${{ \beta} ^i} = {\overset{i\downarrow}{\left[ \begin{matrix} { \beta} ^x \\ { \beta} ^y \\ { \beta} ^z\end{matrix} \right]}}$
${{ \beta} _i} = {\overset{i\downarrow}{\left[ \begin{matrix} { \beta} _x \\ { \beta} _y \\ { \beta} _z\end{matrix} \right]}}$
${{\beta}^{2}} = {{{{{ \beta} ^x}} {{{ \beta} _x}}} + {{{{ \beta} ^y}} {{{ \beta} _y}}} + {{{{ \beta} ^z}} {{{ \beta} _z}}}}$
${{{ \gamma} _i} _j} = {\overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {{ \gamma} _x} _x & {{ \gamma} _x} _y & {{ \gamma} _x} _z \\ {{ \gamma} _x} _y & {{ \gamma} _y} _y & {{ \gamma} _y} _z \\ {{ \gamma} _x} _z & {{ \gamma} _y} _z & {{ \gamma} _z} _z\end{matrix} \right]}}$
${{{ \gamma} _i} _j} = {\overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {{ \gamma} _x} _x & {{ \gamma} _x} _y & {{ \gamma} _x} _z \\ {{ \gamma} _x} _y & {{ \gamma} _y} _y & {{ \gamma} _y} _z \\ {{ \gamma} _x} _z & {{ \gamma} _y} _z & {{ \gamma} _z} _z\end{matrix} \right]}}$
${{{ \gamma} ^i} ^j} = {\overset{i\downarrow j\rightarrow}{\left[ \begin{matrix} {{ \gamma} ^x} ^x & {{ \gamma} ^x} ^y & {{ \gamma} ^x} ^z \\ {{ \gamma} ^x} ^y & {{ \gamma} ^y} ^y & {{ \gamma} ^y} ^z \\ {{ \gamma} ^x} ^z & {{ \gamma} ^y} ^z & {{ \gamma} ^z} ^z\end{matrix} \right]}}$
${{{ g} _a} _b} = {\overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} {-{{\alpha}^{2}}} + {{\beta}^{2}} & { \beta} _x & { \beta} _y & { \beta} _z \\ { \beta} _x & {{ \gamma} _x} _x & {{ \gamma} _x} _y & {{ \gamma} _x} _z \\ { \beta} _y & {{ \gamma} _x} _y & {{ \gamma} _y} _y & {{ \gamma} _y} _z \\ { \beta} _z & {{ \gamma} _x} _z & {{ \gamma} _y} _z & {{ \gamma} _z} _z\end{matrix} \right]}}$
${{{ g} ^a} ^b} = {\overset{a\downarrow b\rightarrow}{\left[ \begin{matrix} -{{\alpha}^{-2}} & {{{\alpha}^{-2}}} {{{ \beta} ^x}} & {{{\alpha}^{-2}}} {{{ \beta} ^y}} & {{{\alpha}^{-2}}} {{{ \beta} ^z}} \\ {{{\alpha}^{-2}}} {{{ \beta} ^x}} & {{{ \gamma} ^x} ^x} - {{{{\alpha}^{-2}}} {{{ \beta} ^x}} {{{ \beta} ^x}}} & {{{ \gamma} ^x} ^y} - {{{{\alpha}^{-2}}} {{{ \beta} ^x}} {{{ \beta} ^y}}} & {{{ \gamma} ^x} ^z} - {{{{\alpha}^{-2}}} {{{ \beta} ^x}} {{{ \beta} ^z}}} \\ {{{\alpha}^{-2}}} {{{ \beta} ^y}} & {{{ \gamma} ^x} ^y} - {{{{\alpha}^{-2}}} {{{ \beta} ^y}} {{{ \beta} ^x}}} & {{{ \gamma} ^y} ^y} - {{{{\alpha}^{-2}}} {{{ \beta} ^y}} {{{ \beta} ^y}}} & {{{ \gamma} ^y} ^z} - {{{{\alpha}^{-2}}} {{{ \beta} ^y}} {{{ \beta} ^z}}} \\ {{{\alpha}^{-2}}} {{{ \beta} ^z}} & {{{ \gamma} ^x} ^z} - {{{{\alpha}^{-2}}} {{{ \beta} ^z}} {{{ \beta} ^x}}} & {{{ \gamma} ^y} ^z} - {{{{\alpha}^{-2}}} {{{ \beta} ^z}} {{{ \beta} ^y}}} & {{{ \gamma} ^z} ^z} - {{{{\alpha}^{-2}}} {{{ \beta} ^z}} {{{ \beta} ^z}}}\end{matrix} \right]}}$
${{{{ \epsilon} _a} _b} _c} _d$
${{{{{ \epsilon} _t} _x} _y} _z} = {{{\alpha}} \cdot {{\sqrt{\gamma}}}}$;
${{{{{ \epsilon} _t} _x} _z} _y} = {-{{{\alpha}} \cdot {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} _t} _y} _x} _z} = {-{{{\alpha}} \cdot {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} _t} _y} _z} _x} = {{{\alpha}} \cdot {{\sqrt{\gamma}}}}$;
${{{{{ \epsilon} _t} _z} _x} _y} = {{{\alpha}} \cdot {{\sqrt{\gamma}}}}$;
${{{{{ \epsilon} _t} _z} _y} _x} = {-{{{\alpha}} \cdot {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} _x} _t} _y} _z} = {-{{{\alpha}} \cdot {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} _x} _t} _z} _y} = {{{\alpha}} \cdot {{\sqrt{\gamma}}}}$;
${{{{{ \epsilon} _x} _y} _t} _z} = {{{\alpha}} \cdot {{\sqrt{\gamma}}}}$;
${{{{{ \epsilon} _x} _y} _z} _t} = {-{{{\alpha}} \cdot {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} _x} _z} _t} _y} = {-{{{\alpha}} \cdot {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} _x} _z} _y} _t} = {{{\alpha}} \cdot {{\sqrt{\gamma}}}}$;
${{{{{ \epsilon} _y} _t} _x} _z} = {{{\alpha}} \cdot {{\sqrt{\gamma}}}}$;
${{{{{ \epsilon} _y} _t} _z} _x} = {-{{{\alpha}} \cdot {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} _y} _x} _t} _z} = {-{{{\alpha}} \cdot {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} _y} _x} _z} _t} = {{{\alpha}} \cdot {{\sqrt{\gamma}}}}$;
${{{{{ \epsilon} _y} _z} _t} _x} = {{{\alpha}} \cdot {{\sqrt{\gamma}}}}$;
${{{{{ \epsilon} _y} _z} _x} _t} = {-{{{\alpha}} \cdot {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} _z} _t} _x} _y} = {-{{{\alpha}} \cdot {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} _z} _t} _y} _x} = {{{\alpha}} \cdot {{\sqrt{\gamma}}}}$;
${{{{{ \epsilon} _z} _x} _t} _y} = {{{\alpha}} \cdot {{\sqrt{\gamma}}}}$;
${{{{{ \epsilon} _z} _x} _y} _t} = {-{{{\alpha}} \cdot {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} _z} _y} _t} _x} = {-{{{\alpha}} \cdot {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} _z} _y} _x} _t} = {{{\alpha}} \cdot {{\sqrt{\gamma}}}}$
${{{{ \epsilon} ^a} _b} _c} _d$
${{{{{ \epsilon} ^t} _t} _x} _y} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} _t} _x} _z} = {{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} _t} _y} _x} = {{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} _t} _y} _z} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} _t} _z} _x} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} _t} _z} _y} = {{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} _x} _t} _y} = {{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} _x} _t} _z} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} _x} _y} _t} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} _x} _y} _z} = {-{{\frac{1}{\alpha}} {\sqrt{\gamma}}}}$;
${{{{{ \epsilon} ^t} _x} _z} _t} = {{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} _x} _z} _y} = {{\frac{1}{\alpha}} {\sqrt{\gamma}}}$;
${{{{{ \epsilon} ^t} _y} _t} _x} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} _y} _t} _z} = {{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} _y} _x} _t} = {{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} _y} _x} _z} = {{\frac{1}{\alpha}} {\sqrt{\gamma}}}$;
${{{{{ \epsilon} ^t} _y} _z} _t} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} _y} _z} _x} = {-{{\frac{1}{\alpha}} {\sqrt{\gamma}}}}$;
${{{{{ \epsilon} ^t} _z} _t} _x} = {{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} _z} _t} _y} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} _z} _x} _t} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} _z} _x} _y} = {-{{\frac{1}{\alpha}} {\sqrt{\gamma}}}}$;
