Linear Stability Analysis

Hyperbolic conservation law:
$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} + \frac{\partial H}{\partial z} = 0$
$t, x, y, z =$ basis
$U =$ state vector
$F, G, H =$ flux in $x,y,z$ direction

Rewriting fluxes in terms of $U$:
$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial U} \frac{\partial U}{\partial x} + \frac{\partial G}{\partial U} \frac{\partial U}{\partial y} + \frac{\partial H}{\partial U} \frac{\partial U}{\partial z} = 0$

Perturbation in $x$ direction:
$U(t,x,y,z) = \mathring{U}(t,x,y,z) + \epsilon exp(i(yk + zm)) \hat{U}(t,x)$
$\mathring{U}(t,x,y,z) =$ base state
$\hat{U}(t,x) =$ perturbation in $t,x$
$k, m = $ wave numbers.

Derivatives:
$\partial_t U = \partial_t \mathring{U} + \epsilon exp(i(yk + zm)) \partial_t \hat{U}$
$\partial_x U = \partial_x \mathring{U} + \epsilon exp(i(yk + zm)) \partial_x \hat{U}$
$\partial_y U = \partial_y \mathring{U} + i k \epsilon exp(i(yk + zm)) \hat{U}$
$\partial_z U = \partial_z \mathring{U} + i m \epsilon exp(i(yk + zm)) \hat{U}$

Solving the hyperbolic conservation law at $\mathring{U}$:
$\frac{\partial \mathring{U}}{\partial t} + \frac{\partial F(\mathring{U})}{\partial U} \frac{\partial \mathring{U}}{\partial x} + \frac{\partial G(\mathring{U})}{\partial U} \frac{\partial \mathring{U}}{\partial y} + \frac{\partial H(\mathring{U})}{\partial U} \frac{\partial \mathring{U}}{\partial z} = 0$

Substitute pertrubed state into hyperbolic conservative law:
$ \partial_t \mathring{U} + \epsilon exp(i(yk + zm)) \partial_t \hat{U} + \frac{\partial F(\mathring{U})}{\partial U} (\partial_x \mathring{U} + \epsilon exp(i(yk + zm)) \partial_x \hat{U}) + \frac{\partial G(\mathring{U})}{\partial U} (\partial_y \mathring{U} + \epsilon exp(i(yk + zm)) (i k \hat{U})) + \frac{\partial H(\mathring{U})}{\partial U} (\partial_z \mathring{U} + \epsilon exp(i(yk + zm)) (i m \hat{U})) = 0$
$ \partial_t \mathring{U} + \frac{\partial F(\mathring{U})}{\partial U} \partial_x \mathring{U} + \frac{\partial G(\mathring{U})}{\partial U} \partial_y \mathring{U} + \frac{\partial H(\mathring{U})}{\partial U} \partial_z \mathring{U} + \epsilon exp(i(yk + zm)) ( \partial_t \hat{U} + \frac{\partial F(\mathring{U})}{\partial U} \partial_x \hat{U} + \frac{\partial G(\mathring{U})}{\partial U} (i k \hat{U}) + \frac{\partial H(\mathring{U})}{\partial U} (i m \hat{U}) ) = 0$

This leaves the perturbation solution:
$ \epsilon exp(i(yk + zm)) ( \partial_t \hat{U} + \frac{\partial F(\mathring{U})}{\partial U} \partial_x \hat{U} + \frac{\partial G(\mathring{U})}{\partial U} (i k \hat{U}) + \frac{\partial H(\mathring{U})}{\partial U} (i m \hat{U}) ) = 0$
$ \partial_t \hat{U} + \frac{\partial F(\mathring{U})}{\partial U} \partial_x \hat{U} + i k \frac{\partial G(\mathring{U})}{\partial U} \hat{U} + i m \frac{\partial H(\mathring{U})}{\partial U} \hat{U} = 0$

Considering only the 2D solution of the perturbation (setting $m = 0$):
$ \partial_t \hat{U} + \frac{\partial F(\mathring{U})}{\partial U} \partial_x \hat{U} = -i k \frac{\partial G(\mathring{U})}{\partial U} \hat{U}$

MHD equations

primitives:
$\rho =$ density
$v_i =$ velocity
$B_i =$ magnetic field
$P =$ pressure
$\gamma =$ heat capacity ratio

state vector:
$U_i = \downarrow i \left[\matrix{ \rho \\ \rho v_i \\ B_i \\ E_{total} }\right]$
$E_{kin} = \frac{1}{2} \rho v^2 =$ kinetic energy
$E_{int} = \frac{P}{\gamma - 1} = $ internal energy
$E_{mag} = \frac{1}{2 \mu_0} =$ magnetic energy
$E_{total} = E_{kin} + E_{int} + E_{mag} = \frac{1}{2} \rho v^2 + \frac{P}{\gamma - 1} + \frac{1}{2 \mu_0} B^2 =$ total energy

Flux in $j$th direction:
$F_{ij} = \downarrow i \left[\matrix{ \rho v_j \\ \rho v_i v_j + \delta_{ij} P_{total} - {1\over\mu_0} B_i B_j \\ B_i v_j - B_j v_i \\ H_{total} v_j - {1\over\mu_0} B_k v_k B_j }\right]$
$P_{total} = P + \frac{1}{2 \mu_0} B^2 = $ total pressure
$H_{total} = E_{total} + P_{total} = \frac{1}{2} \rho v^2 + \frac{\gamma}{\gamma - 1} P + \frac{1}{\mu_0} B^2 =$ total enthalpy

