properties of hypersurface normal:
nana=1 = unit hypersurface normal
nana;b+nana;b=0
nana;b=0
nana;b=0

matter hypersurface normal definition:
ρ=nanbTab = density

projection tensor:
γab=gab+nanb = projection operator
γab=δab+nanb
δab=γabnanb
nanb=γabδab

γacγcb=(δac+nanc)(δcb+ncnb)
γacγcb=δab+nanb
γacγcb=γab

naγab=na(δab+nanb)
naγab=nb+nananb
nbγba=0

nbγab=nb(δab+nanb)
nbγab=na+nanbnb
nbγab=0

properties of spatial vectors:
vana=0
nava;b+vana;b=0
nava;b=vana;b

vana=0
nava;b=vana;b

γbavb=va

extrinsic curvature
Kab=γacγbdnc;d
Kab=γacγbdnc;d
Kab=(δac+nanc)(δbd+nbnd)nc;d
Kab=1na;b+1nancnc;b+1nbndna;d+1nanbncndnc;d
Kab=(na;b+nbndna;d)
na;b=(Kab+nbndna;d)

naKab=0 because nγ=0 and K=⊥n

projection of covariant derivative on a spatial vector
va|b=γcaγbdvc;d
using γac=δac+nanc
va|b=γbdvc;d(δca+ncna)
va|b=γbdva;d+nancγbdvc;d
va|b=γbd(va;dnavcnc;d)
va|b=γbd(va;d+navcKcd+nandnevcnc;e)
va|b=(δbd+nbnd)(va;d+navcKcd+nandnevcnc;e)
va|b=va;b+nbndva;d+navcKcb+nanbndvcKcd+nanbnevcnc;e+nanbndndnevcnc;e
va|b=va;b+navcKcb+nbndva;d+nanbndvcKcd
using ndKcd=0
va|b=va;b+navcKcb+nbndva;d
va|b=γbcva;c+navcKcb

2nd projection covariant derivative of a spatial vector
va|b|c=(γbdva;d+navdKdb)|c
va|b|c=(γedvg;d+ngvdKde);fγgaγbeγcf
va|b|c=γbeγcfγedγgavg;d;f+γbeγcfγgavg;dγed;f+ngvdγbeγcfγgaKde;f+ngKdeγbeγcfγgavd;f+vdKdeγbeγcfγgang;f
va|b|c=γcfγgavg;d;fγbd+γbeγcfγgavg;dγed;f+ngvdγbeγcfγgaKde;f+ngKdeγbeγcfγgavd;f+vdKdeγbeγcfγgang;f
va|b|c=γbdγcfγgavg;d;f+ngKdbγcfγgavd;f+vdKdbγcfγgang;f+γbeγcfγgavg;dγed;f+ngvdγbeγcfγgaKde;f
va|b|c=γbdγcfγgavg;d;f+vdKdbγcfγgang;f+γbeγcfγgavg;dγed;f
va|b|c=γbdγcfγgavg;d;f+vdKdbγcfγgang;f+γbeγcfγgavg;d(δed;f+nend;f+ndne;f)
va|b|c=γbdγcfγgavg;d;f+vdKdbγcfγgang;f+γbeγcfγgavg;dδed;f+neγbeγcfγgand;fvg;d+ndγbeγcfγgane;fvg;d
va|b|c=1ndKbcγeave;d+1vdKceKdbγae+γbdγceγfavf;d;e+γbdγceγfavf;gδdg;e+ndγbdγceγfang;evf;g

Riemann curvature of covariant derivative
Rabcdvb=va;d;cva;c;d

Riemann curvature of projection covariant derivative
(R)abcdvb=va|d|cva|c|d
(R)abcdvb=(1ngKcdγeave;g+1vgKdeKgcγae+γcgγdeγfavf;g;e+γcgγdeγfavf;gδgg;e+ngγcgγdeγfang;evf;g)+1ngKdcγeave;g+1vgKceKgdγae+γdgγceγfavf;g;e+γdgγceγfavf;gδgg;e+ngγdgγceγfang;evf;g
using vf;g;eγfaγcgγde=(vf;e;g+vbRfbeg)γfaγcgγde
vb(R)abcd=ngKcdγeave;g+1ngKdcγeave;g+1vgKceKgdγae+vgKdeKgcγae+1(vf;e;g+vbRfbeg)γfaγcgγde+γceγdgγfavf;g;e+γceγdgγfavf;gδgg;e+1γcgγdeγfavf;gδgg;e+1ngγcgγdeγfang;evf;g+ngγceγdgγfang;evf;g
vb(R)abcd=nbKcdγeave;b+1nbKdcγeave;b+vbKbcKdeγae+1vbKbdKceγae+1vbγceγdfγgaRgbfe+γcbγdeγfavf;eδee;b+1γcbγdeγfavf;bδbb;e+1nbγcbγdeγfanb;evf;b+nbγceγdbγfanb;evf;b
vb(R)abcd=vbKbcKdeγae+1vbKbdKceγae+1vbγceγdfγgaRgbfe+1γcbγdeγfavf;bδbb;e+γcbγdeγfavf;eδee;b+1nbγcbγdeγfanb;evf;b+nbγceγdbγfanb;evf;b
γbh(R)ahcd=KdeKhcγaeγbh+1KceKhdγaeγbh+γchγdeγfavf;eδee;h+1γchγdeγfavf;hδhh;e+1γbhγceγdfγgaRghfe+1nhγchγdeγfanh;evf;h+nhγceγdhγfanh;evf;h
(R)abcd=KdaKbc+1KcaKbd+1γbhγceγdfγgaRghfe+1γchγdeγfavf;h0+γchγdeγfavf;e0+1nhγchγdeγfanh;evf;h+nhγceγdhγfanh;evf;h
(R)kbcdγak=(KdkKbc+1KckKbd+1γbhγceγdfγgkRghfe+1γchγdeγfkvf;h0+γchγdeγfkvf;e0+1nhγchγdeγfknh;evf;h+nhγceγdhγfknh;evf;h)γak
(R)abcd=KadKbc+1KacKbd+1γaeγbfγcgγdhRefhg+1nfγakγcfγdgγhknf;gvh;f+nfγakγcgγdfγhknf;gvh;f
(R)abcd=KadKbcKacKbdγbfγaeγcgγdhRefhgnbγaeγcbγdfγgenb;fvg;b+nbγcfγaeγdbγgenb;fvg;b
Gauss' equation

Einstein Field Equations
Gab=8πTab
using Gab=Rab12Rgab
Rab12Rgab=8πTab

time-by-time
12nanb(2RabRgab)=8πnanbTab
nanbRab+112Rnbnb=8πnanbTab
using nana=1 , ρ=nanbTab
12R+nanbRab=8ρπ

time-by-space
12naγib(2RabRgab)=8πnaTabγib
12na(δib+ninb)(2RabRgab)=8πnaTab(δib+ninb)
12(Rni+2naRaiRnbnbni+2nanbniRab)=8πna(Tai+nbniTab)
na(Rai+nbniRab)=8πna(Tai+nbniTab)

space-by-space
12γiaγjb(2RabRgab)=8πTabγiaγjb
12(δia+nina)(δjb+njnb)(2RabRgab)=8πTab(δia+nina)(δjb+njnb)
12(2RijRgij2Rninj+2nbnjRib+2naniRajRnbnbninj+2nanbninjRab)=8π(Tij+naniTaj+nbnjTib+nanbninjTab)
12(2RijRgijRninj+2nbnjRib+2naniRaj+2nanbninjRab)=8π(Tij+ρninj+nbnjTib+naniTaj)