${{{{{ \epsilon} ^t} _z} _y} _t} = {{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} _z} _y} _x} = {{\frac{1}{\alpha}} {\sqrt{\gamma}}}$;
${{{{{ \epsilon} ^x} _t} _x} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _t} _x} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}}}} + {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _t} _y} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _t} _y} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}}} + {{{ \beta} ^x}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _t} _z} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^y}}} - {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _t} _z} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}} - {{{ \beta} ^x}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _x} _t} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _x} _t} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^y}}} - {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _x} _y} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _x} _y} _z} = {{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^x} _x} _z} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}}}} + {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _x} _z} _y} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^x} _y} _t} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _y} _t} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}} - {{{ \beta} ^x}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _y} _x} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _y} _x} _z} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^x} _y} _z} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}}} + {{{ \beta} ^x}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _y} _z} _x} = {{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^x} _z} _t} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}}}} + {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _z} _t} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}}} + {{{ \beta} ^x}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _z} _x} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^y}}} - {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _z} _x} _y} = {{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^x} _z} _y} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}} - {{{ \beta} ^x}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^x} _z} _y} _x} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^y} _t} _x} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _t} _x} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}} - {{{ \beta} ^y}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _t} _y} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _t} _y} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^y}}} - {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _t} _z} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}}} + {{{ \beta} ^y}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _t} _z} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}}}} + {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _x} _t} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _x} _t} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}}} + {{{ \beta} ^y}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _x} _y} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _x} _y} _z} = {{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^y} _x} _z} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}} - {{{ \beta} ^y}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _x} _z} _y} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^y} _y} _t} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _y} _t} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}}}} + {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _y} _x} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _y} _x} _z} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^y} _y} _z} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^y}}} - {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _y} _z} _x} = {{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^y} _z} _t} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}} - {{{ \beta} ^y}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _z} _t} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^y}}} - {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _z} _x} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}}} + {{{ \beta} ^y}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _z} _x} _y} = {{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^y} _z} _y} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}}}} + {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} _z} _y} _x} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^z} _t} _x} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}}} + {{{ \beta} ^z}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _t} _x} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _t} _y} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}} - {{{ \beta} ^z}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _t} _y} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _t} _z} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _t} _z} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _x} _t} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}} - {{{ \beta} ^z}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _x} _t} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _x} _y} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}}} + {{{ \beta} ^z}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _x} _y} _z} = {{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^z} _x} _z} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _x} _z} _y} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^z} _y} _t} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}}} + {{{ \beta} ^z}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _y} _t} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _y} _x} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}} - {{{ \beta} ^z}^{2}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _y} _x} _z} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^z} _y} _z} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _y} _z} _x} = {{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^z} _z} _t} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _z} _t} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _z} _x} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _z} _x} _y} = {{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^z} _z} _y} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} _z} _y} _x} = {-{{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}}$