Derivative of flux wrt conservative variables:
$\frac{\partial F_{ij}}{\partial U_k} = \downarrow i \overset{\rightarrow k}{ \left[\matrix{ 0 & \delta_{jk} & 0 & 0 \\ -v_i v_j + \frac{1}{2} \delta_{ij} (\gamma-1) v^2 & \delta_{ik} v_j + \delta_{jk} v_i - \delta_{ij} (\gamma-1) v_k & \frac{1}{\mu_0}(-\delta_{ij} (\gamma-2) B_k - \delta_{ik} B_j - \delta_{jk} B_i) & \delta_{ij} (\gamma-1) \\ -\frac{1}{\rho} (B_i v_j - B_j v_i) & \frac{1}{\rho} (B_i \delta_{jk} - B_j \delta_{ik}) & \delta_{ik} v_j - \delta_{jk} v_i & 0 \\ v_j (\frac{1}{2} (\gamma-1) v^2 - h_{total}) + \frac{1}{\mu_0\rho} B_j B_m v_m & -(\gamma-1) v_j v_k + (\delta_{jk} h_{total} - \frac{1}{\mu_0\rho} B_j B_k) & \frac{1}{\mu_0} (-(\gamma - 2) v_j B_k - v_k B_j - \delta_{jk} v_m B_m) & \gamma v_j }\right] }$
$h_{total} = \frac{1}{\rho} H_{total} =$ specific total enthalpy

Derivative of flux wrt conservative variables in x direction:
$\frac{\partial F_{ix}}{\partial U_k} = \left[\matrix{ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -v_x v_x + \frac{1}{2} (\gamma-1) v^2 & -(\gamma-3) v_x & -(\gamma-1) v_y & -(\gamma-1) v_z & -\frac{1}{\mu_0} \gamma B_x & -\frac{1}{\mu_0} (\gamma-2) B_y & -\frac{1}{\mu_0} (\gamma-2) B_z & \gamma - 1 \\ -v_y v_x & v_y & v_x & 0 & -\frac{1}{\mu_0} B_y & -\frac{1}{\mu_0} B_x & 0 & 0 \\ -v_z v_x & v_z & 0 & v_x & -\frac{1}{\mu_0} B_z & 0 & -\frac{1}{\mu_0} B_x & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{\rho} (B_y v_x - B_x v_y) & \frac{1}{\rho} B_y & -\frac{1}{\rho} B_x & 0 & -v_y & v_x & 0 & 0 \\ -\frac{1}{\rho} (B_z v_x - B_x v_z) & \frac{1}{\rho} B_z & 0 & -\frac{1}{\rho} B_x & - v_z & 0 & v_x & 0 \\ v_x (\frac{1}{2} (\gamma-1) v^2 - h_{total}) + \frac{1}{\mu_0\rho} B_x B_m v_m & -(\gamma-1) v_x v_x - \frac{1}{\mu_0\rho} B_x B_x + h_{total} & -(\gamma-1) v_x v_y - \frac{1}{\mu_0\rho} B_x B_y & -(\gamma-1) v_x v_z - \frac{1}{\mu_0\rho} B_x B_z & -\frac{1}{\mu_0} ((\gamma - 2) v_x B_x + v_x B_x + v_m B_m) & -\frac{1}{\mu_0} ((\gamma - 2) v_x B_y + v_y B_x) & -\frac{1}{\mu_0} ((\gamma - 2) v_x B_z + v_z B_x) & \gamma v_x }\right] $

Derivative of flux wrt conservative variables in y direction:
$\frac{\partial F_{iy}}{\partial U_k} \left[\matrix{ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -v_x v_y & v_y & v_x & 0 & -\frac{1}{\mu_0} B_y & -\frac{1}{\mu_0} B_x & 0 & 0 \\ -v_y v_y + \frac{1}{2} (\gamma-1) v^2 & -(\gamma-1) v_x & -(\gamma-3) v_y & -(\gamma-1) v_z & -\frac{1}{\mu_0} (\gamma-2) B_x & -\frac{1}{\mu_0} \gamma B_y & -\frac{1}{\mu_0} (\gamma-2) B_z & \gamma-1 \\ -v_z v_y & 0 & v_z & v_y & 0 & -\frac{1}{\mu_0} B_z & -\frac{1}{\mu_0} B_y & 0 \\ -\frac{1}{\rho} (B_x v_y - B_y v_x) & -\frac{1}{\rho} B_y & \frac{1}{\rho} B_x & 0 & v_y & -v_x & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{\rho} (B_z v_y - B_y v_z) & 0 & \frac{1}{\rho} B_z & -\frac{1}{\rho} B_y & 0 & -v_z & v_y & 0 \\ v_y (\frac{1}{2} (\gamma-1) v^2 - h_{total}) + \frac{1}{\mu_0\rho} B_y B_m v_m & -(\gamma-1) v_y v_x - \frac{1}{\mu_0\rho} B_y B_x & -(\gamma-1) v_y v_y - \frac{1}{\mu_0\rho} B_y B_y + h_{total} & -(\gamma-1) v_y v_z - \frac{1}{\mu_0\rho} B_y B_z & -\frac{1}{\mu_0} ((\gamma - 2) v_y B_x + v_x B_y) & -\frac{1}{\mu_0} ((\gamma - 2) v_y B_y + v_y B_y + v_m B_m) & -\frac{1}{\mu_0} ((\gamma - 2) v_y B_z + v_z B_y) & \gamma v_y }\right] $

