A}} {{{{ e} ^d} _D}} {{{{{{ \bar{\gamma}} _E} _C} _{,a}} _{,d}}}} + {{{2}} {{{ \beta} ^C}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ e} ^a} _A}} {{{{ e} _c} ^D}} {{{{{ \hat{\Gamma}} ^I} _B} _D}} {{{{{ e} ^c} _C} _{,a}}}} + {{{-1}} {{{ \beta} ^D}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ \bar{\gamma}} ^C} ^I}} {{{{ \bar{\gamma}} _E} _F}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{ e} _d} ^F}} {{{{{ e} _a} ^E} _{,b}}} {{{{{ e} ^d} _D} _{,c}}}} + {{{-1}} {{{ \beta} ^D}} {{{{ \bar{\gamma}} ^C} ^I}} {{{{ e} ^b} _F}} {{{{ e} ^c} _C}} {{{{{ e} _d} ^F} _{,b}}} {{{{{ e} ^d} _D} _{,c}}}} + {{{-1}} {{{ \beta} ^D}} {{{{ \bar{\gamma}} ^E} ^B}} {{{{ \bar{\gamma}} ^C} ^I}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{ e} _d} ^F}} {{{{{ \bar{\gamma}} _E} _F} _{,b}}} {{{{{ e} ^d} _D} _{,c}}}} + {{{{ \beta} ^D}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ \bar{\gamma}} _E} _F}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{ e} _d} ^F}} {{{{{ e} _b} ^E} _{,c}}} {{{{{ e} ^d} _D} _{,a}}}} + {{{{ \beta} ^D}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^c} _F}} {{{{{ e} _d} ^F} _{,c}}} {{{{{ e} ^d} _D} _{,a}}}} + {{{-1}} {{{ \beta} ^D}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{{ e} _a} ^B} _{,d}}} {{{{{ e} ^d} _D} _{,b}}}} + {{{{ \beta} ^D}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{{ e} _a} ^C} _{,d}}} {{{{{ e} ^d} _D} _{,c}}}} + {{{{ \beta} ^D}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{{ e} _b} ^I} _{,d}}} {{{{{ e} ^d} _D} _{,c}}}} + {{{-1}} {{{ \beta} ^D}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{{ e} _c} ^I} _{,d}}} {{{{{ e} ^d} _D} _{,b}}}} + {{{{ \beta} ^D}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{ e} _d} ^F}} {{{{{ \bar{\gamma}} _B} _F} _{,c}}} {{{{{ e} ^d} _D} _{,a}}}} + {{{{ \beta} ^D}} {{{{ \bar{\gamma}} ^E} ^I}} {{{{ \bar{\gamma}} ^F} ^C}} {{{{ e} ^c} _C}} {{{{{ \bar{\gamma}} _E} _F} _{,d}}} {{{{{ e} ^d} _D} _{,c}}}} + {{{-1}} {{{ \beta} ^D}} {{{{ \bar{\gamma}} ^E} ^I}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ e} ^b} _B}} {{{{{ \bar{\gamma}} _E} _C} _{,d}}} {{{{{ e} ^d} _D} _{,b}}}} + {{{-1}} {{{ \beta} ^J}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{ e} _i} ^I}} {{{{{ e} _a} ^C} _{,b}}} {{{{{ e} ^i} _J} _{,c}}}} + {{{-1}} {{{ \beta} ^J}} {{{{ \bar{\gamma}} ^C} ^D}} {{{{ e} ^b} _F}} {{{{ e} ^c} _C}} {{{{ e} ^d} _D}} {{{{ e} _i} ^I}} {{{{{ e} _d} ^F} _{,b}}} {{{{{ e} ^i} _J} _{,c}}}} + {{{-1}} {{{ \beta} ^J}} {{{{ \bar{\gamma}} ^E} ^B}} {{{{ \bar{\gamma}} ^C} ^F}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{ e} _i} ^I}} {{{{{ \bar{\gamma}} _E} _F} _{,b}}} {{{{{ e} ^i} _J} _{,c}}}} + {{{{ \beta} ^J}} {{{{ \bar{\gamma}} ^A} ^B}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{ e} _i} ^I}} {{{{{{ e} ^i} _J} _{,a}} _{,b}}}} + {{{-1}} {{\alpha}} \cdot {{{{ \bar{A}} _A} _B}} {{{{ \bar{\gamma}} ^C} ^A}} {{{{ \bar{\gamma}} ^E} ^I}} {{{{ e} ^c} _C}} {{{{ e} ^e} _E}} {{{{{ e} _c} ^B} _{,e}}}} + {{{2}} {{\alpha}} \cdot {{{{ \bar{A}} _A} _B}} {{{{ \bar{\gamma}} ^C} ^A}} {{{{ \bar{\gamma}} ^D} ^B}} {{{{ e} ^c} _C}} {{{{ e} ^d} _D}} {{{{{ e} _c} ^I} _{,d}}}} + {{{-1}} {{\alpha}} \cdot {{{{ \bar{A}} _G} _B}} {{{{ \bar{\gamma}} ^D} ^B}} {{{{ \bar{\gamma}} ^E} ^I}} {{{{ e} ^d} _D}} {{{{ e} ^e} _E}} {{{{{ e} _d} ^G} _{,e}}}} + {{{2}} {{\alpha}} \cdot {{{{ \bar{A}} _G} _B}} {{{{ \bar{\gamma}} ^D} ^B}} {{{{ \bar{\gamma}} ^E} ^I}} {{{{ e} ^d} _D}} {{{{ e} ^e} _E}} {{{{{ e} _e} ^G} _{,d}}}} + {{{-1}} {{\alpha}} \cdot {{{{ \bar{A}} _A} _B}} {{{{ \bar{\gamma}} ^F} ^A}} {{{{ \bar{\gamma}} ^G} ^B}} {{{{ \bar{\gamma}} ^E} ^I}} {{{{ e} ^e} _E}} {{{{{ \bar{\gamma}} _F} _G} _{,e}}}} + {{{2}} {{\alpha}} \cdot {{{{ \bar{A}} _A} _B}} {{{{ \bar{\gamma}} ^C} ^A}} {{{{ \bar{\gamma}} ^D} ^B}} {{{{ \bar{\gamma}} ^E} ^I}} {{{{ e} ^d} _D}} {{{{{ \bar{\gamma}} _C} _E} _{,d}}}} + {{{-2}} {{\alpha}} \cdot {{{{ \bar{A}} _A} _B}} {{{{ \bar{\gamma}} ^C} ^A}} {{{{ \bar{\gamma}} ^D} ^B}} {{{{{ \hat{\Gamma}} ^I} _C} _D}}} + {{{2}} {{\alpha}} \cdot {{{{ \bar{A}} _A} _B}} {{{{ \bar{\gamma}} ^C} ^A}} {{{{ \bar{\gamma}} ^D} ^E}} {{{{ \bar{\gamma}} ^I} ^B}} {{{{ e} ^e} _E}} {{{{{ \bar{\gamma}} _C} _D} _{,e}}}} + {{{2}} {{\alpha}} \cdot {{{{ \bar{A}} _A} _B}} {{{{ \bar{\gamma}} ^C} ^A}} {{{{ \bar{\gamma}} ^I} ^B}} {{{{ e} ^c} _C}} {{{{ e} ^e} _E}} {{{{{ e} _c} ^E} _{,e}}}} + {{{2}} {{\alpha}} \cdot {{{{ \bar{A}} _G} _B}} {{{{ \bar{\gamma}} ^D} ^E}} {{{{ \bar{\gamma}} ^I} ^B}} {{{{ e} ^d} _D}} {{{{ e} ^e} _E}} {{{{{ e} _d} ^G} _{,e}}}} + {{{-2}} {{\alpha}} \cdot {{{{ \bar{A}} _D} _B}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{{ e} _a} ^D} _{,c}}}} + {{{\alpha}} \cdot {{{{ \bar{A}} _D} _E}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^B} ^E}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{{{{ e} _b} ^D} _{,a}}}} + {{{\alpha}} \cdot {{{{ \bar{A}} _B} _E}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ e} ^a} _A}} {{{{ e} ^c} _C}} {{{{{ e} _c} ^E} _{,a}}}} + {{{-2}} {{\alpha}} \cdot {{{{ \bar{A}} _A} _E}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^B} ^C}} {{{{ e} ^b} _B}} {{{{ e} ^c} _C}} {{{{{ e} _b} ^E} _{,c}}}} + {{{\alpha}} \cdot {{{{ \bar{\gamma}} ^A} ^I}} {{{{ \bar{\gamma}} ^B} ^E}} {{{{ e} ^a} _A}} {{{{{ \bar{A}} _B} _E} _{,a}}}} + {{{-2}} {{\alpha}} \cdot {{{{ \bar{\gamma}} ^D} ^I}} {{{{ \bar{\gamma}} ^E} ^C}} {{{{ e} ^c} _C}} {{{{{ \bar{A}} _D} _E} _{,c}}}} + {{{\frac{1}{6}}} {{{ \beta} ^I}} {{\frac{1}{\bar{\gamma}}}}} + {{{\frac{1}{6}}} {{{ \bar{\gamma}} _{,a}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^I}} {{{{ e} ^b} _B}} {{{{{ e} ^a} _A} _{,b}}} {{\frac{1}{\bar{\gamma}}}}} + {{{\frac{1}{6}}} {{{ \bar{\gamma}} _{,a}}} {{{{ \bar{\gamma}} ^B} ^I}} {{{{ \beta} ^A} _{,b}}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{\frac{1}{\bar{\gamma}}}}} + {{{-1}} \cdot {{\frac{1}{6}}} {{{ \bar{\gamma}} _{,a}}} {{{ \bar{\gamma}} _{,b}}} {{{ \beta} ^B}} {{{{ \bar{\gamma}} ^A} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{\frac{1}{{\bar{\gamma}}^{2}}}}} + {{{-1}} \cdot {{\frac{1}{6}}} {{{ \bar{\gamma}} _{,a}}} {{{ \bar{\gamma}} _{,b}}} {{{ \beta} ^A}} {{{{ \bar{\gamma}} ^B} ^I}} {{{{ e} ^a} _A}} {{{{ e} ^b} _B}} {{\frac{1}{{\bar{\gamma}}^{2}}}}}}$
new eqn: ${{ \overset{i\downarrow}{\left[ \begin{matrix} {dt_LambdaBar_U.x} \\ {dt_LambdaBar_U.y} \\ {dt_LambdaBar_U.z}\end{matrix} \right]}} ^I} = {{{{\frac{1}{6}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^I}} {{\frac{1}{{det_gammaBar}}}}} + {{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{{ \overset{I\downarrow[{a\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_beta_Ull[0][0].x} & {partial2_beta_Ull[0][1].x} & {partial2_beta_Ull[0][2].x} \\ {partial2_beta_Ull[1][0].x} & {partial2_beta_Ull[1][1].x} & {partial2_beta_Ull[1][2].x} \\ {partial2_beta_Ull[2][0].x} & {partial2_beta_Ull[2][1].x} & {partial2_beta_Ull[2][2].x}\end{matrix} \right]} \\ \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_beta_Ull[0][0].y} & {partial2_beta_Ull[0][1].y} & {partial2_beta_Ull[0][2].y} \\ {partial2_beta_Ull[1][0].y} & {partial2_beta_Ull[1][1].y} & {partial2_beta_Ull[1][2].y} \\ {partial2_beta_Ull[2][0].y} & {partial2_beta_Ull[2][1].y} & {partial2_beta_Ull[2][2].y}\end{matrix} \right]} \\ \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_beta_Ull[0][0].z} & {partial2_beta_Ull[0][1].z} & {partial2_beta_Ull[0][2].z} \\ {partial2_beta_Ull[1][0].z} & {partial2_beta_Ull[1][1].z} & {partial2_beta_Ull[1][2].z} \\ {partial2_beta_Ull[2][0].z} & {partial2_beta_Ull[2][1].z} & {partial2_beta_Ull[2][2].z}\end{matrix} \right]}\end{matrix} \right]}} ^I} _a} _b}}} + {{{2}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _a}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{{ \overset{I\downarrow[{B\downarrow D\rightarrow}]}{\left[ \begin{matrix} \overset{B\downarrow D\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & -{\frac{1}{r}} & 0 \\ 0 & 0 & -{\frac{1}{r}}\end{matrix} \right]} \\ \overset{B\downarrow D\rightarrow}{\left[ \begin{matrix} 0 & \frac{1}{r} & 0 \\ \frac{1}{r} & 0 & 0 \\ 0 & 0 & -{\frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}}}\end{matrix} \right]} \\ \overset{B\downarrow D\rightarrow}{\left[ \begin{matrix} 0 & 0 & \frac{1}{r} \\ 0 & 0 & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} \\ \frac{1}{r} & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^I} _B} _D}}} + {{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^E}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{{ \overset{B\downarrow[{E\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_ABar_LLl[0].xx} & {partial_ABar_LLl[1].xx} & {partial_ABar_LLl[2].xx} \\ {partial_ABar_LLl[0].xy} & {partial_ABar_LLl[1].xy} & {partial_ABar_LLl[2].xy} \\ {partial_ABar_LLl[0].xz} & {partial_ABar_LLl[1].xz} & {partial_ABar_LLl[2].xz}\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_ABar_LLl[0].xy} & {partial_ABar_LLl[1].xy} & {partial_ABar_LLl[2].xy} \\ {partial_ABar_LLl[0].yy} & {partial_ABar_LLl[1].yy} & {partial_ABar_LLl[2].yy} \\ {partial_ABar_LLl[0].yz} & {partial_ABar_LLl[1].yz} & {partial_ABar_LLl[2].yz}\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_ABar_LLl[0].xz} & {partial_ABar_LLl[1].xz} & {partial_ABar_LLl[2].xz} \\ {partial_ABar_LLl[0].yz} & {partial_ABar_LLl[1].yz} & {partial_ABar_LLl[2].yz} \\ {partial_ABar_LLl[0].zz} & {partial_ABar_LLl[1].zz} & {partial_ABar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _B} _E} _a}} {{U->alpha}}} + {{{-2}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _A} _B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^D} ^B}} {{{{{ \overset{I\downarrow[{C\downarrow D\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow D\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & -{\frac{1}{r}} & 0 \\ 0 & 0 & -{\frac{1}{r}}\end{matrix} \right]} \\ \overset{C\downarrow D\rightarrow}{\left[ \begin{matrix} 0 & \frac{1}{r} & 0 \\ \frac{1}{r} & 0 & 0 \\ 0 & 0 & -{\frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}}}\end{matrix} \right]} \\ \overset{C\downarrow D\rightarrow}{\left[ \begin{matrix} 0 & 0 & \frac{1}{r} \\ 0 & 0 & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} \\ \frac{1}{r} & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^I} _C} _D}} {{U->alpha}}} + {{{-2}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^D} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^C}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{D\downarrow[{E\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_ABar_LLl[0].xx} & {partial_ABar_LLl[1].xx} & {partial_ABar_LLl[2].xx} \\ {partial_ABar_LLl[0].xy} & {partial_ABar_LLl[1].xy} & {partial_ABar_LLl[2].xy} \\ {partial_ABar_LLl[0].xz} & {partial_ABar_LLl[1].xz} & {partial_ABar_LLl[2].xz}\end{matrix} \right]} \\ \overset{E\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_ABar_LLl[0].xy} & {partial_ABar_LLl[1].xy} & {partial_ABar_LLl[2].xy} \\ {partial_ABar_LLl[0].yy} & {partial_ABar_LLl[1].yy} & {partial_ABar_LLl[2].yy} \\ {partial_ABar_LLl[0].yz} & {partial_ABar_LLl[1].yz} & {partial_ABar_LLl[2].yz}\end{matrix} \right]} \\ \overset{E\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_ABar_LLl[0].xz} & {partial_ABar_LLl[1].xz} & {partial_ABar_LLl[2].xz} \\ {partial_ABar_LLl[0].yz} & {partial_ABar_LLl[1].yz} & {partial_ABar_LLl[2].yz} \\ {partial_ABar_LLl[0].zz} & {partial_ABar_LLl[1].zz} & {partial_ABar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _D} _E} _c}} {{U->alpha}}} + {{{-2}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {partial_alpha_l.x} \\ {partial_alpha_l.y} \\ {partial_alpha_l.z}\end{matrix} \right]}} _a}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^I} ^B}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{{ \overset{E\downarrow C\rightarrow[{a\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].xx} & {partial2_gammaBar_LLll[0][1].xx} & {partial2_gammaBar_LLll[0][2].xx} \\ {partial2_gammaBar_LLll[1][0].xx} & {partial2_gammaBar_LLll[1][1].xx} & {partial2_gammaBar_LLll[1][2].xx} \\ {partial2_gammaBar_LLll[2][0].xx} & {partial2_gammaBar_LLll[2][1].xx} & {partial2_gammaBar_LLll[2][2].xx}\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].xy} & {partial2_gammaBar_LLll[0][1].xy} & {partial2_gammaBar_LLll[0][2].xy} \\ {partial2_gammaBar_LLll[1][0].xy} & {partial2_gammaBar_LLll[1][1].xy} & {partial2_gammaBar_LLll[1][2].xy} \\ {partial2_gammaBar_LLll[2][0].xy} & {partial2_gammaBar_LLll[2][1].xy} & {partial2_gammaBar_LLll[2][2].xy}\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].xz} & {partial2_gammaBar_LLll[0][1].xz} & {partial2_gammaBar_LLll[0][2].xz} \\ {partial2_gammaBar_LLll[1][0].xz} & {partial2_gammaBar_LLll[1][1].xz} & {partial2_gammaBar_LLll[1][2].xz} \\ {partial2_gammaBar_LLll[2][0].xz} & {partial2_gammaBar_LLll[2][1].xz} & {partial2_gammaBar_LLll[2][2].xz}\end{matrix} \right]} \\ \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].xy} & {partial2_gammaBar_LLll[0][1].xy} & {partial2_gammaBar_LLll[0][2].xy} \\ {partial2_gammaBar_LLll[1][0].xy} & {partial2_gammaBar_LLll[1][1].xy} & {partial2_gammaBar_LLll[1][2].xy} \\ {partial2_gammaBar_LLll[2][0].xy} & {partial2_gammaBar_LLll[2][1].xy} & {partial2_gammaBar_LLll[2][2].xy}\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].yy} & {partial2_gammaBar_LLll[0][1].yy} & {partial2_gammaBar_LLll[0][2].yy} \\ {partial2_gammaBar_LLll[1][0].yy} & {partial2_gammaBar_LLll[1][1].yy} & {partial2_gammaBar_LLll[1][2].yy} \\ {partial2_gammaBar_LLll[2][0].yy} & {partial2_gammaBar_LLll[2][1].yy} & {partial2_gammaBar_LLll[2][2].yy}\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].yz} & {partial2_gammaBar_LLll[0][1].yz} & {partial2_gammaBar_LLll[0][2].yz} \\ {partial2_gammaBar_LLll[1][0].yz} & {partial2_gammaBar_LLll[1][1].yz} & {partial2_gammaBar_LLll[1][2].yz} \\ {partial2_gammaBar_LLll[2][0].yz} & {partial2_gammaBar_LLll[2][1].yz} & {partial2_gammaBar_LLll[2][2].yz}\end{matrix} \right]} \\ \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].xz} & {partial2_gammaBar_LLll[0][1].xz} & {partial2_gammaBar_LLll[0][2].xz} \\ {partial2_gammaBar_LLll[1][0].xz} & {partial2_gammaBar_LLll[1][1].xz} & {partial2_gammaBar_LLll[1][2].xz} \\ {partial2_gammaBar_LLll[2][0].xz} & {partial2_gammaBar_LLll[2][1].xz} & {partial2_gammaBar_LLll[2][2].xz}\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].yz} & {partial2_gammaBar_LLll[0][1].yz} & {partial2_gammaBar_LLll[0][2].yz} \\ {partial2_gammaBar_LLll[1][0].yz} & {partial2_gammaBar_LLll[1][1].yz} & {partial2_gammaBar_LLll[1][2].yz} \\ {partial2_gammaBar_LLll[2][0].yz} & {partial2_gammaBar_LLll[2][1].yz} & {partial2_gammaBar_LLll[2][2].yz}\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].zz} & {partial2_gammaBar_LLll[0][1].zz} & {partial2_gammaBar_LLll[0][2].zz} \\ {partial2_gammaBar_LLll[1][0].zz} & {partial2_gammaBar_LLll[1][1].zz} & {partial2_gammaBar_LLll[1][2].zz} \\ {partial2_gammaBar_LLll[2][0].zz} & {partial2_gammaBar_LLll[2][1].zz} & {partial2_gammaBar_LLll[2][2].zz}\end{matrix} \right]}\end{matrix} \right]}} _E} _C} _a} _d}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{c\downarrow[{I\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^I} _d}} {{{{{ \overset{d\downarrow[{D\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _b}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{b\downarrow[{I\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^I} _d}} {{{{{ \overset{d\downarrow[{D\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _c}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{{ \overset{a\downarrow[{B\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{B\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _a} ^B} _d}} {{{{{ \overset{d\downarrow[{D\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _b}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^G} ^E}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{{ \overset{B\downarrow[{G\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{G\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{G\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{G\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _B} _G} _a}} {{{{{ \overset{I\downarrow[{C\downarrow E\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow E\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & -{\frac{1}{r}} & 0 \\ 0 & 0 & -{\frac{1}{r}}\end{matrix} \right]} \\ \overset{C\downarrow E\rightarrow}{\left[ \begin{matrix} 0 & \frac{1}{r} & 0 \\ \frac{1}{r} & 0 & 0 \\ 0 & 0 & -{\frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}}}\end{matrix} \right]} \\ \overset{C\downarrow E\rightarrow}{\left[ \begin{matrix} 0 & 0 & \frac{1}{r} \\ 0 & 0 & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} \\ \frac{1}{r} & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^I} _C} _E}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^F} ^C}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{E\downarrow[{F\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{F\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{F\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _E} _F} _d}} {{{{{ \overset{d\downarrow[{D\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _c}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^I}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{{ \overset{E\downarrow[{C\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{C\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{C\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _E} _C} _d}} {{{{{ \overset{d\downarrow[{D\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _b}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^I}} {{{{ \overset{b\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _F}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{d\downarrow[{D\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _c}} {{{{{ \overset{d\downarrow[{F\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^F} _b}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{{ \overset{I\downarrow[{C\downarrow E\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow E\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & -{\frac{1}{r}} & 0 \\ 0 & 0 & -{\frac{1}{r}}\end{matrix} \right]} \\ \overset{C\downarrow E\rightarrow}{\left[ \begin{matrix} 0 & \frac{1}{r} & 0 \\ \frac{1}{r} & 0 & 0 \\ 0 & 0 & -{\frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}}}\end{matrix} \right]} \\ \overset{C\downarrow E\rightarrow}{\left[ \begin{matrix} 0 & 0 & \frac{1}{r} \\ 0 & 0 & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} \\ \frac{1}{r} & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^I} _C} _E}} {{{{{ \overset{b\downarrow[{E\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^E} _a}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^D} ^E}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{I\downarrow[{G\downarrow E\rightarrow}]}{\left[ \begin{matrix} \overset{G\downarrow E\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & -{\frac{1}{r}} & 0 \\ 0 & 0 & -{\frac{1}{r}}\end{matrix} \right]} \\ \overset{G\downarrow E\rightarrow}{\left[ \begin{matrix} 0 & \frac{1}{r} & 0 \\ \frac{1}{r} & 0 & 0 \\ 0 & 0 & -{\frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}}}\end{matrix} \right]} \\ \overset{G\downarrow E\rightarrow}{\left[ \begin{matrix} 0 & 0 & \frac{1}{r} \\ 0 & 0 & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} \\ \frac{1}{r} & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^I} _G} _E}} {{{{{ \overset{d\downarrow[{G\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{G\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^G} _a}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{a\downarrow[{C\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _a} ^C} _d}} {{{{{ \overset{d\downarrow[{D\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _c}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{{ \overset{b\downarrow D\rightarrow[{a\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & \cos\left( theta\right) & 0 \\ \cos\left( theta\right) & -{{{r}} {{\sin\left( theta\right)}}} & 0 \\ 0 & 0 & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^D} _a} _d}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^D}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{{ \overset{c\downarrow I\rightarrow[{a\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & \cos\left( theta\right) & 0 \\ \cos\left( theta\right) & -{{{r}} {{\sin\left( theta\right)}}} & 0 \\ 0 & 0 & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^I} _a} _d}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^J}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _i} ^I}} {{{{{{ \overset{i\downarrow J\rightarrow[{a\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} \frac{2}{{r}^{3}} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} \frac{2}{{{{r}^{3}}} {{\sin\left( theta\right)}}} & \frac{\cos\left( theta\right)}{{{{r}^{2}}} {{{\sin\left( theta\right)}^{2}}}} & 0 \\ \frac{\cos\left( theta\right)}{{{{r}^{2}}} {{{\sin\left( theta\right)}^{2}}}} & \frac{{{\sin\left( theta\right)}^{2}} + {{{2}} {{{\cos\left( theta\right)}^{2}}}}}{{{r}} {{{\sin\left( theta\right)}^{3}}}} & 0 \\ 0 & 0 & 0\end{matrix} \right]}\end{matrix} \right]}} ^i} _J} _a} _b}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _F}} {{{{{ \overset{d\downarrow[{F\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^F} _c}} {{{{{ \overset{d\downarrow[{D\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _a}}} + {{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _c}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{b\downarrow[{I\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^I} _d}}} + {{{-1}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^B}} {{{{ \overset{I\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^I} _c}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{E\downarrow[{D\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _E} _D} _b}}} + {{{-1}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _b}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{c\downarrow[{I\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^I} _d}}} + {{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _a}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _F}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{d\downarrow[{F\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^F} _c}}} + {{{-1}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _b}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{a\downarrow[{B\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{B\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _a} ^B} _d}}} + {{{-1}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^F}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^I}} {{{{ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _b}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{E\downarrow[{F\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{F\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{F\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _E} _F} _d}}} + {{{-1}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^D}} {{{{ \overset{I\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^I} _c}} {{{{ \overset{b\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _F}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{d\downarrow[{F\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^F} _b}}} + {{{-1}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^B}} {{{{ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _c}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{E\downarrow[{D\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _E} _D} _b}}} + {{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^C}} {{{{ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _a}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{E\downarrow[{D\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _E} _D} _c}}} + {{{-1}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{I\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^I} _c}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{a\downarrow[{C\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _a} ^C} _b}}} + {{{-1}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^I}} {{{{ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _c}} {{{{ \overset{b\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _F}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{d\downarrow[{F\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^F} _b}}} + {{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _c}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{a\downarrow[{C\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _a} ^C} _d}}} + {{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^F} ^C}} {{{{ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _c}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{E\downarrow[{F\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{F\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{F\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _E} _F} _d}}} + {{{2}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _c} ^D}} {{{{{ \overset{I\downarrow[{B\downarrow D\rightarrow}]}{\left[ \begin{matrix} \overset{B\downarrow D\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & -{\frac{1}{r}} & 0 \\ 0 & 0 & -{\frac{1}{r}}\end{matrix} \right]} \\ \overset{B\downarrow D\rightarrow}{\left[ \begin{matrix} 0 & \frac{1}{r} & 0 \\ \frac{1}{r} & 0 & 0 \\ 0 & 0 & -{\frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}}}\end{matrix} \right]} \\ \overset{B\downarrow D\rightarrow}{\left[ \begin{matrix} 0 & 0 & \frac{1}{r} \\ 0 & 0 & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} \\ \frac{1}{r} & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^I} _B} _D}} {{{{{ \overset{c\downarrow[{C\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^c} _C} _a}}} + {{{-1}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _G} _B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^D} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^I}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{d\downarrow[{G\downarrow e\rightarrow}]}{\left[ \begin{matrix} \overset{G\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^G} _e}} {{U->alpha}}} + {{{-1}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _A} _B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^I}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{c\downarrow[{B\downarrow e\rightarrow}]}{\left[ \begin{matrix} \overset{B\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^B} _e}} {{U->alpha}}} + {{{-1}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _A} _B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^F} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^G} ^B}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{F\downarrow[{G\downarrow e\rightarrow}]}{\left[ \begin{matrix} \overset{G\downarrow e\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{G\downarrow e\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{G\downarrow e\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _F} _G} _e}} {{U->alpha}}} + {{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{c\downarrow[{E\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^E} _a}} {{U->alpha}}} + {{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _D} _E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^E}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{{ \overset{b\downarrow[{D\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^D} _a}} {{U->alpha}}} + {{{2}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _A} _B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^D} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^I}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{C\downarrow[{E\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{E\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{E\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _C} _E} _d}} {{U->alpha}}} + {{{2}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _G} _B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^D} ^E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^I} ^B}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{d\downarrow[{G\downarrow e\rightarrow}]}{\left[ \begin{matrix} \overset{G\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^G} _e}} {{U->alpha}}} + {{{2}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _A} _B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^D} ^B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{c\downarrow[{I\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^I} _d}} {{U->alpha}}} + {{{2}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _A} _B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^I} ^B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{c\downarrow[{E\downarrow e\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow e\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^E} _e}} {{U->alpha}}} + {{{-2}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _A} _E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{b\downarrow[{E\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^E} _c}} {{U->alpha}}} + {{{2}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _A} _B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^D} ^E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^I} ^B}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{C\downarrow[{D\downarrow e\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow e\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{D\downarrow e\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{D\downarrow e\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _C} _D} _e}} {{U->alpha}}} + {{{-2}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _D} _B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{a\downarrow[{D\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _a} ^D} _c}} {{U->alpha}}} + {{{2}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _G} _B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^D} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^I}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{e\downarrow[{G\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{G\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _e} ^G} _d}} {{U->alpha}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^G} ^J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{f\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^f} _J}} {{{{{ \overset{G\downarrow[{D\downarrow f\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow f\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{D\downarrow f\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{D\downarrow f\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _G} _D} _f}} {{{{{ \overset{c\downarrow[{I\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^I} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^B}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _d} ^F}} {{{{{ \overset{E\downarrow[{F\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _E} _F} _b}} {{{{{ \overset{d\downarrow[{D\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _c}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^D}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{ \overset{f\downarrow H\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^f} _H}} {{{{{ \overset{c\downarrow[{I\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^I} _a}} {{{{{ \overset{d\downarrow[{H\downarrow f\rightarrow}]}{\left[ \begin{matrix} \overset{H\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{H\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{H\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^H} _f}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^F} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^G} ^C}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{f\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^f} _F}} {{{{{ \overset{G\downarrow[{K\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{K\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{K\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _G} _K} _c}} {{{{{ \overset{f\downarrow[{K\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _f} ^K} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^F} ^J}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^I} ^H}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{B\downarrow[{H\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{H\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{H\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{H\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _B} _H} _c}} {{{{{ \overset{J\downarrow[{F\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _J} _F} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^I} ^E}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow H\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _H}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{ \overset{f\downarrow K\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^f} _K}} {{{{{ \overset{e\downarrow[{H\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{H\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{H\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{H\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _e} ^H} _c}} {{{{{ \overset{f\downarrow[{K\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _f} ^K} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^J}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^I} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^K} ^F}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{f\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^f} _F}} {{{{{ \overset{B\downarrow[{D\downarrow f\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow f\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{D\downarrow f\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{D\downarrow f\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _B} _D} _f}} {{{{{ \overset{J\downarrow[{K\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _J} _K} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^F} ^J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{J\downarrow[{F\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _J} _F} _a}} {{{{{ \overset{b\downarrow[{I\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^I} _c}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^F}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^G} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{ \overset{f\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^f} _F}} {{{{{ \overset{G\downarrow[{K\downarrow f\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow f\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{K\downarrow f\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{K\downarrow f\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _G} _K} _f}} {{{{{ \overset{e\downarrow[{K\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _e} ^K} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^F}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow K\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _K}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{ \overset{f\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^f} _F}} {{{{{ \overset{b\downarrow[{I\downarrow f\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^I} _f}} {{{{{ \overset{e\downarrow[{K\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _e} ^K} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^J}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _i} ^I}} {{{{{ \overset{a\downarrow[{C\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _a} ^C} _b}} {{{{{ \overset{i\downarrow[{J\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{J\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{J\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{J\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^i} _J} _c}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^F}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{d\downarrow K\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _K}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{ \overset{f\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^f} _F}} {{{{{ \overset{d\downarrow[{I\downarrow f\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^I} _f}} {{{{{ \overset{e\downarrow[{K\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _e} ^K} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^J}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{f\downarrow J\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^f} _J}} {{{{{ \overset{b\downarrow[{C\downarrow f\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^C} _f}} {{{{{ \overset{c\downarrow[{I\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^I} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^K} ^F}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{ \overset{f\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^f} _F}} {{{{{ \overset{C\downarrow[{K\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _C} _K} _a}} {{{{{ \overset{d\downarrow[{I\downarrow f\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^I} _f}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _d} ^F}} {{{{{ \overset{B\downarrow[{F\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{F\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{F\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _B} _F} _c}} {{{{{ \overset{d\downarrow[{D\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^J}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^K} ^F}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{f\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^f} _F}} {{{{{ \overset{J\downarrow[{K\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _J} _K} _a}} {{{{{ \overset{b\downarrow[{I\downarrow f\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow f\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^I} _f}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^J}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^F}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^B}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _i} ^I}} {{{{{ \overset{E\downarrow[{F\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _E} _F} _b}} {{{{{ \overset{i\downarrow[{J\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{J\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{J\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{J\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^i} _J} _c}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^D} ^E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^F} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow H\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _H}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{D\downarrow[{F\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _D} _F} _a}} {{{{{ \overset{e\downarrow[{H\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{H\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{H\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{H\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _e} ^H} _c}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^J}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^D}} {{{{ \overset{b\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _F}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _i} ^I}} {{{{{ \overset{d\downarrow[{F\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^F} _b}} {{{{{ \overset{i\downarrow[{J\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{J\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{J\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{J\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^i} _J} _c}}} + {{{-1}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _E} _D}} {{{{ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _c}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{a\downarrow[{E\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _a} ^E} _b}}} + {{{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _E} _D}} {{{{ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _a}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{b\downarrow[{E\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^E} _c}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^D} ^H}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^G} ^C}} {{{{ \delta} ^K} _K}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{G\downarrow[{H\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{H\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{H\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{H\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _G} _H} _c}} {{{{{ \overset{d\downarrow[{I\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^I} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \delta} ^K} _K}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{b\downarrow[{D\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^D} _c}} {{{{{ \overset{d\downarrow[{I\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^I} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^D} ^E}} {{{{ \delta} ^K} _K}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow H\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _H}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{d\downarrow[{I\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^I} _a}} {{{{{ \overset{e\downarrow[{H\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{H\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{H\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{H\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _e} ^H} _c}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^F} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _G} _H}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{f\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^f} _F}} {{{{{ \overset{b\downarrow[{G\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{G\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{G\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^G} _c}} {{{{{ \overset{f\downarrow[{H\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{H\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{H\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{H\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _f} ^H} _a}}} + {{{-1}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _E} _F}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _d} ^F}} {{{{{ \overset{a\downarrow[{E\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _a} ^E} _b}} {{{{{ \overset{d\downarrow[{D\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _c}}} + {{{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _E} _F}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _d} ^F}} {{{{{ \overset{b\downarrow[{E\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^E} _c}} {{{{{ \overset{d\downarrow[{D\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _a}}} + {{{\frac{1}{3}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{{{ \overset{b\downarrow B\rightarrow[{a\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} \frac{2}{{r}^{3}} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} \frac{2}{{{{r}^{3}}} {{\sin\left( theta\right)}}} & \frac{\cos\left( theta\right)}{{{{r}^{2}}} {{{\sin\left( theta\right)}^{2}}}} & 0 \\ \frac{\cos\left( theta\right)}{{{{r}^{2}}} {{{\sin\left( theta\right)}^{2}}}} & \frac{{{\sin\left( theta\right)}^{2}} + {{{2}} {{{\cos\left( theta\right)}^{2}}}}}{{{r}} {{{\sin\left( theta\right)}^{3}}}} & 0 \\ 0 & 0 & 0\end{matrix} \right]}\end{matrix} \right]}} ^b} _B} _a} _b}}} + {{{\frac{1}{3}}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{{ \overset{B\downarrow[{a\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_beta_Ull[0][0].x} & {partial2_beta_Ull[0][1].x} & {partial2_beta_Ull[0][2].x} \\ {partial2_beta_Ull[1][0].x} & {partial2_beta_Ull[1][1].x} & {partial2_beta_Ull[1][2].x} \\ {partial2_beta_Ull[2][0].x} & {partial2_beta_Ull[2][1].x} & {partial2_beta_Ull[2][2].x}\end{matrix} \right]} \\ \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_beta_Ull[0][0].y} & {partial2_beta_Ull[0][1].y} & {partial2_beta_Ull[0][2].y} \\ {partial2_beta_Ull[1][0].y} & {partial2_beta_Ull[1][1].y} & {partial2_beta_Ull[1][2].y} \\ {partial2_beta_Ull[2][0].y} & {partial2_beta_Ull[2][1].y} & {partial2_beta_Ull[2][2].y}\end{matrix} \right]} \\ \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_beta_Ull[0][0].z} & {partial2_beta_Ull[0][1].z} & {partial2_beta_Ull[0][2].z} \\ {partial2_beta_Ull[1][0].z} & {partial2_beta_Ull[1][1].z} & {partial2_beta_Ull[1][2].z} \\ {partial2_beta_Ull[2][0].z} & {partial2_beta_Ull[2][1].z} & {partial2_beta_Ull[2][2].z}\end{matrix} \right]}\end{matrix} \right]}} ^B} _a} _b}}} + {{{\frac{1}{6}}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^I}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{{ \overset{a\downarrow[{A\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{A\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{A\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{A\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^a} _A} _b}} {{\frac{1}{{det_gammaBar}}}}} + {{{\frac{1}{6}}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^I}} {{{{ \overset{A\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^A} _b}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{\frac{1}{{det_gammaBar}}}}} + {{{-1}} \cdot {{\frac{1}{6}}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{ \overset{b\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _b}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{\frac{1}{{{det_gammaBar}}^{2}}}}} + {{{-1}} \cdot {{\frac{1}{6}}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{ \overset{b\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _b}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{\frac{1}{{{det_gammaBar}}^{2}}}}} + {{{-2}} \cdot {{\frac{1}{3}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{{ \overset{I\downarrow[{A\downarrow B\rightarrow}]}{\left[ \begin{matrix} \overset{A\downarrow B\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & -{\frac{1}{r}} & 0 \\ 0 & 0 & -{\frac{1}{r}}\end{matrix} \right]} \\ \overset{A\downarrow B\rightarrow}{\left[ \begin{matrix} 0 & \frac{1}{r} & 0 \\ \frac{1}{r} & 0 & 0 \\ 0 & 0 & -{\frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}}}\end{matrix} \right]} \\ \overset{A\downarrow B\rightarrow}{\left[ \begin{matrix} 0 & 0 & \frac{1}{r} \\ 0 & 0 & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} \\ \frac{1}{r} & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^I} _A} _B}} {{{{{ \overset{c\downarrow[{C\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{C\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^c} _C} _c}}} + {{{-2}} \cdot {{\frac{1}{3}}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{C\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^C} _c}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{I\downarrow[{A\downarrow B\rightarrow}]}{\left[ \begin{matrix} \overset{A\downarrow B\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & -{\frac{1}{r}} & 0 \\ 0 & 0 & -{\frac{1}{r}}\end{matrix} \right]} \\ \overset{A\downarrow B\rightarrow}{\left[ \begin{matrix} 0 & \frac{1}{r} & 0 \\ \frac{1}{r} & 0 & 0 \\ 0 & 0 & -{\frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}}}\end{matrix} \right]} \\ \overset{A\downarrow B\rightarrow}{\left[ \begin{matrix} 0 & 0 & \frac{1}{r} \\ 0 & 0 & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} \\ \frac{1}{r} & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^I} _A} _B}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{{ \overset{b\downarrow[{B\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{B\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^b} _B} _b}} {{\frac{1}{{det_gammaBar}}}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{{ \overset{I\downarrow[{B\downarrow C\rightarrow}]}{\left[ \begin{matrix} \overset{B\downarrow C\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & -{\frac{1}{r}} & 0 \\ 0 & 0 & -{\frac{1}{r}}\end{matrix} \right]} \\ \overset{B\downarrow C\rightarrow}{\left[ \begin{matrix} 0 & \frac{1}{r} & 0 \\ \frac{1}{r} & 0 & 0 \\ 0 & 0 & -{\frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}}}\end{matrix} \right]} \\ \overset{B\downarrow C\rightarrow}{\left[ \begin{matrix} 0 & 0 & \frac{1}{r} \\ 0 & 0 & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} \\ \frac{1}{r} & \frac{\cos\left( theta\right)}{{{r}} {{\sin\left( theta\right)}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^I} _B} _C}} {{\frac{1}{{det_gammaBar}}}}} + {{{-1}} \cdot {{\frac{1}{3}}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{B\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^B} _b}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{\frac{1}{{det_gammaBar}}}}} + {{{\frac{1}{2}}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^A}} {{{{ \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^I} _b}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{\frac{1}{{det_gammaBar}}}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^D}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{{{ \overset{E\downarrow D\rightarrow[{a\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].xx} & {partial2_gammaBar_LLll[0][1].xx} & {partial2_gammaBar_LLll[0][2].xx} \\ {partial2_gammaBar_LLll[1][0].xx} & {partial2_gammaBar_LLll[1][1].xx} & {partial2_gammaBar_LLll[1][2].xx} \\ {partial2_gammaBar_LLll[2][0].xx} & {partial2_gammaBar_LLll[2][1].xx} & {partial2_gammaBar_LLll[2][2].xx}\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].xy} & {partial2_gammaBar_LLll[0][1].xy} & {partial2_gammaBar_LLll[0][2].xy} \\ {partial2_gammaBar_LLll[1][0].xy} & {partial2_gammaBar_LLll[1][1].xy} & {partial2_gammaBar_LLll[1][2].xy} \\ {partial2_gammaBar_LLll[2][0].xy} & {partial2_gammaBar_LLll[2][1].xy} & {partial2_gammaBar_LLll[2][2].xy}\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].xz} & {partial2_gammaBar_LLll[0][1].xz} & {partial2_gammaBar_LLll[0][2].xz} \\ {partial2_gammaBar_LLll[1][0].xz} & {partial2_gammaBar_LLll[1][1].xz} & {partial2_gammaBar_LLll[1][2].xz} \\ {partial2_gammaBar_LLll[2][0].xz} & {partial2_gammaBar_LLll[2][1].xz} & {partial2_gammaBar_LLll[2][2].xz}\end{matrix} \right]} \\ \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].xy} & {partial2_gammaBar_LLll[0][1].xy} & {partial2_gammaBar_LLll[0][2].xy} \\ {partial2_gammaBar_LLll[1][0].xy} & {partial2_gammaBar_LLll[1][1].xy} & {partial2_gammaBar_LLll[1][2].xy} \\ {partial2_gammaBar_LLll[2][0].xy} & {partial2_gammaBar_LLll[2][1].xy} & {partial2_gammaBar_LLll[2][2].xy}\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].yy} & {partial2_gammaBar_LLll[0][1].yy} & {partial2_gammaBar_LLll[0][2].yy} \\ {partial2_gammaBar_LLll[1][0].yy} & {partial2_gammaBar_LLll[1][1].yy} & {partial2_gammaBar_LLll[1][2].yy} \\ {partial2_gammaBar_LLll[2][0].yy} & {partial2_gammaBar_LLll[2][1].yy} & {partial2_gammaBar_LLll[2][2].yy}\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].yz} & {partial2_gammaBar_LLll[0][1].yz} & {partial2_gammaBar_LLll[0][2].yz} \\ {partial2_gammaBar_LLll[1][0].yz} & {partial2_gammaBar_LLll[1][1].yz} & {partial2_gammaBar_LLll[1][2].yz} \\ {partial2_gammaBar_LLll[2][0].yz} & {partial2_gammaBar_LLll[2][1].yz} & {partial2_gammaBar_LLll[2][2].yz}\end{matrix} \right]} \\ \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].xz} & {partial2_gammaBar_LLll[0][1].xz} & {partial2_gammaBar_LLll[0][2].xz} \\ {partial2_gammaBar_LLll[1][0].xz} & {partial2_gammaBar_LLll[1][1].xz} & {partial2_gammaBar_LLll[1][2].xz} \\ {partial2_gammaBar_LLll[2][0].xz} & {partial2_gammaBar_LLll[2][1].xz} & {partial2_gammaBar_LLll[2][2].xz}\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].yz} & {partial2_gammaBar_LLll[0][1].yz} & {partial2_gammaBar_LLll[0][2].yz} \\ {partial2_gammaBar_LLll[1][0].yz} & {partial2_gammaBar_LLll[1][1].yz} & {partial2_gammaBar_LLll[1][2].yz} \\ {partial2_gammaBar_LLll[2][0].yz} & {partial2_gammaBar_LLll[2][1].yz} & {partial2_gammaBar_LLll[2][2].yz}\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {partial2_gammaBar_LLll[0][0].zz} & {partial2_gammaBar_LLll[0][1].zz} & {partial2_gammaBar_LLll[0][2].zz} \\ {partial2_gammaBar_LLll[1][0].zz} & {partial2_gammaBar_LLll[1][1].zz} & {partial2_gammaBar_LLll[1][2].zz} \\ {partial2_gammaBar_LLll[2][0].zz} & {partial2_gammaBar_LLll[2][1].zz} & {partial2_gammaBar_LLll[2][2].zz}\end{matrix} \right]}\end{matrix} \right]}} _E} _D} _a} _b}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _F}} {{{{{ \overset{d\downarrow[{F\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^F} _a}} {{{{{ \overset{d\downarrow[{D\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _c}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{d\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _F}} {{{{{{ \overset{d\downarrow F\rightarrow[{a\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & \cos\left( theta\right) & 0 \\ \cos\left( theta\right) & -{{{r}} {{\sin\left( theta\right)}}} & 0 \\ 0 & 0 & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^F} _a} _b}}} + {{{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _F}} {{{{{ \overset{d\downarrow[{D\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _b}} {{{{{ \overset{d\downarrow[{F\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^F} _a}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{{ \overset{c\downarrow C\rightarrow[{a\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} & \overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & \cos\left( theta\right) & 0 \\ \cos\left( theta\right) & -{{{r}} {{\sin\left( theta\right)}}} & 0 \\ 0 & 0 & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^C} _a} _b}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^C}} {{{{ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _c}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{E\downarrow[{D\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _E} _D} _a}}} + {{{\frac{1}{2}}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _b}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{{ \overset{C\downarrow[{D\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{D\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _C} _D} _a}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _c}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _F}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{d\downarrow[{F\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^F} _a}}} + {{{\frac{1}{2}}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _b}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _F}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{d\downarrow[{F\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^F} _a}}} + {{{2}} \cdot {{\frac{1}{3}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^I}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{{ \overset{A\downarrow[{C\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{C\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{C\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{C\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _A} _C} _b}} {{{{{ \overset{d\downarrow[{D\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _d}}} + {{{2}} \cdot {{\frac{1}{3}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^I}} {{{{ \overset{b\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _F}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{c\downarrow[{F\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^F} _b}} {{{{{ \overset{d\downarrow[{D\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _d}}} + {{{2}} \cdot {{\frac{1}{3}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{{ \overset{a\downarrow[{I\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _a} ^I} _b}} {{{{{ \overset{d\downarrow[{D\downarrow d\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow d\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _d}}} + {{{2}} \cdot {{\frac{1}{3}}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^F} ^I}} {{{{ \overset{D\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _d}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{A\downarrow[{F\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _A} _F} _b}}} + {{{2}} \cdot {{\frac{1}{3}}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^I}} {{{{ \overset{D\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _d}} {{{{ \overset{b\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _F}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{c\downarrow[{F\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^F} _b}}} + {{{2}} \cdot {{\frac{1}{3}}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{D\downarrow d\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _d}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{a\downarrow[{I\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _a} ^I} _b}}} + {{{-1}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {ABar_LL.xx} & {ABar_LL.xy} & {ABar_LL.xz} \\ {ABar_LL.xy} & {ABar_LL.yy} & {ABar_LL.yz} \\ {ABar_LL.xz} & {ABar_LL.yz} & {ABar_LL.zz}\end{matrix} \right]}} _B} _C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^I} ^C}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{\frac{1}{{det_gammaBar}}}} {{U->alpha}}} + {{{\frac{1}{3}}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^F} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{B\downarrow[{F\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{F\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{F\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _B} _F} _c}} {{\frac{1}{{det_gammaBar}}}}} + {{{\frac{1}{3}}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{b\downarrow[{I\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^I} _c}} {{\frac{1}{{det_gammaBar}}}}} + {{{\frac{1}{3}}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^D} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _F}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{d\downarrow[{F\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^F} _c}} {{\frac{1}{{det_gammaBar}}}}} + {{{\frac{1}{2}}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^F} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{{ \overset{C\downarrow[{F\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _C} _F} _b}} {{\frac{1}{{det_gammaBar}}}}} + {{{\frac{1}{2}}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^D} ^I}} {{{{ \overset{a\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _F}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{d\downarrow[{F\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^F} _b}} {{\frac{1}{{det_gammaBar}}}}} + {{{\frac{1}{2}}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^B}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^A}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{c\downarrow[{I\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^I} _b}} {{\frac{1}{{det_gammaBar}}}}} + {{{\frac{1}{2}}} {{{ \overset{a\downarrow}{\left[ \begin{matrix} {{4}} {{{r}^{3}}} {{{\sin\left( theta\right)}^{2}}} \\ {{2}} {{{r}^{4}}} {{\cos\left( theta\right)}} {{\sin\left( theta\right)}} \\ 0\end{matrix} \right]}} _a}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^J}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^A}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{i\downarrow I\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _i} ^I}} {{{{{ \overset{i\downarrow[{J\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{J\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{J\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{J\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^i} _J} _b}} {{\frac{1}{{det_gammaBar}}}}} + {{{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{d\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _d} ^F}} {{{{{ \overset{C\downarrow[{F\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _C} _F} _a}} {{{{{ \overset{d\downarrow[{D\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _b}}} + {{{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^D}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{c\downarrow[{B\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{B\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{B\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^B} _a}} {{{{{ \overset{d\downarrow[{I\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^I} _b}}} + {{{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^E}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^G} ^D}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{d\downarrow D\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _D}} {{{{{ \overset{G\downarrow[{E\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _G} _E} _a}} {{{{{ \overset{d\downarrow[{I\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^I} _b}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _d} ^F}} {{{{{ \overset{B\downarrow[{F\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _B} _F} _a}} {{{{{ \overset{d\downarrow[{D\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _c}}} + {{{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^K}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{H\downarrow[{K\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _H} _K} _b}} {{{{{ \overset{e\downarrow[{H\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{H\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{H\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{H\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _e} ^H} _a}}} + {{{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^C} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{I\downarrow[{K\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _I} _K} _b}} {{{{{ \overset{c\downarrow[{K\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^K} _a}}} + {{{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^E}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{d\downarrow H\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^d} _H}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{{ \overset{d\downarrow[{I\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _d} ^I} _b}} {{{{{ \overset{e\downarrow[{H\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{H\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{H\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{H\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _e} ^H} _a}}} + {{{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^K}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^G} ^D}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{{ \overset{D\downarrow[{K\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _D} _K} _b}} {{{{{ \overset{G\downarrow[{E\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _G} _E} _a}}} + {{{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^G} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^H} ^F}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow K\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _K}} {{{{ \overset{f\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^f} _F}} {{{{{ \overset{G\downarrow[{H\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{H\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xx} & {partial_gammaBar_LLl[1].xx} & {partial_gammaBar_LLl[2].xx} \\ {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz}\end{matrix} \right]} \\ \overset{H\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xy} & {partial_gammaBar_LLl[1].xy} & {partial_gammaBar_LLl[2].xy} \\ {partial_gammaBar_LLl[0].yy} & {partial_gammaBar_LLl[1].yy} & {partial_gammaBar_LLl[2].yy} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz}\end{matrix} \right]} \\ \overset{H\downarrow a\rightarrow}{\left[ \begin{matrix} {partial_gammaBar_LLl[0].xz} & {partial_gammaBar_LLl[1].xz} & {partial_gammaBar_LLl[2].xz} \\ {partial_gammaBar_LLl[0].yz} & {partial_gammaBar_LLl[1].yz} & {partial_gammaBar_LLl[2].yz} \\ {partial_gammaBar_LLl[0].zz} & {partial_gammaBar_LLl[1].zz} & {partial_gammaBar_LLl[2].zz}\end{matrix} \right]}\end{matrix} \right]}} _G} _H} _a}} {{{{{ \overset{f\downarrow[{K\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _f} ^K} _b}}} + {{{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^E} ^F}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow K\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _K}} {{{{ \overset{e\downarrow E\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^e} _E}} {{{{ \overset{f\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^f} _F}} {{{{{ \overset{e\downarrow[{I\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{I\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _e} ^I} _a}} {{{{{ \overset{f\downarrow[{K\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _f} ^K} _b}}} + {{{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^A}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^I}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow K\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _K}} {{{{ \overset{f\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^f} _F}} {{{{{ \overset{c\downarrow[{F\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{F\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^F} _a}} {{{{{ \overset{f\downarrow[{K\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{K\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _f} ^K} _b}}} + {{{\frac{1}{2}}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _E} _D}} {{{{ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _b}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{c\downarrow[{E\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^E} _a}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _E} _D}} {{{{ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} {partial_beta_Ul[0].x} & {partial_beta_Ul[1].x} & {partial_beta_Ul[2].x} \\ {partial_beta_Ul[0].y} & {partial_beta_Ul[1].y} & {partial_beta_Ul[2].y} \\ {partial_beta_Ul[0].z} & {partial_beta_Ul[1].z} & {partial_beta_Ul[2].z}\end{matrix} \right]}} ^D} _c}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{{ \overset{b\downarrow[{E\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^E} _a}}} + {{{-1}} \cdot {{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _E} _F}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _d} ^F}} {{{{{ \overset{b\downarrow[{E\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _b} ^E} _a}} {{{{{ \overset{d\downarrow[{D\downarrow c\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow c\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _c}}} + {{{\frac{1}{2}}} {{{ \overset{i\downarrow}{\left[ \begin{matrix} {U->beta_U.x} \\ {U->beta_U.y} \\ {U->beta_U.z}\end{matrix} \right]}} ^D}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^A} ^I}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_UU.xx} & {gammaBar_UU.xy} & {gammaBar_UU.xz} \\ {gammaBar_UU.xy} & {gammaBar_UU.yy} & {gammaBar_UU.yz} \\ {gammaBar_UU.xz} & {gammaBar_UU.yz} & {gammaBar_UU.zz}\end{matrix} \right]}} ^B} ^C}} {{{{ \overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {gammaBar_LL.xx} & {gammaBar_LL.xy} & {gammaBar_LL.xz} \\ {gammaBar_LL.xy} & {gammaBar_LL.yy} & {gammaBar_LL.yz} \\ {gammaBar_LL.xz} & {gammaBar_LL.yz} & {gammaBar_LL.zz}\end{matrix} \right]}} _E} _F}} {{{{ \overset{a\downarrow A\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^a} _A}} {{{{ \overset{b\downarrow B\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^b} _B}} {{{{ \overset{c\downarrow C\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \frac{1}{r} & 0 \\ 0 & 0 & \frac{1}{{{r}} {{\sin\left( theta\right)}}}\end{matrix} \right]}} ^c} _C}} {{{{ \overset{d\downarrow F\rightarrow}{\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & {{r}} {{\sin\left( theta\right)}}\end{matrix} \right]}} _d} ^F}} {{{{{ \overset{c\downarrow[{E\downarrow a\rightarrow}]}{\left[ \begin{matrix} \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{E\downarrow a\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \sin\left( theta\right) & {{r}} {{\cos\left( theta\right)}} & 0\end{matrix} \right]}\end{matrix} \right]}} _c} ^E} _a}} {{{{{ \overset{d\downarrow[{D\downarrow b\rightarrow}]}{\left[ \begin{matrix} \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ -{\frac{1}{{r}^{2}}} & 0 & 0 \\ 0 & 0 & 0\end{matrix} \right]} \\ \overset{D\downarrow b\rightarrow}{\left[ \begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -{\frac{1}{{{{r}^{2}}} {{\sin\left( theta\right)}}}} & -{\frac{\cos\left( theta\right)}{{{r}} {{{\sin\left( theta\right)}^{2}}}}} & 0\end{matrix} \right]}\end{matrix} \right]}} ^d} _D} _b}}}}$