ratios $\frac{{{{{ \epsilon} ^a} _b} _c} _d}{{{{{ \epsilon} _a} _b} _c} _d}$
...shared with ${{{{ \epsilon} _a} _b} _c} _d$
txyz : $-{\frac{1}{{\alpha}^{2}}}$
txzy : $-{\frac{1}{{\alpha}^{2}}}$
tyxz : $-{\frac{1}{{\alpha}^{2}}}$
tyzx : $-{\frac{1}{{\alpha}^{2}}}$
tzxy : $-{\frac{1}{{\alpha}^{2}}}$
tzyx : $-{\frac{1}{{\alpha}^{2}}}$
xtyz : $\frac{{{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}} - {{{ \beta} ^x}^{2}}}{{\alpha}^{2}}$
xtzy : $\frac{{{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}} - {{{ \beta} ^x}^{2}}}{{\alpha}^{2}}$
xytz : $\frac{{{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}} - {{{ \beta} ^x}^{2}}}{{\alpha}^{2}}$
xyzt : $\frac{{{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}} - {{{ \beta} ^x}^{2}}}{{\alpha}^{2}}$
xzty : $\frac{{{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}} - {{{ \beta} ^x}^{2}}}{{\alpha}^{2}}$
xzyt : $\frac{{{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}} - {{{ \beta} ^x}^{2}}}{{\alpha}^{2}}$
ytxz : $\frac{{{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}} - {{{ \beta} ^y}^{2}}}{{\alpha}^{2}}$
ytzx : $\frac{{{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}} - {{{ \beta} ^y}^{2}}}{{\alpha}^{2}}$
yxtz : $\frac{{{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}} - {{{ \beta} ^y}^{2}}}{{\alpha}^{2}}$
yxzt : $\frac{{{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}} - {{{ \beta} ^y}^{2}}}{{\alpha}^{2}}$
yztx : $\frac{{{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}} - {{{ \beta} ^y}^{2}}}{{\alpha}^{2}}$
yzxt : $\frac{{{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}} - {{{ \beta} ^y}^{2}}}{{\alpha}^{2}}$
ztxy : $\frac{{{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}} - {{{ \beta} ^z}^{2}}}{{\alpha}^{2}}$
ztyx : $\frac{{{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}} - {{{ \beta} ^z}^{2}}}{{\alpha}^{2}}$
zxty : $\frac{{{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}} - {{{ \beta} ^z}^{2}}}{{\alpha}^{2}}$
zxyt : $\frac{{{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}} - {{{ \beta} ^z}^{2}}}{{\alpha}^{2}}$
zytx : $\frac{{{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}} - {{{ \beta} ^z}^{2}}}{{\alpha}^{2}}$
zyxt : $\frac{{{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}} - {{{ \beta} ^z}^{2}}}{{\alpha}^{2}}$
...unique to ${{{{ \epsilon} ^a} _b} _c} _d$
ttxy : $-{{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}$
ttxz : ${\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}$
ttyx : ${\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}$
ttyz : $-{{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}$
ttzx : $-{{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}$
ttzy : ${\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}$
txty : ${\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}$
txtz : $-{{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}$
txyt : $-{{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}$
txzt : ${\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}$
tytx : $-{{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}$
tytz : ${\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}$
tyxt : ${\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}$
tyzt : $-{{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}$
tztx : ${\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}$
tzty : $-{{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}$
tzxt : $-{{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}$
tzyt : ${\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}$
xtxy : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
xtxz : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}}}} + {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}$
xtyx : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
xtzx : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^y}}} - {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}$
xxty : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
xxtz : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^y}}} - {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}$
xxyt : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
xxyz : ${\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}$
xxzt : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}}}} + {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}$
xxzy : $-{{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}$
xytx : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
xyxt : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
xyxz : $-{{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}$
xyzx : ${\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}$
xztx : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}}}} + {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}$
xzxt : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^y}}} - {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}$
xzxy : ${\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}$
xzyx : $-{{\frac{1}{\alpha}} {{{{ \beta} ^x}} {{\sqrt{\gamma}}}}}$
ytxy : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
ytyx : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
ytyz : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^y}}} - {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}$
ytzy : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}}}} + {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}$
yxty : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
yxyt : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
yxyz : ${\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}$
yxzy : $-{{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}$
yytx : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
yytz : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}}}} + {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}$
yyxt : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
yyxz : $-{{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}$