MHD 2D perturbations:
$ \downarrow i \left[\matrix{ \partial_t \hat{\rho} \\ \partial_t \hat{(\rho v_i)} \\ \partial_t \hat{B}_i \\ \partial_t \hat{E}_{total} }\right] + \downarrow i \overset{\rightarrow k}{ \left[\matrix{ 0 & \delta_{xk} & 0 & 0 \\ -\mathring{v}_i \mathring{v}_x + \frac{1}{2} \delta_{ix} (\gamma-1) \mathring{v}^2 & \delta_{ik} \mathring{v}_x + \delta_{xk} \mathring{v}_i - \delta_{ix} (\gamma-1) \mathring{v}_k & \frac{1}{\mu_0}(-\delta_{ix} (\gamma-2) \mathring{B}_k - \delta_{ik} \mathring{B}_x - \delta_{xk} \mathring{B}_i) & \delta_{ix} (\gamma-1) \\ -\frac{1}{ \mathring{\rho} } (\mathring{B}_i \mathring{v}_x - \mathring{B}_x \mathring{v}_i) & \frac{1}{ \mathring{\rho} } (\mathring{B}_i \delta_{xk} - \mathring{B}_x \delta_{ik}) & \delta_{ik} \mathring{v}_x - \delta_{xk} \mathring{v}_i & 0 \\ \mathring{v}_x (\frac{1}{2} (\gamma-1) \mathring{v}^2 - \mathring{h}_{total}) + \frac{1}{\mu_0 \mathring{\rho} } \mathring{B}_x \mathring{B}_m \mathring{v}_m & -(\gamma-1) \mathring{v}_x \mathring{v}_k + (\delta_{xk} \mathring{h}_{total} - \frac{1}{\mu_0 \mathring{\rho} } \mathring{B}_x \mathring{B}_k) & \frac{1}{\mu_0} (-(\gamma - 2) \mathring{v}_x \mathring{B}_k - \mathring{v}_k \mathring{B}_x - \delta_{xk} \mathring{v}_m \mathring{B}_m) & \gamma \mathring{v}_x }\right] } \cdot \downarrow k \left[\matrix{ \partial_x \hat{\rho} \\ \partial_x \hat{(\rho v_k)} \\ \partial_x \hat{B}_k \\ \partial_x \hat{E}_{total} }\right] = -i k \cdot \downarrow i \overset{\rightarrow k}{ \left[\matrix{ 0 & \delta_{yk} & 0 & 0 \\ -\mathring{v}_i \mathring{v}_y + \frac{1}{2} \delta_{iy} (\gamma-1) \mathring{v}^2 & \delta_{ik} \mathring{v}_y + \delta_{yk} \mathring{v}_i - \delta_{iy} (\gamma-1) \mathring{v}_k & \frac{1}{\mu_0}(-\delta_{iy} (\gamma-2) \mathring{B}_k - \delta_{ik} \mathring{B}_y - \delta_{yk} \mathring{B}_i) & \delta_{iy} (\gamma-1) \\ -\frac{1}{ \mathring{\rho} } (\mathring{B}_i \mathring{v}_y - \mathring{B}_y \mathring{v}_i) & \frac{1}{ \mathring{\rho} } (\mathring{B}_i \delta_{yk} - \mathring{B}_y \delta_{ik}) & \delta_{ik} \mathring{v}_y - \delta_{yk} \mathring{v}_i & 0 \\ \mathring{v}_y (\frac{1}{2} (\gamma-1) \mathring{v}^2 - \mathring{h}_{total}) + \frac{1}{\mu_0 \mathring{\rho} } \mathring{B}_y \mathring{B}_m \mathring{v}_m & -(\gamma-1) \mathring{v}_y \mathring{v}_k + (\delta_{yk} \mathring{h}_{total} - \frac{1}{\mu_0 \mathring{\rho} } \mathring{B}_y \mathring{B}_k) & \frac{1}{\mu_0} (-(\gamma - 2) \mathring{v}_y \mathring{B}_k - \mathring{v}_k \mathring{B}_y - \delta_{yk} \mathring{v}_m \mathring{B}_m) & \gamma \mathring{v}_y }\right] } \cdot \downarrow i \left[\matrix{ \hat{\rho} \\ \hat{(\rho v_i)} \\ \hat{B}_i \\ \hat{E}_{total} }\right]$

Here I'm representing the flux Jacobians in terms of $\mathring{W}$, but what about $\mathring{W}$ in terms of $\mathring{U}$?
Is that where the linearization and elimination of higher-order terms comes in?
One way to avoid this could be to represent $\frac{\partial F(\mathring{U})}{\partial U}$ in terms of $\mathring{U}$ instead of $\mathring{W}$.

Expand Kronecker deltas:
$ \left[\matrix{ \partial_t \hat{\rho} \\ \partial_t \hat{(\rho v_x)} \\ \partial_t \hat{(\rho v_y)} \\ \partial_t \hat{(\rho v_z)} \\ \partial_t \hat{B}_x \\ \partial_t \hat{B}_y \\ \partial_t \hat{B}_z \\ \partial_t \hat{E}_{total} }\right] + \left[\matrix{ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\mathring{v}_x \mathring{v}_x + \frac{1}{2} (\gamma-1) \mathring{v}^2 & -(\gamma-3) \mathring{v}_x & -(\gamma-1) \mathring{v}_y & -(\gamma-1) \mathring{v}_z & -\frac{1}{\mu_0} \gamma \mathring{B}_x & -\frac{1}{\mu_0} (\gamma-2) \mathring{B}_y & -\frac{1}{\mu_0} (\gamma-2) \mathring{B}_z & \gamma - 1 \\ -\mathring{v}_y \mathring{v}_x & \mathring{v}_y & \mathring{v}_x & 0 & -\frac{1}{\mu_0} \mathring{B}_y & -\frac{1}{\mu_0} \mathring{B}_x & 0 & 0 \\ -\mathring{v}_z \mathring{v}_x & \mathring{v}_z & 0 & \mathring{v}_x & -\frac{1}{\mu_0} \mathring{B}_z & 0 & -\frac{1}{\mu_0} \mathring{B}_x & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{\mathring{\rho}} (\mathring{B}_y \mathring{v}_x - \mathring{B}_x \mathring{v}_y) & \frac{1}{\mathring{\rho}} \mathring{B}_y & -\frac{1}{\mathring{\rho}} \mathring{B}_x & 0 & -\mathring{v}_y & \mathring{v}_x & 0 & 0 \\ -\frac{1}{\mathring{\rho}} (\mathring{B}_z \mathring{v}_x - \mathring{B}_x \mathring{v}_z) & \frac{1}{\mathring{\rho}} \mathring{B}_z & 0 & -\frac{1}{\mathring{\rho}} \mathring{B}_x & - \mathring{v}_z & 0 & \mathring{v}_x & 0 \\ \mathring{v}_x (\frac{1}{2} (\gamma-1) \mathring{v}^2 - \mathring{h}_{total}) + \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_x \mathring{B}_m \mathring{v}_m & -(\gamma-1) \mathring{v}_x \mathring{v}_x - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_x \mathring{B}_x + \mathring{h}_{total} & -(\gamma-1) \mathring{v}_x \mathring{v}_y - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_x \mathring{B}_y & -(\gamma-1) \mathring{v}_x \mathring{v}_z - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_x \mathring{B}_z & -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_x \mathring{B}_x + \mathring{v}_x \mathring{B}_x + \mathring{v}_m \mathring{B}_m) & -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_x \mathring{B}_y + \mathring{v}_y \mathring{B}_x) & -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_x \mathring{B}_z + \mathring{v}_z \mathring{B}_x) & \gamma \mathring{v}_x }\right] \left[\matrix{ \partial_x \hat{\rho} \\ \partial_x \hat{(\rho v_x)} \\ \partial_x \hat{(\rho v_y)} \\ \partial_x \hat{(\rho v_z)} \\ \partial_x \hat{B}_x \\ \partial_x \hat{B}_y \\ \partial_x \hat{B}_z \\ \partial_x \hat{E}_{total} }\right] = -i k \left[\matrix{ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -\mathring{v}_x \mathring{v}_y & \mathring{v}_y & \mathring{v}_x & 0 & -\frac{1}{\mu_0} \mathring{B}_y & -\frac{1}{\mu_0} \mathring{B}_x & 0 & 0 \\ -\mathring{v}_y \mathring{v}_y + \frac{1}{2} (\gamma-1) \mathring{v}^2 & -(\gamma-1) \mathring{v}_x & -(\gamma-3) \mathring{v}_y & -(\gamma-1) \mathring{v}_z & -\frac{1}{\mu_0} (\gamma-2) \mathring{B}_x & -\frac{1}{\mu_0} \gamma \mathring{B}_y & -\frac{1}{\mu_0} (\gamma-2) \mathring{B}_z & \gamma-1 \\ -\mathring{v}_z \mathring{v}_y & 0 & \mathring{v}_z & \mathring{v}_y & 0 & -\frac{1}{\mu_0} \mathring{B}_z & -\frac{1}{\mu_0} \mathring{B}_y & 0 \\ -\frac{1}{\mathring{\rho}} (\mathring{B}_x \mathring{v}_y - \mathring{B}_y \mathring{v}_x) & -\frac{1}{\mathring{\rho}} \mathring{B}_y & \frac{1}{\mathring{\rho}} \mathring{B}_x & 0 & \mathring{v}_y & -\mathring{v}_x & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{\mathring{\rho}} (\mathring{B}_z \mathring{v}_y - \mathring{B}_y \mathring{v}_z) & 0 & \frac{1}{\mathring{\rho}} \mathring{B}_z & -\frac{1}{\mathring{\rho}} \mathring{B}_y & 0 & -\mathring{v}_z & \mathring{v}_y & 0 \\ \mathring{v}_y (\frac{1}{2} (\gamma-1) \mathring{v}^2 - \mathring{h}_{total}) + \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_y \mathring{B}_m \mathring{v}_m & -(\gamma-1) \mathring{v}_y \mathring{v}_x - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_y \mathring{B}_x & -(\gamma-1) \mathring{v}_y \mathring{v}_y - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_y \mathring{B}_y + \mathring{h}_{total} & -(\gamma-1) \mathring{v}_y \mathring{v}_z - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_y \mathring{B}_z & -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_y \mathring{B}_x + \mathring{v}_x \mathring{B}_y) & -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_y \mathring{B}_y + \mathring{v}_y \mathring{B}_y + \mathring{v}_m \mathring{B}_m) & -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_y \mathring{B}_z + \mathring{v}_z \mathring{B}_y) & \gamma \mathring{v}_y }\right] \left[\matrix{ \hat{\rho} \\ \hat{(\rho v_x)} \\ \hat{(\rho v_y)} \\ \hat{(\rho v_z)} \\ \hat{B}_x \\ \hat{B}_y \\ \hat{B}_z \\ \hat{E}_{total} }\right]$