yyzt : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^y}}} - {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}$
yyzx : ${\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}$
yzty : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^y}}} - {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}$
yzxy : ${\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}$
yzyt : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}}}} + {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}}\right)}}}$
yzyx : $-{{\frac{1}{\alpha}} {{{{ \beta} ^y}} {{\sqrt{\gamma}}}}}$
ztxz : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
ztyz : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
ztzx : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
ztzy : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
zxtz : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
zxyz : ${\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}$
zxzt : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
zxzy : $-{{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}$
zytz : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
zyxz : $-{{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}$
zyzt : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
zyzx : ${\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}$
zztx : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
zzty : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
zzxt : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{ \beta} ^z}}} - {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
zzxy : ${\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}$
zzyt : ${\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^z}}}} + {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}}\right)}}}$
zzyx : $-{{\frac{1}{\alpha}} {{{{ \beta} ^z}} {{\sqrt{\gamma}}}}}$
${{{{ \epsilon} ^a} ^b} _c} _d$
${{{{{ \epsilon} ^t} ^x} _t} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^x} _t} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^x} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^x}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^x} _t} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^x} ^y}}} - {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^x}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^x} _x} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^x} _x} _y} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^z}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} ^x} _x} _z} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^y}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} ^x} _y} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^x} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^x}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^x} _y} _x} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^z}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} ^x} _y} _z} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^x}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} ^x} _z} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^x} ^y}}}} + {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^x}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^x} _z} _x} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^y}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} ^x} _z} _y} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^x}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} ^y} _t} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{{ \gamma} ^y} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^y} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^y} _t} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^y} _t} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^y}}} - {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^y} _x} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{{ \gamma} ^y} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^y} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^y} _x} _y} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^y} ^z}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} ^y} _x} _z} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^y} ^y}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} ^y} _y} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^y} _y} _x} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^y} ^z}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} ^y} _y} _z} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^y}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} ^y} _z} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^y}}}} + {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^y} _z} _x} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^y} ^y}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} ^y} _z} _y} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^y}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} ^z} _t} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{{ \gamma} ^z} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^z} _t} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^z} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^z} _t} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^z}}} - {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^z} _x} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{{ \gamma} ^z} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^z} _x} _y} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^z} ^z}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} ^z} _x} _z} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^y} ^z}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} ^z} _y} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^z} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^z} _y} _x} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^z} ^z}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^t} ^z} _y} _z} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^z}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} ^z} _z} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^z}}}} + {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^t} ^z} _z} _x} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^y} ^z}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^t} ^z} _z} _y} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^z}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^x} ^t} _t} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^t} _t} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^x} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^x}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^t} _t} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^x} ^y}}}} + {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^x}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^t} _x} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^t} _x} _y} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^z}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^x} ^t} _x} _z} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^y}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^x} ^t} _y} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^x} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^x}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^t} _y} _x} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^z}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^x} ^t} _y} _z} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^x}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^x} ^t} _z} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^x} ^y}}} - {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^x}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^t} _z} _x} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^y}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^x} ^t} _z} _y} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^x}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^x} ^y} _t} _x} = {\frac{{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}} + {{{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}} - {{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}} + {{{{{ \gamma} ^x} ^y}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}} + {{{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^y}^{2}}}} - {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{4}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^x} ^y} _t} _y} = {\frac{{{\sqrt{\gamma}}} {{\left({{{-{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}} - {{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}} + {{{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^x} ^x}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}}} + {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{4}}}} + {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^x}^{2}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^x} ^y} _t} _z} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{2}} {{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}} {{{{ \beta} ^y}^{2}}}}} + {{{{{{{ \gamma} ^x} ^x}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{4}}}} - {{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}} {{{{ \beta} ^x}^{2}}}}} - {{{{\alpha}^{4}}} {{{{{ \gamma} ^x} ^y}^{2}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^x} ^y} _x} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}} - {{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}}} + {{{{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^x} ^y}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}}} - {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^y}^{2}}}}} + {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{4}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^x} ^y} _x} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^z}}} - {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^y} _x} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^y}}}} + {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^y} _y} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}} + {{{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}} - {{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}}} + {{{{{{{ \gamma} ^x} ^x}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}} - {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{4}}}}} - {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^x}^{2}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^x} ^y} _y} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^z}}}} + {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^y} _y} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^x} ^y}}} - {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^x}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^y} _z} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{-{{{2}} {{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}} + {{{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}} {{{{ \beta} ^y}^{2}}}} - {{{{{ \gamma} ^x} ^x}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{4}}}}} + {{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}} {{{{ \beta} ^x}^{2}}}} + {{{{\alpha}^{4}}} {{{{{ \gamma} ^x} ^y}^{2}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^x} ^y} _z} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^y}}} - {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^y} _z} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^x} ^y}}}} + {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^x}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^z} _t} _x} = {\frac{{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}}} + {{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}} + {{{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}} {{{{ \beta} ^z}^{2}}}}} + {{{{{{ \gamma} ^x} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{4}}}} - {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^x} ^z} _t} _y} = {\frac{{{\sqrt{\gamma}}} {{\left({{-{{{2}} {{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}} + {{{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}} {{{{ \beta} ^z}^{2}}}} - {{{{{ \gamma} ^x} ^x}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{4}}}}} + {{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^x}^{2}}}} + {{{{\alpha}^{4}}} {{{{{ \gamma} ^x} ^z}^{2}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^x} ^z} _t} _z} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}} + {{{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}} - {{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}}} + {{{{{{{ \gamma} ^x} ^x}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}} - {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{4}}}}} - {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^x}^{2}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^x} ^z} _x} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}} - {{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}} - {{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}} + {{{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}} {{{{ \beta} ^z}^{2}}}} - {{{{{ \gamma} ^x} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{4}}}}} + {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^x} ^z} _x} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^z} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^z} _x} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^z} _y} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{2}} {{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}} {{{{ \beta} ^z}^{2}}}}} + {{{{{{{ \gamma} ^x} ^x}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{4}}}} - {{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^x}^{2}}}}} - {{{{\alpha}^{4}}} {{{{{ \gamma} ^x} ^z}^{2}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^x} ^z} _y} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^z} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^z} _y} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^x} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^x}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^z} _z} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{{-{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}} - {{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}} + {{{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^x} ^x}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}}} + {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{4}}}} + {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^x}^{2}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^x} ^z} _z} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^x} ^z} _z} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^x} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^x}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^t} _t} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{{ \gamma} ^y} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^y} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^t} _t} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^t} _t} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^y}}}} + {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^t} _x} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{{ \gamma} ^y} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^y} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^t} _x} _y} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^y} ^z}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^y} ^t} _x} _z} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^y} ^y}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^y} ^t} _y} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^t} _y} _x} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^y} ^z}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^y} ^t} _y} _z} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^y}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^y} ^t} _z} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^y}}} - {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^t} _z} _x} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^y} ^y}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^y} ^t} _z} _y} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^y}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^y} ^x} _t} _x} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}} - {{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}}} + {{{{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^x} ^y}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}}} - {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^y}^{2}}}}} + {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{4}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^y} ^x} _t} _y} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}} + {{{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}} - {{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}}} + {{{{{{{ \gamma} ^x} ^x}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}} - {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{4}}}}} - {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^x}^{2}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^y} ^x} _t} _z} = {\frac{{{\sqrt{\gamma}}} {{\left({{-{{{2}} {{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}} + {{{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}} {{{{ \beta} ^y}^{2}}}} - {{{{{ \gamma} ^x} ^x}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{4}}}}} + {{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}} {{{{ \beta} ^x}^{2}}}} + {{{{\alpha}^{4}}} {{{{{ \gamma} ^x} ^y}^{2}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^y} ^x} _x} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}} + {{{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}} - {{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}} + {{{{{ \gamma} ^x} ^y}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}} + {{{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^y}^{2}}}} - {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{4}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^y} ^x} _x} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^z}}}} + {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^x} _x} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^y}}} - {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^x} _y} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{{-{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}} - {{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}} + {{{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^x} ^x}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}}} + {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{4}}}} + {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^x}^{2}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^y} ^x} _y} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^z}}} - {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^x} _y} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^x} ^y}}}} + {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^x}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^x} _z} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{2}} {{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}} {{{{ \beta} ^y}^{2}}}}} + {{{{{{{ \gamma} ^x} ^x}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{4}}}} - {{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}} {{{{ \beta} ^x}^{2}}}}} - {{{{\alpha}^{4}}} {{{{{ \gamma} ^x} ^y}^{2}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^y} ^x} _z} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^y}}}} + {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^x} _z} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^x} ^y}}} - {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^x}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^z} _t} _x} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{2}} {{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}} {{{{ \beta} ^z}^{2}}}}} + {{{{{{{ \gamma} ^y} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{4}}}} - {{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^y}^{2}}}}} - {{{{\alpha}^{4}}} {{{{{ \gamma} ^y} ^z}^{2}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^y} ^z} _t} _y} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}} - {{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}} - {{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}} + {{{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}} {{{{ \beta} ^z}^{2}}}} - {{{{{ \gamma} ^x} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{4}}}}} + {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^y} ^z} _t} _z} = {\frac{{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}} + {{{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}} - {{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}} + {{{{{ \gamma} ^x} ^y}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}} + {{{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^y}^{2}}}} - {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{4}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^y} ^z} _x} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{-{{{2}} {{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}} + {{{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}} {{{{ \beta} ^z}^{2}}}} - {{{{{ \gamma} ^y} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{4}}}}} + {{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^y}^{2}}}} + {{{{\alpha}^{4}}} {{{{{ \gamma} ^y} ^z}^{2}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^y} ^z} _x} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{{ \gamma} ^z} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^z} _x} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{{ \gamma} ^y} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^y} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^z} _y} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}}} + {{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}} + {{{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}} {{{{ \beta} ^z}^{2}}}}} + {{{{{{ \gamma} ^x} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{4}}}} - {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^y} ^z} _y} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{{ \gamma} ^z} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^z} _y} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^z} _z} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}} - {{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}}} + {{{{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^x} ^y}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}}} - {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^y}^{2}}}}} + {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{4}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^y} ^z} _z} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{{ \gamma} ^y} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^y} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^y} ^z} _z} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^t} _t} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{{ \gamma} ^z} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^t} _t} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^z} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^t} _t} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^z}}}} + {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^t} _x} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{{ \gamma} ^z} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^t} _x} _y} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^z} ^z}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^z} ^t} _x} _z} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^y} ^z}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^z} ^t} _y} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^z} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^t} _y} _x} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^z} ^z}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^z} ^t} _y} _z} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^z}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^z} ^t} _z} _t} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^z}}} - {{{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^t} _z} _x} = {{\frac{1}{\alpha}} {{{{{ \gamma} ^y} ^z}} {{\sqrt{\gamma}}}}}$;
${{{{{ \epsilon} ^z} ^t} _z} _y} = {-{{\frac{1}{\alpha}} {{{{{ \gamma} ^x} ^z}} {{\sqrt{\gamma}}}}}}$;