Written out:
$\partial_t \hat{\rho} + \partial_x \hat{\rho} = -i k \hat{(\rho v_y)}$
$\partial_t \hat{(\rho v_x)} + (-\mathring{v}_x \mathring{v}_x + \frac{1}{2} (\gamma-1) \mathring{v}^2) \partial_x \hat{\rho} -(\gamma-3) \mathring{v}_x \partial_x \hat{(\rho v_x)} -(\gamma-1) \mathring{v}_y \partial_x \hat{(\rho v_y)} -(\gamma-1) \mathring{v}_z \partial_x \hat{(\rho v_z)} -\frac{1}{\mu_0} \gamma \mathring{B}_x \partial_x \hat{B}_x -\frac{1}{\mu_0} (\gamma-2) \mathring{B}_y \partial_x \hat{B}_y -\frac{1}{\mu_0} (\gamma-2) \mathring{B}_z \partial_x \hat{B}_z + (\gamma - 1) \partial_x \hat{E}_{total} = -i k ( -\mathring{v}_x \mathring{v}_y \hat{\rho} +\mathring{v}_y \hat{(\rho v_x)} +\mathring{v}_x \hat{(\rho v_y)} -\frac{1}{\mu_0} \mathring{B}_y \hat{B}_x -\frac{1}{\mu_0} \mathring{B}_x \hat{B}_y )$
$ \partial_t \hat{(\rho v_y)} -\mathring{v}_y \mathring{v}_x \partial_x \hat{\rho} +\mathring{v}_y \partial_x \hat{(\rho v_x)} +\mathring{v}_x \partial_x \hat{(\rho v_y)} -\frac{1}{\mu_0} \mathring{B}_y \partial_x \hat{B}_x -\frac{1}{\mu_0} \mathring{B}_x \partial_x \hat{B}_y = -i k ( (-\mathring{v}_y \mathring{v}_y + \frac{1}{2} (\gamma-1) \mathring{v}^2) \hat{\rho} -(\gamma-1) \mathring{v}_x \hat{(\rho v_x)} -(\gamma-3) \mathring{v}_y \hat{(\rho v_y)} -(\gamma-1) \mathring{v}_z \hat{(\rho v_z)} -\frac{1}{\mu_0} (\gamma-2) \mathring{B}_x \hat{B}_x -\frac{1}{\mu_0} \gamma \mathring{B}_y \hat{B}_y -\frac{1}{\mu_0} (\gamma-2) \mathring{B}_z \hat{B}_z -(\gamma-1) \hat{E}_{total} )$
$\partial_t \hat{(\rho v_z)} -\mathring{v}_z \mathring{v}_x \partial_x \hat{\rho} +\mathring{v}_z \partial_x \hat{(\rho v_x)} +\mathring{v}_x \partial_x \hat{(\rho v_z)} -\frac{1}{\mu_0} \mathring{B}_z \partial_x \hat{B}_x -\frac{1}{\mu_0} \mathring{B}_x \partial_x \hat{B}_z = -i k ( -\mathring{v}_z \mathring{v}_y \hat{\rho} +\mathring{v}_z \hat{(\rho v_y)} +\mathring{v}_y \hat{(\rho v_z)} -\frac{1}{\mu_0} \mathring{B}_z \hat{B}_y -\frac{1}{\mu_0} \mathring{B}_y \hat{B}_z )$
$\partial_t \hat{B}_x = -i k ( -\frac{1}{\mathring{\rho}} (\mathring{B}_x \mathring{v}_y - \mathring{B}_y \mathring{v}_x) \hat{\rho} - \frac{1}{\mathring{\rho}} \mathring{B}_y \hat{(\rho v_x)} + \frac{1}{\mathring{\rho}} \mathring{B}_x \hat{(\rho v_y)} + \mathring{v}_y \hat{B}_x - \mathring{v}_x \hat{B}_y )$
$ \partial_t \hat{B}_y -\frac{1}{\mathring{\rho}} (\mathring{B}_y \mathring{v}_x - \mathring{B}_x \mathring{v}_y) \partial_x \hat{\rho} +\frac{1}{\mathring{\rho}} \mathring{B}_y \partial_x \hat{(\rho v_x)} -\frac{1}{\mathring{\rho}} \mathring{B}_x \partial_x \hat{(\rho v_y)} -\mathring{v}_y \partial_x \hat{B}_x +\mathring{v}_x \partial_x \hat{B}_y = 0$
$ \partial_t \hat{B}_z -\frac{1}{\mathring{\rho}} (\mathring{B}_z \mathring{v}_x - \mathring{B}_x \mathring{v}_z) \partial_x \hat{\rho} +\frac{1}{\mathring{\rho}} \mathring{B}_z \partial_x \hat{(\rho v_x)} -\frac{1}{\mathring{\rho}} \mathring{B}_x \partial_x \hat{(\rho v_z)} -\mathring{v}_z \partial_x \hat{B}_x +\mathring{v}_x \partial_x \hat{B}_z = -i k ( -\frac{1}{\mathring{\rho}} (\mathring{B}_z \mathring{v}_y - \mathring{B}_y \mathring{v}_z) \hat{\rho} +\frac{1}{\mathring{\rho}} \mathring{B}_z \hat{(\rho v_y)} -\frac{1}{\mathring{\rho}} \mathring{B}_y \hat{(\rho v_z)} -\mathring{v}_z \hat{B}_y +\mathring{v}_y \hat{B}_z )$
$ \partial_t \hat{E}_{total} +(\mathring{v}_x (\frac{1}{2} (\gamma-1) \mathring{v}^2 - \mathring{h}_{total}) + \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_x \mathring{B}_m \mathring{v}_m) \partial_x \hat{\rho} +(-(\gamma-1) \mathring{v}_x \mathring{v}_x - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_x \mathring{B}_x + \mathring{h}_{total}) \partial_x \hat{(\rho v_x)} +(-(\gamma-1) \mathring{v}_x \mathring{v}_y - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_x \mathring{B}_y ) \partial_x \hat{(\rho v_y)} +(-(\gamma-1) \mathring{v}_x \mathring{v}_z - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_x \mathring{B}_z) \partial_x \hat{(\rho v_z)} -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_x \mathring{B}_x + \mathring{v}_x \mathring{B}_x + \mathring{v}_m \mathring{B}_m) \partial_x \hat{B}_x -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_x \mathring{B}_y + \mathring{v}_y \mathring{B}_x) \partial_x \hat{B}_y -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_x \mathring{B}_z + \mathring{v}_z \mathring{B}_x) \partial_x \hat{B}_z \gamma \mathring{v}_x \partial_x \hat{E}_{total} = -i k ( (\mathring{v}_y (\frac{1}{2} (\gamma-1) \mathring{v}^2 - \mathring{h}_{total}) + \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_y \mathring{B}_m \mathring{v}_m ) \hat{\rho} +(-(\gamma-1) \mathring{v}_y \mathring{v}_x - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_y \mathring{B}_x) \hat{(\rho v_x)} +(-(\gamma-1) \mathring{v}_y \mathring{v}_y - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_y \mathring{B}_y + \mathring{h}_{total}) \hat{(\rho v_y)} +(-(\gamma-1) \mathring{v}_y \mathring{v}_z - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_y \mathring{B}_z) \hat{(\rho v_z)} -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_y \mathring{B}_x + \mathring{v}_x \mathring{B}_y) \hat{B}_x -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_y \mathring{B}_y + \mathring{v}_y \mathring{B}_y + \mathring{v}_m \mathring{B}_m) \hat{B}_y -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_y \mathring{B}_z + \mathring{v}_z \mathring{B}_y) \hat{B}_z +\gamma \mathring{v}_y \hat{E}_{total} )$

Primitive perturbations:
$W_i = \downarrow i \left[\matrix{ \rho \\ v_i \\ B_i \\ P }\right]$
$W_i = \mathring{W}_i + \epsilon exp(i(yk + zm)) \hat{W}_i$

individual terms of MHD primitive perturbations:
$\rho = \mathring{\rho} + \epsilon exp(i(yk + zm)) \hat{\rho}$
$v_i = \mathring{v}_i + \epsilon exp(i(yk + zm)) \hat{v}_i$
$B_i = \mathring{B}_i + \epsilon exp(i(yk + zm)) \hat{B}_i$
$P = \mathring{P} + \epsilon exp(i(yk + zm)) \hat{P}$

individual terms of MHD conservative perturbations:
$\rho = \mathring{\rho} + \epsilon exp(i(yk + zm)) \hat{\rho}$
$\rho v_i = (\mathring{\rho} + \epsilon exp(i(yk + zm)) \hat{\rho}) (\mathring{v_i} + \epsilon exp(i(yk + zm)) \hat{v}_i) = \mathring{\rho} \mathring{v}_i + \epsilon exp(i(yk + zm)) (\mathring{\rho} \hat{v}_i + \hat{\rho} \mathring{v}_i) + \mathcal{O}(\epsilon^2) = \mathring{(\rho v_i)} + \epsilon exp(i(yk + zm)) \hat{(\rho v_i)} + \mathcal{O}(\epsilon^2) $
$B_i = \mathring{B}_i + \epsilon exp(i(yk + zm)) \hat{B}_i$
$E_{total} = \frac{1}{2} \rho v^2 + \frac{1}{\gamma - 1} P + \frac{1}{2 \mu_0} B^2 = \frac{1}{2} ( \mathring{\rho} + \epsilon exp(i(yk + zm)) \hat{\rho} ) \Sigma_{k=1}^3 ( \mathring{v}_k + \epsilon exp(i(yk + zm)) \hat{v}_k )^2 + \frac{1}{\gamma-1} ( \mathring{P} + \epsilon exp(i(yk + zm)) \hat{P} ) + \frac{1}{2 \mu_0} \Sigma_{k=1}^3 ( \mathring{B}_k + \epsilon exp(i(yk + zm)) \hat{B}_k )^2 $
$ = \frac{1}{2} ( \mathring{\rho} + \epsilon exp(i(yk + zm)) \hat{\rho} ) \Sigma_{k=1}^3 ( \mathring{v}_k^2 + 2 \epsilon exp(i(yk + zm)) \mathring{v}_k \hat{v}_k + \mathcal{O}(\epsilon^2) ) + \frac{1}{\gamma-1} ( \mathring{P} + \epsilon exp(i(yk + zm)) \hat{P} ) + \frac{1}{2 \mu_0} \Sigma_{k=1}^3 ( \mathring{B}_k^2 + 2 \epsilon exp(i(yk + zm)) \mathring{B}_k \hat{B}_k + \mathcal{O}(\epsilon^2) ) $
$ = \frac{1}{2} \mathring{\rho} \mathring{v}^2 + \frac{1}{\gamma-1} \mathring{P} + \frac{1}{2 \mu_0} \mathring{B}^2 + \epsilon exp(i(yk + zm)) ( \frac{1}{2} \hat{\rho} \mathring{v}^2 + \mathring{\rho} \mathring{v}_k \hat{v}_k + \frac{1}{\gamma-1} \hat{P} + \frac{1}{\mu_0} \mathring{B}_k \hat{B}_k ) + \mathcal{O}(\epsilon^2) $
$ = \mathring{E}_{total} + \epsilon exp(i(yk + zm)) \hat{E}_{total}$

Derived linearized perturbation relations:
$\mathring{U}_i = \downarrow i \left[\matrix{ \mathring{\rho} \\ \mathring{(\rho v_i)} \\ \mathring{B}_i \\ \mathring{E}_{total} }\right] + \epsilon exp(i(yk + zm)) \cdot \downarrow i \left[\matrix{ \hat{\rho} \\ \hat{(\rho v_i)} \\ \hat{B}_i \\ \hat{E}_{total} }\right] = \downarrow i \left[\matrix{ \mathring{\rho} \\ \mathring{\rho} \mathring{v}_i \\ \mathring{B}_i \\ \frac{1}{2} \mathring{\rho} \mathring{v}^2 + \frac{1}{\gamma - 1} \mathring{P} + \frac{1}{2 \mu_0} \mathring{B}^2 }\right] + \epsilon exp(i(yk + zm)) \cdot \downarrow i \left[\matrix{ \hat{\rho} \\ \mathring{\rho} \hat{v}_i + \hat{\rho} \mathring{v}_i \\ \hat{B}_i \\ \frac{1}{2} \hat{\rho} \mathring{v}^2 + \mathring{\rho} \mathring{v}_k \hat{v}_k + \frac{1}{\gamma-1} \hat{P} + \frac{1}{\mu_0} \mathring{B}_k \hat{B}_k }\right] $

individually:
$\mathring{(\rho v_i)} = \mathring{\rho} \mathring{v}_i$
$\hat{(\rho v_i)} = \mathring{\rho} \hat{v}_i + \hat{\rho} \mathring{v}_i$
$\mathring{E}_{total} = \frac{1}{2} \mathring{\rho} \mathring{v}^2 + \frac{1}{\gamma-1} \mathring{P} + \frac{1}{2 \mu_0} \mathring{B}^2$
$\hat{E}_{total} = \frac{1}{2} \hat{\rho} \mathring{v}^2 + \mathring{\rho} \mathring{v}_k \hat{v}_k + \frac{1}{\gamma-1} \hat{P} + \frac{1}{\mu_0} \mathring{B}_k \hat{B}_k$

coincidentally, in terms of differentials, things look very similar, for $\hat{x} = \delta \mathring{x}$:
$\delta (\rho v_i) = \delta (\rho v_i) = \rho \delta v_i + v_i \delta \rho$
$\delta E_{total} = \delta (\frac{1}{2} \rho v^2 + \frac{1}{\gamma-1} P + \frac{1}{2 \mu_0} B^2) = \frac{1}{2} v^2 \delta \rho + \rho v_k \delta v_k + \frac{1}{\gamma-1} \delta P + \frac{1}{\mu_0} B_k \delta B_k$