${{{{{ \epsilon} ^z} ^x} _t} _x} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}} - {{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}} - {{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}} + {{{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}} {{{{ \beta} ^z}^{2}}}} - {{{{{ \gamma} ^x} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{4}}}}} + {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^z} ^x} _t} _y} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{2}} {{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}} {{{{ \beta} ^z}^{2}}}}} + {{{{{{{ \gamma} ^x} ^x}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{4}}}} - {{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^x}^{2}}}}} - {{{{\alpha}^{4}}} {{{{{ \gamma} ^x} ^z}^{2}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^z} ^x} _t} _z} = {\frac{{{\sqrt{\gamma}}} {{\left({{{-{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}} - {{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}} + {{{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^x} ^x}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}}} + {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{4}}}} + {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^x}^{2}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^z} ^x} _x} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}}} + {{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}} + {{{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}} {{{{ \beta} ^z}^{2}}}}} + {{{{{{ \gamma} ^x} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{4}}}} - {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^z} ^x} _x} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^z} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^x} _x} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^x} _y} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{-{{{2}} {{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}} + {{{{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}} {{{{ \beta} ^z}^{2}}}} - {{{{{ \gamma} ^x} ^x}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{4}}}}} + {{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^x}^{2}}}} + {{{{\alpha}^{4}}} {{{{{ \gamma} ^x} ^z}^{2}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^z} ^x} _y} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^z} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^x} _y} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^x} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^x}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^x} _z} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}} + {{{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}} - {{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^x}} {{{\alpha}^{2}}}}} + {{{{{{{ \gamma} ^x} ^x}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}} - {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{4}}}}} - {{{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^x}^{2}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^z} ^x} _z} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{{ \gamma} ^y} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^x} _z} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^x}} {{{{ \gamma} ^x} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^x}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^y} _t} _x} = {\frac{{{\sqrt{\gamma}}} {{\left({{-{{{2}} {{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}} + {{{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}} {{{{ \beta} ^z}^{2}}}} - {{{{{ \gamma} ^y} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{4}}}}} + {{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^y}^{2}}}} + {{{{\alpha}^{4}}} {{{{{ \gamma} ^y} ^z}^{2}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^z} ^y} _t} _y} = {\frac{{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}}} + {{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}} + {{{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}} {{{{ \beta} ^z}^{2}}}}} + {{{{{{ \gamma} ^x} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{4}}}} - {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^z} ^y} _t} _z} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}} - {{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}}} + {{{{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^x} ^y}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}}} - {{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^y}^{2}}}}} + {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{4}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^z} ^y} _x} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{2}} {{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}} - {{{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}} {{{{ \beta} ^z}^{2}}}}} + {{{{{{{ \gamma} ^y} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{4}}}} - {{{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^y}^{2}}}}} - {{{{\alpha}^{4}}} {{{{{ \gamma} ^y} ^z}^{2}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^z} ^y} _x} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{{ \gamma} ^z} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^y} _x} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{{ \gamma} ^y} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^y} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^y} _y} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{{{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{2}}}} - {{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}} - {{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}}}} + {{{{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}} {{{{ \beta} ^z}^{2}}}} - {{{{{ \gamma} ^x} ^y}} {{{{ \gamma} ^z} ^z}} {{{\alpha}^{4}}}}} + {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^z} ^y} _y} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{{ \gamma} ^z} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^y} ^z}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^y} _y} _z} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^y} _z} _t} = {\frac{{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^x}} {{{ \beta} ^y}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{2}}}}} + {{{{{ \beta} ^x}} {{{ \beta} ^z}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{2}}}} - {{{{ \beta} ^y}} {{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}} {{{\alpha}^{2}}}}} + {{{{{ \gamma} ^x} ^y}} {{{{ \gamma} ^y} ^z}} {{{\alpha}^{4}}}} + {{{{{{ \gamma} ^x} ^z}} {{{\alpha}^{2}}} {{{{ \beta} ^y}^{2}}}} - {{{{{ \gamma} ^x} ^z}} {{{{ \gamma} ^y} ^y}} {{{\alpha}^{4}}}}}}\right)}}}{{\alpha}^{3}}}$;
${{{{{ \epsilon} ^z} ^y} _z} _x} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{-{{{{ \beta} ^y}} {{{{ \gamma} ^y} ^z}}}} + {{{{ \beta} ^z}} {{{{ \gamma} ^y} ^y}}}}\right)}}}}$;
${{{{{ \epsilon} ^z} ^y} _z} _y} = {{\frac{1}{\alpha}} {{{\sqrt{\gamma}}} {{\left({{{{{ \beta} ^y}} {{{{ \gamma} ^x} ^z}}} - {{{{ \beta} ^z}} {{{{ \gamma} ^x} ^y}}}}\right)}}}}$