Next: plug the $\hat{W}_i$'s into the $\hat{U}$ MHD equations...
$\partial_t \hat{\rho} + \partial_x \hat{\rho} = -i k (\mathring{\rho} \hat{v}_y + \hat{\rho} \mathring{v}_y)$
$\partial_t (\mathring{\rho} \hat{v}_x + \hat{\rho} \mathring{v}_x) + (-\mathring{v}_x \mathring{v}_x + \frac{1}{2} (\gamma-1) \mathring{v}^2) \partial_x \hat{\rho} -(\gamma-3) \mathring{v}_x \partial_x (\mathring{\rho} \hat{v}_x + \hat{\rho} \mathring{v}_x) -(\gamma-1) \mathring{v}_y \partial_x (\mathring{\rho} \hat{v}_y + \hat{\rho} \mathring{v}_y) -(\gamma-1) \mathring{v}_z \partial_x (\mathring{\rho} \hat{v}_z + \hat{\rho} \mathring{v}_z) -\frac{1}{\mu_0} \gamma \mathring{B}_x \partial_x \hat{B}_x -\frac{1}{\mu_0} (\gamma-2) \mathring{B}_y \partial_x \hat{B}_y -\frac{1}{\mu_0} (\gamma-2) \mathring{B}_z \partial_x \hat{B}_z + (\gamma - 1) \partial_x (\frac{1}{2} \hat{\rho} \mathring{v}^2 + \mathring{\rho} \mathring{v}_q \hat{v}_q + \frac{1}{\gamma-1} \hat{P} + \frac{1}{\mu_0} \mathring{B}_q \hat{B}_q) = -i k ( -\mathring{v}_x \mathring{v}_y \hat{\rho} +\mathring{v}_y (\mathring{\rho} \hat{v}_x + \hat{\rho} \mathring{v}_x) +\mathring{v}_x (\mathring{\rho} \hat{v}_y + \hat{\rho} \mathring{v}_y) -\frac{1}{\mu_0} \mathring{B}_y \hat{B}_x -\frac{1}{\mu_0} \mathring{B}_x \hat{B}_y )$
$\partial_t (\mathring{\rho} \hat{v}_y + \hat{\rho} \mathring{v}_y) -\mathring{v}_y \mathring{v}_x \partial_x \hat{\rho} +\mathring{v}_y \partial_x (\mathring{\rho} \hat{v}_x + \hat{\rho} \mathring{v}_x) +\mathring{v}_x \partial_x (\mathring{\rho} \hat{v}_y + \hat{\rho} \mathring{v}_y) -\frac{1}{\mu_0} \mathring{B}_y \partial_x \hat{B}_x -\frac{1}{\mu_0} \mathring{B}_x \partial_x \hat{B}_y = -i k ( (-\mathring{v}_y \mathring{v}_y + \frac{1}{2} (\gamma-1) \mathring{v}^2) \hat{\rho} -(\gamma-1) \mathring{v}_x (\mathring{\rho} \hat{v}_x + \hat{\rho} \mathring{v}_x) -(\gamma-3) \mathring{v}_y (\mathring{\rho} \hat{v}_y + \hat{\rho} \mathring{v}_y) -(\gamma-1) \mathring{v}_z (\mathring{\rho} \hat{v}_z + \hat{\rho} \mathring{v}_z) -\frac{1}{\mu_0} (\gamma-2) \mathring{B}_x \hat{B}_x -\frac{1}{\mu_0} \gamma \mathring{B}_y \hat{B}_y -\frac{1}{\mu_0} (\gamma-2) \mathring{B}_z \hat{B}_z -(\gamma-1) (\frac{1}{2} \hat{\rho} \mathring{v}^2 + \mathring{\rho} \mathring{v}_q \hat{v}_q + \frac{1}{\gamma-1} \hat{P} + \frac{1}{\mu_0} \mathring{B}_q \hat{B}_q) )$
$\partial_t (\mathring{\rho} \hat{v}_z + \hat{\rho} \mathring{v}_z) -\mathring{v}_z \mathring{v}_x \partial_x \hat{\rho} +\mathring{v}_z \partial_x (\mathring{\rho} \hat{v}_x + \hat{\rho} \mathring{v}_x) +\mathring{v}_x \partial_x (\mathring{\rho} \hat{v}_z + \hat{\rho} \mathring{v}_z) -\frac{1}{\mu_0} \mathring{B}_z \partial_x \hat{B}_x -\frac{1}{\mu_0} \mathring{B}_x \partial_x \hat{B}_z = -i k ( -\mathring{v}_z \mathring{v}_y \hat{\rho} +\mathring{v}_z (\mathring{\rho} \hat{v}_y + \hat{\rho} \mathring{v}_y) +\mathring{v}_y (\mathring{\rho} \hat{v}_z + \hat{\rho} \mathring{v}_z) -\frac{1}{\mu_0} \mathring{B}_z \hat{B}_y -\frac{1}{\mu_0} \mathring{B}_y \hat{B}_z )$
$\partial_t \hat{B}_x = -i k ( -\frac{1}{\mathring{\rho}} (\mathring{B}_x \mathring{v}_y - \mathring{B}_y \mathring{v}_x) \hat{\rho} - \frac{1}{\mathring{\rho}} \mathring{B}_y (\mathring{\rho} \hat{v}_x + \hat{\rho} \mathring{v}_x) + \frac{1}{\mathring{\rho}} \mathring{B}_x (\mathring{\rho} \hat{v}_y + \hat{\rho} \mathring{v}_y) + \mathring{v}_y \hat{B}_x - \mathring{v}_x \hat{B}_y )$
$ \partial_t \hat{B}_y -\frac{1}{\mathring{\rho}} (\mathring{B}_y \mathring{v}_x - \mathring{B}_x \mathring{v}_y) \partial_x \hat{\rho} +\frac{1}{\mathring{\rho}} \mathring{B}_y \partial_x (\mathring{\rho} \hat{v}_x + \hat{\rho} \mathring{v}_x) -\frac{1}{\mathring{\rho}} \mathring{B}_x \partial_x (\mathring{\rho} \hat{v}_y + \hat{\rho} \mathring{v}_y) -\mathring{v}_y \partial_x \hat{B}_x +\mathring{v}_x \partial_x \hat{B}_y = 0$
$ \partial_t \hat{B}_z -\frac{1}{\mathring{\rho}} (\mathring{B}_z \mathring{v}_x - \mathring{B}_x \mathring{v}_z) \partial_x \hat{\rho} +\frac{1}{\mathring{\rho}} \mathring{B}_z \partial_x (\mathring{\rho} \hat{v}_x + \hat{\rho} \mathring{v}_x) -\frac{1}{\mathring{\rho}} \mathring{B}_x \partial_x (\mathring{\rho} \hat{v}_z + \hat{\rho} \mathring{v}_z) -\mathring{v}_z \partial_x \hat{B}_x +\mathring{v}_x \partial_x \hat{B}_z = -i k ( -\frac{1}{\mathring{\rho}} (\mathring{B}_z \mathring{v}_y - \mathring{B}_y \mathring{v}_z) \hat{\rho} +\frac{1}{\mathring{\rho}} \mathring{B}_z (\mathring{\rho} \hat{v}_y + \hat{\rho} \mathring{v}_y) -\frac{1}{\mathring{\rho}} \mathring{B}_y (\mathring{\rho} \hat{v}_z + \hat{\rho} \mathring{v}_z) -\mathring{v}_z \hat{B}_y +\mathring{v}_y \hat{B}_z )$
$ \partial_t (\frac{1}{2} \hat{\rho} \mathring{v}^2 + \mathring{\rho} \mathring{v}_q \hat{v}_q + \frac{1}{\gamma-1} \hat{P} + \frac{1}{\mu_0} \mathring{B}_q \hat{B}_q) +(\mathring{v}_x (\frac{1}{2} (\gamma-1) \mathring{v}^2 - \mathring{h}_{total}) + \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_x \mathring{B}_m \mathring{v}_m) \partial_x \hat{\rho} +(-(\gamma-1) \mathring{v}_x \mathring{v}_x - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_x \mathring{B}_x + \mathring{h}_{total}) \partial_x (\mathring{\rho} \hat{v}_x + \hat{\rho} \mathring{v}_x) +(-(\gamma-1) \mathring{v}_x \mathring{v}_y - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_x \mathring{B}_y ) \partial_x (\mathring{\rho} \hat{v}_y + \hat{\rho} \mathring{v}_y) +(-(\gamma-1) \mathring{v}_x \mathring{v}_z - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_x \mathring{B}_z) \partial_x (\mathring{\rho} \hat{v}_z + \hat{\rho} \mathring{v}_z) -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_x \mathring{B}_x + \mathring{v}_x \mathring{B}_x + \mathring{v}_m \mathring{B}_m) \partial_x \hat{B}_x -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_x \mathring{B}_y + \mathring{v}_y \mathring{B}_x) \partial_x \hat{B}_y -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_x \mathring{B}_z + \mathring{v}_z \mathring{B}_x) \partial_x \hat{B}_z \gamma \mathring{v}_x \partial_x (\frac{1}{2} \hat{\rho} \mathring{v}^2 + \mathring{\rho} \mathring{v}_q \hat{v}_q + \frac{1}{\gamma-1} \hat{P} + \frac{1}{\mu_0} \mathring{B}_q \hat{B}_q) = -i k ( (\mathring{v}_y (\frac{1}{2} (\gamma-1) \mathring{v}^2 - \mathring{h}_{total}) + \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_y \mathring{B}_m \mathring{v}_m ) \hat{\rho} +(-(\gamma-1) \mathring{v}_y \mathring{v}_x - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_y \mathring{B}_x) (\mathring{\rho} \hat{v}_x + \hat{\rho} \mathring{v}_x) +(-(\gamma-1) \mathring{v}_y \mathring{v}_y - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_y \mathring{B}_y + \mathring{h}_{total}) (\mathring{\rho} \hat{v}_y + \hat{\rho} \mathring{v}_y) +(-(\gamma-1) \mathring{v}_y \mathring{v}_z - \frac{1}{\mu_0\mathring{\rho}} \mathring{B}_y \mathring{B}_z) (\mathring{\rho} \hat{v}_z + \hat{\rho} \mathring{v}_z) -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_y \mathring{B}_x + \mathring{v}_x \mathring{B}_y) \hat{B}_x -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_y \mathring{B}_y + \mathring{v}_y \mathring{B}_y + \mathring{v}_m \mathring{B}_m) \hat{B}_y -\frac{1}{\mu_0} ((\gamma - 2) \mathring{v}_y \mathring{B}_z + \mathring{v}_z \mathring{B}_y) \hat{B}_z +\gamma \mathring{v}_y (\frac{1}{2} \hat{\rho} \mathring{v}^2 + \mathring{\rho} \mathring{v}_q \hat{v}_q + \frac{1}{\gamma-1} \hat{P} + \frac{1}{\mu_0} \mathring{B}_q \hat{B}_q) )$

...and simplifying...
$\partial_t \hat{B}_x = -i k ( - \mathring{B}_y \hat{v}_x + \mathring{B}_x \hat{v}_y + \mathring{v}_y \hat{B}_x - \mathring{v}_x \hat{B}_y )$

EMHD equations

state vector:
$U_i = \downarrow i \left[\matrix{ \rho \\ \rho v_i \\ E_{total} \\ E_i \\ B_i }\right]$
$E_{total} = E_{kin} + E_{int} + E_{EM} = \frac{1}{2} \rho v^2 + \frac{P}{\gamma - 1} + \frac{1}{2} ( \epsilon_0 E^2 + \frac{1}{\mu_0} B^2 ) =$ total energy

Maxwell equations:

Lorentz force law:
$\rho \partial_t v^i = q (E^i + {\epsilon^i}_{jk} v^j B^k)$

Flux in $j$th direction:
$F_{ij} = \downarrow i \left[\matrix{ \rho v_j \\ \rho v_i v_j + \delta_{ij} P_{total} \\ H_{total} v_j \\ }\right]$